共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil structure is very important in agriculture since it affects soil and plant root attributes, such as root system distribution, soil water and nutrient transport, and heat transfer. Degraded soil structures may be repaired by wetting and drying cycles due to changes in the soil pore system. Gamma-ray computed tomography (CT) was used as a tool to evaluate the effect of wetting/drying cycles on soil structure repair, using samples collected in aluminum cylinders. A first-generation tomograph with an 241Am source and a 7.62 cm × 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube were employed. Image analysis and tomographic unit profiles showed that CT can provide an insight into sample structure in order to evaluate repairs and so improves the use of this tool in relation to the judgement of the quality of measured soil physical properties. 相似文献
2.
Although it is well known that fluctuations in soil moisture affect the decomposition of organic matter, few studies have provided direct evidence of the underlying biophysical mechanisms. Cycles of wetting and drying (W/D) may not only alter soil pore structure, but also stimulate a proliferation of fungi, since these organisms are typically less affected by drought stress than bacteria, and hence the development of fungal-induced soil water repellency. The biophysical interaction between these processes is likely to influence the decomposition of organic matter amendments to soil and carbon sequestration. By using soil cores amended with rice straw, the objectives of this study were to determine the effects of drying intensity and frequency of W/D cycles on decomposition rate after rewetting, soil pore-size distribution, soil microbial biomass (SMB) and soil water repellency, and to assess their biophysical interaction. One W/D cycle consisted of wetting a soil core from the bottom for 1.5-days at −0.03 kPa followed by 1.5, 3.5 or 6.5 days of drying in open air at 25 ± 2.5 °C. This resulted in different intensities of drying and frequencies of W/D cycles over a 120-d incubation period. The decomposition rate decreased with repeated W/D cycles and increasing drying intensity, particularly between the 3rd and 9th W/D cycles. The SMB-C concentration and soil water repellency peaked at the 3rd W/D cycle. The peak size of the SMB-C concentration was larger in the drier soils and soil water repellency was significantly related to SMB-C concentration (R = 0.57, P = 0.025). The soil with the strongest drying treatment had a greater concentration of particulate organic carbon (POC) and the lowest C:N ratio in POC. Although the decomposition rate was significantly correlated to the concentration of soil organic carbon (SOC) (P < 0.01), POC (P < 0.01) and SMB-C (P < 0.05), stepwise regression analysis further identified that it was largely correlated to soil pore characteristics. The decrease in the decomposition rate in the drier soil was largely explained by the increase in macropores >300 μm in diameter (R = 0.98). The results suggest that an increased drying intensity or a longer duration of drying after rainfall or irrigation may favour SOC sequestration through inhibiting decomposition of amended residue. This may be due to the formation of macropores and their subsequent stabilization via fungal growth and fungal-induced soil water repellency. 相似文献
3.
Development of soil structure and the dynamics of water stable aggregates (WSA) in many soils are known to be closely related to the cycling of soil organic matter. In some fine and medium textured soils particulate organic matter (POM) has been found to act as a nucleus for macroaggregate formation. However, this role of POM in aggregate formation has not been demonstrated in soils dominated by smectitic clay minerals. This study explored aggregation processes in a Vertisol from a semi-arid region in Northeastern Mexico in relation to the addition of 14C-labeled maize residues and application of wetting and drying cycles during 105 days of incubation. Fractionation of the WSA formed showed that labeled residues were preferentially accumulated in large macroaggregates (>2000 μm). Treatments with addition of organic residues had three to four times more intra-aggregate particulate organic matter (iPOM) in large macroaggregates than the control after 14 days of incubation. Residue-derived carbon accounted for 53% and 41% of the total carbon stored in the iPOM fraction in amended treatments with and without wetting and drying cycles, respectively. Conversely, residue-derived carbon represented <20% of the total carbon in the iPOM fraction from small macroaggregates (250-2000 μm) and microaggregates (53-250 μm). Results also showed that the amount and concentration of carbon per large macroaggregate did not differ between the large macroaggregates formed under wetting and drying and those formed in continuous moist conditions. However, due to formation of higher number of large macroaggregates per kg of soil, more carbon could be stored in amended soils under wetting and drying than in constantly wet soil: 1.4, 1.8 and 2.7 times more 14C kg−1 soil after 14, 58 and 105 incubation days, respectively. The results in this study suggest that wetting and drying enhanced protection of the added maize residues inside large macroaggregates by forming more aggregates, rather than by increasing the amount of POM entrapped per aggregate. Therefore, after the addition of organic residues, this soil could accumulate more C than continuous moist soil through the influence that wetting and drying has on soil aggregation. 相似文献
4.
5.
Drying and rewetting of soil is an important process in soil aggregation, soil organic matter (SOM) decomposition, and nutrient cycling. We investigated the source of the C and N flush that occurs upon rewetting of dry soil, and whether it is from microbial death and/or aggregate destruction. A moderately well drained Kennebec silt loam (Fine-silty, mixed, superactive, mesic Cumulic Hapludoll) was sampled to a 10 cm depth. Soil under constant water content (CWC) was compared with soil subjected to a series of four dry-wet (DW) cycles during the experimental period (96 d) and incubated at 25 °C. Mineralized C and N were measured during the drying and rewetting periods. Aggregate size distributions were studied by separating the soil into four aggregate size classes (>2000, 250-2000, 53-250, and 20-53 μm) by wet sieving. Repeated DW cycles significantly reduced cumulative N mineralization compared with CWC. The reduction in cumulative mineralized C resulting from DW compared with CWC increased as the DW treatments were subjected to additional cycles. The flush of mineralized C significantly decreased with repeated DW cycles. There was no significant effect on aggregate size distributions resulting from to the DW cycles compared with CWC treatment. Therefore, the flush of mineralized C and N seemed to be mostly microbial in origin in as much as aggregate distribution was unaffected by DW cycles. 相似文献
6.
Maria do Socorro Bezerra de Araújo Carlos Ernesto R. Schaefer 《Archives of Agronomy and Soil Science》2017,63(2):242-249
Semiarid soils are subjected to wetting and drying cycles which influence sorption and desorption of applied phosphorus fertilizer. Phosphorus desorption was determined in soils from toposequences of two soil groups (Ferralsol and Luvisol) from a semiarid area, subjected to wetting and drying cycles. Samples from surface and subsurface horizons of upslope, midslope, and downslope positions were incubated for 4 months with phosphorus doses corresponding to 0, 5, 10, 25, 50, 75, and 100% of the maximum adsorption capacity, under constant moisture (80% water retention capacity) or 12 cycles of wetting and drying. Phosphorus desorption was lower in the Ferralsol than in the Luvisol, and lower in the subsurface than in the surface horizons, probably due to greater clay, Fe, and Al oxides contents, but they were similar among slope positions, of same mineralogy. Desorption tended to be greater in samples submitted to wetting and drying cycles but differences were small. P recovery reached 40–50% in the Luvisol, and 30–40% in the Ferralsol. The relatively low P retention capacity suggests a high residual effect of the P applied. Therefore, in relation to P losses, water retention techniques are less important than those that prevent soil erosion. 相似文献
7.
干湿效应下崩岗区岩土抗剪强度衰减非线性分析 总被引:12,自引:6,他引:12
发育于花岗岩的崩岗侵蚀区红土受干湿变化影响显著。通过室内直剪试验,研究了不同干湿效应对崩岗侵蚀区岩土抗剪强度衰减的影响。试验处理采用5种干湿效应水平(风干48h、风干24h、自然含水率、浸30s和浸60s)。结果显示:土壤黏聚力c和内摩擦角φ随干湿变化呈非线性衰减趋势,当土壤含水率13%左右时,对应的抗剪强度指标出现峰值;峰值强度前符合线性递增规律,峰值强度后符合一阶指数衰减规律。在风干阶段,抗剪强度主要受裂隙性影响,而在增湿阶段,基质吸力是影响抗剪强度的主要因素;探讨了干湿循环效应对崩岗侵蚀发育的影响。 相似文献
8.
硅在提高作物抗旱性中具有重要作用。干湿交替灌溉是通过对植物根系施加干旱处理,来诱导自身的干旱调节潜能的一种节水增产技术。关于节水灌溉影响作物生理特性的研究,结论不尽相同。干湿交替的灌溉方式是否适应于番茄栽培,且在该灌溉技术下施硅对番茄产量品质有何影响,鲜见报道。为探讨干湿交替条件下施硅对番茄的影响,采用潮汐式灌溉系统模拟干湿交替的灌溉方式,研究了干湿交替条件下硅对番茄植株硅质量分数、植株生长、果实产量及品质的影响。结果表明,营养液加硅使番茄根、茎、叶、果的硅质量分数分别提高494%、444%、246%、631%。在番茄幼苗期至开花坐果期,采用干湿交替的灌溉方式利于控制长势、培育壮苗,但结果前期至结果后期,尤其盛果期,则不宜采用干湿交替的灌溉方式。干湿交替造成了番茄的严重减产及番茄红素质量分数、维生素C质量分数、可滴定酸质量分数的下降,但显著提高番茄果实的可溶性蛋白质量分数、游离氨基酸质量分数、可溶性固形物质量分数、可溶性糖质量分数、可滴定酸质量分数、果实硬度、糖酸比,尤其糖酸比提高了30%,而施硅可缓解干湿交替对番茄生长发育后期果实产量和品质的不利影响。总之,干湿交替下施硅,在促进番茄稳产优质协调形成的前提下,可节水23%。该研究探讨了多变低水条件下硅的调控效应,丰富了硅提高植物抗旱性的理论内容,研究结果对实现合理节水并提高番茄商品率具有重要的意义。 相似文献
9.
为了进一步探究斜发沸石在干湿交替稻田中的应用潜力,设置不同灌溉模式(淹灌和干湿交替灌溉)和不同斜发沸石用量(0、5、10t/hm2)的大田裂区试验,对2017-2018年稻田土壤速效钾动态变化和产量进行了研究。结果表明:稻田增施斜发沸石显著提高了水稻产量,在10t/hm2水平下产量最高,增产率达8.7%~22.3%。斜发沸石对稻田表层土壤速效钾含量和植株地上部钾素积累的提高有显著正效应,干湿交替灌溉显著提高了各生育期植株地上部钾素积累量,提高幅度分别为11.81%~21.42%(2017年)、9.69%~23.79%(2018年)。通径分析表明,斜发沸石增产是因为其显著增加了分蘖肥期和穂肥期土壤速效钾含量,提高了抽穗开花期和黄熟期地上部钾素积累。研究可为揭示干湿交替灌溉下提高钾肥利用效率的应用潜力,并一定程度上缓解稻田缺钾的局面提供依据。 相似文献
10.
干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应 总被引:4,自引:2,他引:4
11.
干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响 总被引:2,自引:0,他引:2
为探讨干湿交替灌溉与施氮水平对水稻根系内源激素水平及氮肥利用的影响,以连粳7号为材料,采用防雨棚土培试验,研究3个灌溉方式:浅水层灌溉、轻度干湿交替灌溉、重度干湿交替灌溉与3个氮肥水平(0、240和360 kg/hm2)对水稻根系内源激素(玉米素及玉米素核苷(Z+ZR)、生长素(IAA)、脱落酸(ABA))、叶片氮代谢酶活性(硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT))、植株氮素累积量及氮肥利用效率的影响及其耦合效应。研究结果表明:在相同施氮水平下,轻度干湿交替灌溉促进根系Z+ZR、IAA合成,提高叶片中NR、GS及GOGAT活性,氮肥吸收利用率显著提高(P0.05);重度干湿交替灌溉则抑制根系Z+ZR、IAA合成,降低叶片NR、GS及GOGAT活性,植株氮素累积量及氮肥利用效率显著降低(P0.05),而根系ABA含量则明显增加(P0.05);在相同灌溉方式下,根系Z+ZR、IAA含量、叶片氮代谢酶活性及氮肥累积量在保持水层及轻度干湿交替下随着施氮量的增加而增加,而在重度干湿交替灌溉下则随着施氮量的增加先增加后降低,中氮处理明显提高氮肥利用效率(P0.05)。相关分析表明:根系合成的Z+ZR、IAA及叶片中氮代谢酶活性与氮肥吸收利用率呈显著(P0.05)或极显著(P0.01)的正相关关系,而脱落酸含量则与氮肥吸收利用率呈极显著的负相关关系(P0.01)。根系合成的Z+ZR、IAA及叶片中氮代谢酶供氮效应为正效应,抽穗后,轻度干湿交替灌溉供水效应及耦合效应为正效应,而重度干湿交替灌溉则为负效应。该研究对探索水氮耦合机理,为水稻高产高效栽培实践提供理论及科学依据。 相似文献
12.
稻田干湿交替对水稻氮素利用率的影响与调控研究进展 总被引:3,自引:2,他引:3
稻田干湿交替(alternate wetting and drying,AWD)是提高水稻水、氮利用率的重要水分管理措施。水稻品种、生态环境、氮肥运筹和土壤落干强度是影响AWD下水稻氮素利用率(nitrogen use efficiency,NUE)的主要因素。AWD通过改变土壤水-气环境而影响土壤中生物化学过程,进而影响土壤氮素营养的有效性。轻度AWD促进水稻根系的生长和活力,促进水稻氮素的吸收、同化和转移而提高NUE。轻度AWD不仅提高水稻光合作用,还促进干物质向籽粒的分配,从而提高水稻产量和氮素利用率。AWD还引起植物激素的变化,植物激素也可能参与了对水稻氮素利用的调控。该文从根际氮素营养与环境、根系形态功能、氮素同化和再转移,以及碳同化和分配、植物激素调控等方面综述了 AWD对水稻氮素利用率的影响与调控,并提出了一些值得深入探讨的问题。 相似文献
13.
Effect of drying and rewetting on mineralization and distribution of bacterial constituents in soil fractions 总被引:1,自引:0,他引:1
J. Cortez 《Biology and Fertility of Soils》1989,7(2):142-151
Summary Mineralization of 14C- and 15N-labelled whole bacteria, cytoplasm, and cell walls and their distribution in different soil fractions were studied during 211 days of incubation including two drying and rewetting cycles. With any of these three soil amendments, almost 60% of C derived from cellular constituents was released as CO2, 15% was incorporated into the living microbial biomass and 25% was distributed into protected microbial metabolites or recalcitrant microbial products. The distribution of C and N derived from the amendments in the different soil fractions showed that constituents adsorbed on fine clay (<0.2 m were more rapidly decomposed than those adsorbed on silt (50-2 ) and coarse clay (2–0.2 ), indicating a faster organic matter turnover in fine clay than in silt and coarse clay. Although alternate soil drying and rewetting cycles did not significantly affect the mineralization of bacterial constituents, the cycles did have an important effect on the size and specific activities of newly formed microbial biomass. This suggests the presence of an active and a dormant fraction of soil biomass. 相似文献
14.
施氮和干湿灌溉对水稻抽穗期根系分泌有机酸的影响 总被引:2,自引:0,他引:2
以水稻品种‘连粳7号’为试验材料进行盆栽试验,设置不施氮(0N,0 kg?hm-2)、中氮(MN,240 kg?hm-2)和高氮(HN,360 kg?hm-2)3种施氮水平及浅水层灌溉(0 k Pa)、轻度干湿交替灌溉(-20 k Pa)和重度干湿交替灌溉(-40 k Pa)3种灌溉方式,研究不同水氮处理对水稻抽穗期根系分泌有机酸总量和组分变化、氨基酸含量及水稻氮肥农学利用率与偏生产力的影响及其耦合效应,探索水氮耦合机理,为水稻氮素高效利用及根际生态提供理论及科学依据。结果表明:轻度干湿交替灌溉增加了水稻根系酒石酸、柠檬酸、草酸、苹果酸、琥珀酸、总有机酸、氨基酸分泌量,分别较浅水层灌溉增加13.2%、8.7%、27.3%、40.0%、6.7%、6.3%及6.4%,水稻氮肥农学利用效率及偏生产力分别增加4.1%及1.7%,显著提高根系分泌有机酸及氨基酸含量;重度干湿交替灌溉减少水稻根系酒石酸、柠檬酸、草酸、苹果酸、琥珀酸的分泌量,显著降低根系分泌有机酸总量、氨基酸含量及水稻的氮肥利用效率。同一水分条件下,施氮显著促进根系酒石酸、乙酸、苹果酸、琥珀酸的分泌,降低了草酸和柠檬酸的分泌量。根系分泌的酒石酸和琥珀酸含量在MN与HN间差异较小。分析表明,根系分泌有机酸总量、氨基酸、苹果酸及琥珀酸的供氮效应为正效应,轻度干湿交替灌溉效应及与供氮的耦合效应为正效应,而重度干湿交替灌溉效应及其与供氮的耦合效应则为负效应。根系分泌的柠檬酸、草酸与氮肥利用率呈显著与极显著正相关,乙酸与氮肥利用间呈显著负相关。结果表明通过轻度干湿交替灌溉与中等施氮调控发挥水肥耦合效应,可以促进水稻根系酒石酸、苹果酸、琥珀酸及氨基酸分泌,提高氮肥利用效率,从而促进水稻高产。 相似文献
15.
Physically based equations for unsaturated groundwater flow and solute transport have been coupled with kinetic rate laws for mineral dissolution–precipitation, and mass balance/mass action equations for aqueous species, in a numerical model that is capable of simulating rock–water interactions in a weathering profile subjected to fluctuating boundary conditions. A numerical experiment was conducted to demonstrate how incipient soil development may proceed in a warm subhumid environment. The simulation involved a hypothetical coarse-textured parent material that was subjected to frequent wetting and drying during an annual water cycle. The hypothetical weathering profile evolved rapidly; dissolution of primary minerals (enstatite, forsterite, and diopside) and precipitation of secondary clay–minerals (kaolinite and Ca-montmorillonite) occurred monotonically despite the abrupt fluctuations in soil-moisture content. In contrast, the activities of aqueous species and dissolution–precipitation rates of calcite were very sensitive to the changing moisture conditions in the upper part of the profile. Although the simulation involved numerous simplifying assumptions, reasonable results were achieved and the calculated (from the model) rate of chemical denudation fell within the range of contemporary denudation rates determined from the dissolved loads of rivers. 相似文献
16.
《Communications in Soil Science and Plant Analysis》2012,43(11):1243-1256
Abstract The effect of drying on the cation (CEC) and anion (AEC) exchange capacity, and on potassium (K) and magnesium (Mg) adsorption by three New Zealand soils was investigated. Air‐drying resulted in no significant changes in these properties compared with the field‐moist samples. Oven‐drying at 105°C significantly decreased the CEC and increased the AEC of most soils compared with air‐dried samples. The decrease in CEC was related to increased solubility of organic matter and a decrease in surface area on which charge could be developed. The increase in AEC was attributed to a decrease in soil pH. Potassium and Mg adsorption by two soils decreased following oven‐drying. This was consistent with the effect of drying on CEC. For the remaining soil, K adsorption increased following oven‐drying. This was attributed to K fixation. 相似文献
17.
干湿交替灌溉下水氮耦合对沸石处理稻田产量和水氮利用的影响 总被引:1,自引:3,他引:1
为了明确斜发沸石在干湿交替稻田中的应用潜力,运用离心机法测定不同斜发沸石处理下稻田土壤水分特征曲线,分析了斜发沸石对土壤持水性能的影响;运用自动遮雨棚蒸渗仪进行了灌溉-施氮-沸石的综合水稻栽培试验,明确了斜发沸石和氮肥对干湿交替稻田阳离子交换量、产量、水氮利用率及稻米蛋白质含量的影响及机理。结果表明:稻田土壤基质势在-35~0 k Pa范围内,增施斜发沸石可明显提高土壤持水性能,改善土壤水分状况,在持续淹灌和干湿交替灌溉条件下均能提高水分生产率,且后者更为明显;增施斜发沸石可增强土壤阳离子交换量,从而提高保肥能力和氮肥利用率,尤其是10~15 t/hm2的斜发沸石同105 kg/hm2的氮肥混施可显著提高氮肥农艺利用率和稻米蛋白质含量;增施斜发沸石可增产4.7%~16.8%,且可优化水肥耦合,避免在高氮水平下干湿交替灌溉增产效果低于持续淹灌的现象。与常规施氮的淹灌稻田相比,干湿交替灌溉稻田施用10 t/hm2斜发沸石和105 kg/hm2的氮肥,可减少27.8%的耗水量和33.3%的施氮量,增产10.6%,进而显著提高氮肥利用效率(89.2%)和水分生产率(52.5%),且这些正效应至少可持续2年。 相似文献
18.
《Communications in Soil Science and Plant Analysis》2012,43(20):2527-2545
ABSTRACTThe present investigation aimed to determine the effectiveness of different nitrogen (N) rates on grain yield, growth, and water use efficiencies of direct wet-seeded rice and to create a relationship of N rates with growth parameters and dry matter production at different stages. The experiments compared six rates of nitrogen (0, 40,80,120,160, and 200 kg ha–1N) replicated thrice in randomized complete block design in two conjunctive years of 2009–2010 and 2010–2011 at Bangladesh Rice Research Institute farm, Gazipur.The highest grain yield of 7.85 and 7.22 t ha?1 was observed in N200 treatment in 2009–2010 and 2010–2011, respectively. The relationship (R2) of total dry matter with leaf area index , leaf area duration, and crop growth rate indicated strong association during booting stage to achieved maximum dry matter during harvest. Water use efficiency varied 87–91% in different N levels. 相似文献
19.
干湿交替灌溉具有节水稳产等优势,但也存在促进NH3挥发和增加N2O排放的风险。而生物炭具有改善土壤、蓄水保肥、降低温室气体排放等诸多正效应。为探究干湿交替灌溉条件下稻田活性氮气体排放(主要为NH3和N2O)对添加生物炭的响应机制,设置不同灌溉模式(淹灌和干湿交替灌溉)和生物炭用量(0和20 t/hm2)2个因素4个处理,通过2020和2021年大田原位试验,对稻田土壤环境、NH3挥发、N2O排放、植物氮素吸收和产量等进行了研究。结果表明,2 a间,干湿交替灌溉对水稻产量均未产生显著影响(P>0.05),但却显著增加了NH3挥发(仅2020年)和N2O排放(P<0.05),增幅分别达到8.9%和105.0%~115.0%;而添加生物炭显著降低了NH3挥发(8.7%~20.5%)和N2O排放(21.6%~24.2%)(P<0.05),减少9.0%~20.6... 相似文献
20.
The effects of repeated soil drying and rewetting on microbial biomass N (Nbio) and mineral N (Nmin) were measured in incubation experiments simulating typical moisture and temperature conditions for soils from temperate climates in the post‐harvest period. After application of in vitro 15N‐labeled fungal biomass to a silty loam, one set of soils was exposed to two drying‐rewetting cycles (treatment DR; 14 days to decrease soil moisture to 20 % water‐holding capacity (WHC) and subsequently 7 days at 60 % WHC). A control set (treatment CM) was kept at constant moisture conditions (60 % WHC) throughout the incubation. Nbio and Nmin as well as the 15N enrichment of these N pools were measured immediately after addition of 15N‐labeled biomass (day 0) and after each change in soil moisture (day 14, 21, 35, 42). Drying and rewetting (DR) resulted in higher Nmin levels compared to CM towards the end of the incubation. Considerable amounts of Nbio were susceptible to mineralization as a result of soil drying (i.e., drying enhanced the turnover of Nbio), and significantly lower Nbio values were found for DR at the end of each drying period. Immediately after biomass incorporation into the soil (day 0), 22 % of the applied 15N was found in the Nmin pool. Some of this 15Nmin must have been derived from dead cells of the applied microbial biomass as only about 80 % of the microbes in the biomass suspension were viable, and only 52 % of the 15Nbio was extractable (using the fumigation‐extraction method). The increase in 15Nmin was higher than for unlabeled Nmin, indicating that added labeled biomass was mineralized with a higher rate than native biomass during the first drying period. Overall, the effect of drying and rewetting on soil N turnover was more pronounced for treatment DR compared to CM during the second drying‐rewetting cycle, resulting in a higher flush of mineralization and lower microbial biomass N levels. 相似文献