首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由聚丙烯(PP)、高密度聚乙烯(HDPE)和聚苯乙烯(PS)组成的混合废旧塑料与木粉经高速混合机混合后,采用双螺杆/单螺杆串联挤出机组制备了木粉/混合废旧塑料复合材料。探讨了马来酸酐接枝苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS-g-MAH)和原位接枝马来酸酐(MAH)对木粉/混合废旧塑料复合材料力学性能的影响。结果表明,与使用MAH和DCP的原位反应共混相比,SEBS-g-MAH显著提高了复合材料的抗冲击性能,但对拉伸和弯曲性能的改善不如原位反应共混显著。总的来说,混合废旧塑料制备的复合材料的力学性能要低于纯塑料混合物制备的复合材料,尤其是拉伸断裂伸长率。微观形态研究表明,添加SEBS-g-MAH和原位接枝MAH均可提高木粉与塑料混合物之间的界面相容性,但与添加SEBS-g-MAH相比,原位接枝MAH能更好的改善PP、HDPE、PS与木粉之间的界面结合。原位接枝MAH可被看作是一种改善木粉与塑料混合物间界面相容性的有效途径。此外,采用动态力学分析(DMA)进一步表征了复合材料的储能模量和阻尼因子。  相似文献   

2.
Acetylated wood meals of Sugi (Cryptomeria japonica D.Don) wood were prepared by mechanochemical processing using a high-speed vibration rod mill. Weight percent gain (WPG) of the acetylated wood meals ranged from 7.0 to 35.5 %. Wood–plastic composites (WPCs) containing 50 % acetylated woods were produced by an injection molding technique. The polymer matrix used was polypropylene homopolymer. Maleic anhydride-grafted polypropylene (MAPP) was also used as a compatibilizing agent. The mechanical properties of WPCs in bending and tensile tests were independent of WPG of acetylated wood meals, and the test values for WPCs containing acetylated wood meals were lower than that of unmodified wood meal. The use of MAPP increased bending and tensile strength, but no effect on bending modulus was found. An increase in WPG significantly decreased water absorbability and thickness swelling of WPCs as measured by dimensional stability tests. These results demonstrated that mechanochemical processing is a promising technique for preparing WPC material with improved dimensional stability. The future challenge is to inhibit the decreases in mechanical properties of WPCs containing acetylated wood meals.  相似文献   

3.
Abstract

One of the major issues in a long-term perspective for the use of wood–plastic composites (WPCs) in outdoor applications is the moisture sensitivity of the wood component and the consequent dimensional instability and susceptibility to biological degradation of the composite. In this work, the effects of using an acetylated wood component and a cellulose ester as matrix on the micromorphology, mechanical performance and moisture uptake of injection-moulded WPCs have been studied. Composites based on unmodified and acetylated wood particles, specially designed with a length-to-width ratio of about 5–7, combined with both cellulose acetate propionate (CAP) and polypropylene (PP) matrices were studied. The size and shape of the wood particles were studied before and after the processing using light microscopy, and the micromorphology of the composites was studied using a newly developed surface preparation technique based on ultraviolet laser irradiation combined with low-vacuum scanning electron microscopy (LV-SEM). The water vapour sorption in the composites and the effect of accelerated weathering were measured using thin samples which were allowed to reach equilibrium moisture content (EMC). The length-to-diameter ratio was only slightly decreased for the acetylated particles after compounding and injection moulding, although both the unmodified and the acetylated particles were smaller in size after the processing steps. The tensile strength was about 40% higher for the composite based on acetylated wood than for the composite with unmodified wood using either CAP or PP as matrix, whereas the notched impact strength of the composite based on acetylated wood was about 20% lower than those of the corresponding unmodified composites. The sorption experiments showed that the EMC was 50% lower in the composites with an acetylated wood component than in the composites with an unmodified wood component. The choice of matrix material strongly affected the moisture absorptivity of the WPC. The composites with CAP as matrix gained moisture more rapidly than the composites with PP as matrix. It was also found that accelerated ageing in a Weather-Ometer® significantly increased the moisture sensitivity of the PP-based composites.  相似文献   

4.
Abstract

This study focuses on the water absorption and mechanical properties of composites made from softwood sawdust and plastics, such as virgin and recycled polypropylene and polylactic acid (PLA). The composites were processed by extrusion, and their properties were investigated by a water immersion test, mechanical tests and a cyclic test for moisture resistance. Scanning electron microscopy was used to study the morphology of the fracture surfaces of the composites. The composites made with recycled polypropylene had the lowest water absorption and thickness swelling of the studied composites. The PLA composites made with heat-treated sawdust showed the highest flexural strength. Of the polypropylene based composites, virgin polypropylene resulted in composites with higher flexural strength. The Charpy impact strength of the composites was found to have an inverse trend compared to flexural strength. Cyclic treatment of the studied composites resulted in 20–60% loss of flexural strength, depending on type of composite.  相似文献   

5.
This paper presents the effects of particle size and mixing ratio on the properties including physical, mechanical, and decay resistance of wood plastic composites (WPCs). In addition, it also presents the effects of immersion temperatures on water absorption (WA) and thickness swelling (TS) of the WPCs. WPCs with a thickness of 6 mm were fabricated from Albizia richardiana King & Prain wood particles and recycled polyethylene terephthalate (PET) by the flat-press method. To prepare the WPCs, two different wood particle sizes (0.5–1.0 and 1.01–2.0 mm) were used along with four different mixing ratios (w/w). Subsequently, the physical properties include density, moisture content, WA, and TS, and mechanical properties include modulus of elasticity (MOE) and modulus of rupture (MOR) of the produced WPCs was evaluated. Furthermore, decay resistance was evaluated by the weight loss percentage method. Moreover, the effects of immersion temperatures on WA and TS of WPCs after 24 h of immersion in water at three different temperatures, i.e., 25, 50, and 75 °C were investigated. Results showed that the wood particle size had impact on WPC’s density (only 6% decreased with the increase of particle size); however, the density decreased by 29% when the wood particle content increased from 40 to 70%. The WA and TS gradually increased with the increase of particle content and decrease of particle size. In addition, WA and TS increased proportionately with increasing immersion temperature from 25 to 75 °C. Furthermore, the highest MOE (2570 N/mm2) was found for the WPCs fabricated from large wood particles having the ration of 50:50 (wood particle:PET). For decay resistance, WPCs consisted of larger particles and higher PET content showed greater resistance against decay. Therefore, it is comprehensible that fabrication of the WPCs from 50% large particles and 50% PET is technically feasible and further improvement of WPC performance like enhancement of MOE and reduction of density using coupling agent and agricultural waste fibers, respectively, in the WPC formulation is recommended.  相似文献   

6.
木纤维PP/PE共混物复合材料的流变和力学性能(英文)   总被引:2,自引:0,他引:2  
For evaluation of the rheological and mechanical properties of highly filled wood plastic composites (WPCs), polypropylene/polyethylene (PP/PE) blends were grafted with maleic anhydride (MAH) to enhance the interfacial adhesion between wood fiber and matrix. WPCs were prepared from wood fiber up to 60 wt.% and modified PP/PE was blended by extrusion. The rheological properties were studied by using dynamic measurement. According to the strain sweep test, the linear viscoelastic region of composites in the melt was determined. The result showed that the storage modulus was independent of the strain at low strain region (〈0.1%). The frequency sweep resuits indicated that all composites exhibited shear thinning behavior, and both the storage modulus and complex viscosity of MAH modified composites were decreased comparing to those unmodified. Flexural properties and impact strength of the prepared WPCs were measured according to the relevant standard specifications. The flexural and impact strength of the manufactured composites significantly increased and reached a maximum when MAH dosage was 1.0 wt%, whereas the flexural modulus after an initial decreased, also increased with MAH dosage. The increase in mechanical properties indicated that the presence of anhydride groups enhanced the interracial adhesion between wood fiber and PP/PE blends.  相似文献   

7.
木粉和稻壳粉是制备木塑复合材料(WPC)常用原料。WPC在使用过程中经常受到热和水分的影响,笔者对比研究了稻壳粉/HDPE和木粉/HDPE两种复合材料经历热氧老化和长时间水浸渍后性能的变化规律。结果表明:木粉/高密度聚乙烯(HDPE)复合材料的弯曲强度和弹性模量都大于稻壳粉/HDPE的;随着热氧老化或水浸渍处理时间的延长,复合材的挠曲性能下降,其中木粉/HDPE复合材的弹性模量下降最为迅速;复合材料表面明度值随着热处理时间的延长而减小,说明颜色变暗,稻壳粉与木粉填充的复合材之间差别不大。通过光学显微镜观察发现,HDPE与稻壳粉或木粉之间都有缝隙存在,为水分和氧气的进出提供了通道。  相似文献   

8.
High-density polyethylene (HDPE), bagasse fibers treated by four pulping processes (AS-AQ (alkaline sulfite anthraquinone), SODA-AQ (soda anthraquinone), MEA (monoethanolamine) and chemical–mechanical pulping (CMP)), three levels of nano-SiO2 (0, 2, and 5?wt%), and maleic anhydride polyethylene as coupling agent were used to produce pulp–plastic composites (PPCs) by injection molding. The physical and mechanical properties of corresponding composites were evaluated according to ASTM standards. The results showed that compared to untreated bagasse/HDPE composite, the addition of bagasse pulp fibers increased significantly the mechanical properties such as tensile strength and modulus, flexural strength and modulus, and hardness. The chemical pulps-reinforced composites showed better mechanical strengths than that of CMP-reinforced composites, but in some properties, CMP pulp composites have comparable results to the chemical pulp-reinforced composites. Natural fibers (untreated and treated) increased water absorption and thickness swelling of composites compared to pure HDPE. The addition of nano-SiO2 particles showed both increasing and decreasing trends on physical and mechanical properties ofPPCs.  相似文献   

9.
Abstract

This study investigated the effects of organoclay platelet contents (0, 3 and 5 wt%) and polypropylene type (virgin and recycled) on the mechanical properties of polypropylene/wood flour composites. Composite samples were made by melt compounding and consequent injection moulding. The tensile, flexural and impact properties of resultant composites were determined. X-ray diffraction (XRD) analysis of composites with 3 and 5% nanoclay content was also conducted. The results indicated that tensile and flexural properties of the composites increased with the addition of nanoclay particles up to 3 wt% and decreased thereafter. The impact strength of the composites, however, decreased with the incorporation of nanoclay. The mechanical properties of the recycled polypropylene-based nanocomposites were statistically comparable with those based on virgin polypropylene. XRD analysis revealed that the degree of intercalation in the nanocomposites containing 3% nanoclay was higher than in those containing 5%. Based on these results, it can be concluded that recycled polypropylene could be used instead of virgin polypropylene in the production of value-added products with no significant adverse effects on the mechanical properties.  相似文献   

10.
Abstract

Five mineral fillers were tested for wood–plastic composites (WPCs): calcium carbonate, two different types of wollastonite, soapstone and talc. The impact of the fillers on the mechanical properties of the composites was studied. The experiments included bending tests, tensile tests, Brinell hardness and scanning electron microscopy experiments. The amount of wood, mineral and plastic (polypropylene) was kept steady. Only the mineral type was changed during the tests. A control sample without any mineral added was also manufactured. The mineral addition improved the tensile strength of the WPCs. The hardness of the composite was also improved when the minerals were added, and along with the increasing mineral hardness, the hardness of the composite increased. The wollastonite acicular shape was crushed during the manufacturing process, so the phase of the process in which the minerals are added requires careful consideration.  相似文献   

11.
微发泡木塑复合材料耐腐性能的研究   总被引:1,自引:0,他引:1  
研究了5种不同木塑比的木塑复合材料的天然耐腐性能。结果表明:①木塑复合材料的天然耐腐性能为强耐腐等级,受菌侵染后质量损失率随着木粉含量的提高而增大,但均小于3.5%,方差分析表明,木粉含量对试件质量损失率的影响高度显著,指数函数y=a×exp(x/b)+c对5种木塑材料的平均质量损失率拟合结果较好,决定系数R2为0.923 58;②通过SEM和DSC分析,木塑材料受菌侵染后,主要是木质材料受到了破坏。  相似文献   

12.
The market for wood-fiber plastic composites (WPCs) is expanding rapidly in many countries including Japan, where WPCs are mainly used for exterior products. In such applications, WPCs undergo undesirable color change, chalking, and shrinkage and swelling, and accordingly there is a need to better understand the mechanisms responsible for the weathering of WPC and develop methods of improving their weathering resistance. In this study, weatherability of WPC was assessed by natural and accelerated weathering trials. Discoloration (whitening) of WPC during exposure was caused by degradation of both wood and plastic. Darker color pigments as additives improved the color stability of WPC; however, chalking on the surfaces still occurred. The color stability of WPC was improved by application of exterior coatings. Preweathering of WPC (before coatings were applied) increased the absorption of coatings by the WPC and had a positive effect on the color stability and prevented chalking of the composites. Parts of this study were presented at the IUFRO XXII World Congress Meeting, Brisbane, August 2005 and the IAWPS 2005, Yokohama, November 2005  相似文献   

13.
This study examined the bending creep behavior of hot-pressed wood during cyclic moisture changes. Sugi (Cryptomerica japonica D. Don) specimens were pressed in the radial direction under six combinations of nominal compressive strain (33% and 50%) and press temperatures (140°C, 170°C, 200°C). Creep tests were conducted at 20°C with three cyclic relative humidity changes between 65% and 95% under 25% of short-breaking stress. The effect of moisture content (MC) change on elastic compliance and mechanosorptive (MS) compliance was investigated. The relation between MS compliance and thickness swelling was studied. The results indicated that total compliance increased over the history of cyclic moisture changes; and its behavior was closely related to the changes in MC and thickness swelling. The total compliance increased during adsorption and decreased during desorption. Elastic compliance increased linearly with MC and was dependent on press temperature and compression. With increasing MC change, MS compliance increased during adsorption and decreased during desorption. The first adsorption led to greater MS compliance than did the subsequent adsorption with the same amount of MC change. In general, the elastic parameterK E and the MS parameterK Mincreased with compression and decreased as the press temperature increased. The MS parameterK M was apparently greater than the elastic parameterK E. The MS parameterK M increased with swelling coefficient KSW of the hot-pressed specimen during adsorption and decreased with an increasing shrinkage coefficientK SH during desorption.  相似文献   

14.
采用两种形态的棉秆与两种塑料复合,制备棉秆/塑料复合板材,分析棉秆形态、塑料种类及工艺因子对复合板材性能的影响。结果表明:刨花态棉秆复合板材的性能优于搓丝态棉秆,热压温度、聚丙烯比例和板材密度对复合板材的性能有显著影响。优化条件下制成的棉秆搓丝/聚丙烯复合板材性能,超过室外结构用刨花板性能指标要求。  相似文献   

15.
ABSTRACT

In this study, wood flour/polypropylene (WF/PP) composites were prepared by incorporating 2?wt% carbon materials with different morphologies, including carbon black (CB), graphite (G), and multi-walled carbon nanotubes (CNTs). WF/PP composite without any additives was included as a reference. All composites were placed in the accelerated UV weathering tester for a total of 960 h. The physical and mechanical properties of composites were compared. The changes in surface morphology and surface chemistry were characterized by SEM AFM, and ATR-FTIR. The results showed that: (1) the addition of CNTs improved both flexural and impact properties of composites; (2) composites containing CNTs exhibited better color stability and less severe surface cracking during weathering; and (3) ATR-FTIR results revealed that all the additives alleviated surface photo-oxidation of composites due to their UV-screening effect. Overall, due to the improved interfacial bonding between WF and PP, CNTs were more effective in protecting wood–plastic composites from photodegradation.  相似文献   

16.
木/塑复合材料界面增容研究的进展   总被引:8,自引:1,他引:7  
王志玲  王正 《木材工业》2005,19(3):12-15
木/塑复合材料是用途广泛的新型材料之一.从增强木/塑复合材料界面相容性,即界面增容着手,介绍了国内外的研究进展,提出增强木/塑界面相容性是木/塑复合材料产品开发和应用的关键之一,引入具有增容作用的组分对推动木/塑复合材料产业化意义重大;而研制适用的生产设备、开发不同树种木材和其它植物纤维与不同种类塑料在较高纤维含水率下复合所适用的新型增容剂是今后研究的方向之一.  相似文献   

17.
新型木塑复合材料成型工艺的研究   总被引:8,自引:2,他引:8  
木塑复合材料是以木材或各种木质纤维素纤维材料为基体 ,通过与塑料以不同复合途径形成的一种新型材料。文章介绍了平压法木塑复合材料成型工艺 ,研究了成型过程中板坯的流动性和粘结性 ,探讨了塑料与木质碎料的混合比对木塑复合材料力学性能的影响。结果表明将塑料先加入一定量的木粉或将木质材料与混炼后的塑料混合后压制成型 ,材料可以具有良好的力学性能  相似文献   

18.
Properties of PP/wood flour/organomodified montmorillonite nanocomposites   总被引:2,自引:1,他引:1  
In this research, composites based on polypropylene (PP), beech wood flour, and organomodified montmorillonite (OMMT) were prepared and characterized for their properties. The blend nanocomposites were prepared by melt mixing of PP/WF at 50% weight ratios with various amounts of OMMT (0, 3, and 6 per hundred compounds (phc)) in a Hakee internal mixer. Then the samples were made by injection molding. The influence of organomodified montmorillonite contents on clay dispersion, physical and mechanical properties of PP/wood flour composites were investigated. Results indicated that the flexural strength and modulus, tensile strength and modulus increased by addition of 3 per hundred compounds (phc) of organomodified montmorillonite (OMMT), but decreased with 6 phc OMMT addition. However, impact strength, water absorption and thickness swelling of the composites decreased with increasing nanoclay loading. X-ray diffraction patterns (XRD) and transmission electron microscopy (TEM) revealed that the nanocomposites formed were intercalated. Also, morphological findings showed that samples containing 3 phc of OMMT had higher order of intercalation.  相似文献   

19.
Beech wood (Fagus sylvatica L.) was modified with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). The equilibrium moisture content (EMC) of wood modified with DMDHEU calculated on a dry modified basis is reduced. Previous results have shown that the modification with DMDHEU does not alter the capillary condensation; therefore, the reduction in EMC seems exaggerated. The equilibrium constants of the Hailwood–Horrobin model (K d and K h) and the molecular weight of a hypothetical polymer of modified wood capable of adsorbing one molecule of water (W i) were calculated from the EMC on a dry modified wood basis (M) and on a dry wood basis (M R). The hypothetical polymer was also calculated by stoichiometry (W c) and compared to W i to estimate the number of operative OH groups. The number of operative OH groups decreased when M was used, in contradiction with the previously obtained results of differential heat of adsorption (∆H s). Therefore, the use of M R is recommended for the analysis of moisture sorption in wood modified with DMDHEU.  相似文献   

20.
To improve interfacial adhesion between wood veneer and high-density polyethylene (HDPE) film, wood veneer was thermally modified in an oven or chemically modified by vinyltrimethoxysilane. The wood veneers were used to prepare plastic-bonded wood composites (PBWC) in a flat-press process using HDPE films as adhesives. The results showed that both modifications reduced veneer hydrophilicity and led to enhancement in shear strength, wood failure, and water resistance of the resulting PBWC. The thermal treatment significantly decreased the storage modulus close to 130 °C (the melting temperature of plastic). Thermal-treated wood veneer maintains mechanical interlocking for bonding and veneer strength which then declined under thermal treatment due to hemicellulose degradation and cellulose de-polymerization. In the silane-treated PBWC, enhanced interlocking and a stronger bonding structure resulted from the reaction between the silane-treated veneer and HDPE. This strong bonding structure allowed thermal stability improvement demonstrated by high modulus and low tanδ values. However, the strength of silane-treated PBWC was still much lower than thermosetting resin-bonded composites at higher temperatures due to the melting behavior of thermoplastic polymer, precluding its use in certain applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号