首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat (cv. WH-147) and five biotypes of Phalaris minor Retz. (KR-1, H-4, K-2, H-2 and J-1) were treated with isoproturon in controlled environmental conditions to assess their level of resistance. Resistance of P. minor to isoproturon was found in the order of KR-1 > H-4 > K-2 > H-2 = J-1. Compared with the susceptible (S) biotype (H-2), the resistant (R) biotypes (KR-1. H-4 and K-2) of P. minor required 13.0, 4.5 and 2.7 times higher doses of isoproturon for a 50% reduction in growth (GR50) and 2.4 times that of the S biotype (H-2) by wheat. The corresponding figures for KR-1, H-4, K-2 biotypes and wheat were 18, 4.1, 2.4 and 4.6 times based on dry weight reduction. The effect of isoproturon on photosynthesis was studied in vitro using five biotypes of P. minor and in viro with wheat. KR-1 (R) and H-2 (S) biotypes of P. minor. Under in vitro treatment conditions isoproturon inhibited the photosynthesis of all five P. minor biotypes, whereas in vivo the recovery was greater in the R biotype than in the wheat and the S biotype. Effects on chlorophyll fluorescence were also measured in wheat and the KR-1 (R) and H-2 (S) biotypes of P. minor. A 4-h treatment of excised leaves incubaled in isoproluron solution (0.025 and 0.05 mm concentration) resulted in a decreased fluorescence coefficient (Fv Fm ratio in which Fv= variable fluorescence (Fm - Fo): Fm= the maximum fluorescence and Fo= initial fiuorescence) in wheat (Triticum aestivum L.) and both biotypes of P. Minor. The recovery was, however, greater in the R biotype than in wheat and it was completely recovered within 24 h. No recovery was recorded in the case of the S biotype of P. minor and a greater recovery time was required for wheat than the R biotype. The higher dose required for growth inhibition in the R biotype and rapid recovery of oxygen evolution and fluorescence coeflicient under in viro conditions together with the absence of selectivity in vitro suggests that the target site was unaffected. It can be conjectured that resistance to isoproturon is most probably because of enhanced metabolism or sequestration of isoproturon, resulting in decreased target site delivery.  相似文献   

2.
Littleseed canarygrass (Phalaris minor Retz.), a troublesome weed of wheat in India, has evolved multiple herbicide resistance across three modes of action: photosynthesis at the photosystem II site A, acetyl‐coA carboxylase (ACCase), and acetolactate synthase inhibition. The multiple herbicide‐resistant (MHR) populations had a low level of sulfosulfuron resistance but a high level of resistance to clodinafop and fenoxaprop (ACCase inhibitors). Some of the populations had GR50 (50% growth reduction) values for clodinafop that were 11.7‐fold greater than that of the most susceptible population. The clodinafop‐resistant populations also showed a higher level of cross‐resistance to fenoxaprop (fop group) but a low level of cross‐resistance to pinoxaden (den group). Although clodinafop and pinoxaden are from two different chemical families (fop and den groups), their same site of action is responsible for cross‐resistance behavior. The populations that were resistant to four groups of herbicides (phenylureas, sulfonylurea, aryloxyphenoxypropionate, and phenylpyrazolin) were susceptible to the triazine (metribuzin and terbutryn) and dinitroaniline (pendimethalin) herbicides. The P. minor populations that were resistant to the aryloxyphenoxypropionate and phenylurea herbicides were effectively controlled by the sulfonylurea herbicide, sulfosulfuron. In the fields infested with P. minor that was resistant to clodinafop, a sulfosulfuron application (25 g ha?1) increased the wheat yield by 99.2% over that achieved using the recommended rate of clodinafop (60 g ha?1). However, the evolution of multiple resistance against the four groups is a threat to wheat production. To prevent the spread of MHR P. minor populations, as well as the extension of multiple resistance to new chemicals, concerted efforts in developing and implementing a sound, integrated weed management program are needed. The integrated approach, consisting of crop and herbicide rotation with cultural and mechanical weed control tactics, should be considered as a long‐term resistance management strategy that will help to sustain wheat productivity and farmers' income.  相似文献   

3.
杨肖艳  #  刘红斌#  李铷  傅杨  汤东生 《植物保护》2020,46(6):264-269
为筛选能有效防除云南麦田入侵杂草小籽虉草Phalaris minor的除草剂, 采用温室盆栽法分别测定了麦田常用7种茎叶处理剂各7个梯度剂量对小籽虉草的毒力?结果表明, 在推荐剂量下, 50%异丙隆WP?5%唑啉草酯EC?15%炔草酯WP?69 g/L精噁唑禾草灵EW?7.5%啶磺草胺WG?30 g/L甲基二磺隆OD和70%氟唑磺隆WG对小籽虉草药后30 d的株防效分别为99.34%?99.43%?87.50%?75.00%?34.50%?37.50%, 54.17%, 药后30 d的鲜重防效分别为87.92%?92.66%?56.09%?74.43%?57.17%?45.61%?44.67%?所有除草剂中, 唑啉草酯的GR90接近推荐使用剂量的90%?异丙隆的GR90略高于推荐剂量, 其他除草剂的GR90远高于麦田推荐使用剂量?以上结果表明, 防治麦田杂草小籽虉草的首选除草剂为唑啉草酯, 备选除草剂种类少?  相似文献   

4.
Intra- and inter-sample similarities for four populations of the annual grass weed Phalaris minor from Haryana state, India, were examined using inter-simple sequence repeat (ISSR) DNA markers. Levels of polymorphism within and between populations were low in comparison with values reported from other grassy weed species. Analysis of inter-population similarities allowed a partial differentiation of the four populations and of pairs of populations classified by cropping system. Analysis of the intra-population similarity data showed a weak but consistent and statistically significant negative correlation between the molecular similarity of seedlings and the physical distance between their mother plants over distances up to 40 m (the maximum separation tested) in all four populations. The consistency of the observed relationship between molecular similarity and physical separation, and the differences in cultivation practices at the four sites, suggested that the relationship may be a result of localized out-crossing, rather than an effect of localized seed rain. The results of the analyses are discussed in relation to the potential for evolution of multiple traits in the weed in response to changes in the wheat production system in the region.  相似文献   

5.
小籽虉草Phalaris minor是近年来危害云南中西部地区冬季作物田的恶性杂草。云南冬季作物以阔叶作物为主, 有必要开展在阔叶作物田小籽虉草的化学防除效果研究。本研究在室内和田间测试了108 g/L高效氟吡甲禾灵EC、150 g/L精吡氟禾草灵EC、10%精喹禾灵EC、69 g/L精噁唑禾草灵EW、240 g/L烯草酮EC、12.5%烯禾啶EC、5%唑啉草酯EC等7种阔叶作物田茎叶处理剂对小籽虉草的防效以及对油菜和蚕豆的安全性。室内研究结果表明, 药后30 d, 5%唑啉草酯EC、12.5%烯禾啶EC、10%精喹禾灵EC在推荐剂量作用下对小籽虉草的鲜重防效超过90%, 杂草植株表现明显枯死症状, 并且安全性指数均大于2; 240 g/L烯草酮EC的株防效较差, 鲜重防效也低于50%; 其他药剂的鲜重防效为80%左右。田间药效试验表明, 5%唑啉草酯EC防效最优, 接近95%, 108 g/L高效氟吡甲禾灵EC和12.5%烯禾啶EC等防效能达到90%, 其他药剂的防效也超过80%, 所有药剂对油菜和蚕豆均安全。以上结果表明, 当前大多数阔叶作物田禾本科杂草除草剂对小籽虉草高效, 对作物安全, 控制小籽虉草的备选除草剂品种较多。  相似文献   

6.
Littleseed canarygrass (~canarygrass) evolved populations that are resistant to isoproturon during the early 1990s in north‐western India. Clodinafop‐propargyl (~clodinafop) was recommended for controlling these populations. It has been used extensively in wheat for the last several years. Recently, poor or no control of canarygrass by clodinafop has been observed in large areas, which could be related to cross‐resistance or multiple resistance. This study was designed to test whether resistance has evolved in canarygrass populations against clodinafop and to explore control of the resistant populations with sulfosulfuron and pinoxaden. Among the 311 canarygrass populations that were tested, 86, 55 and 34 showed variable phytotoxicity (0–99%) due to 0.030, 0.060 and 0.120 kg ha?1 clodinafop, respectively. Based on the resistance index, 11 populations were “highly resistant”, 60 were “resistant” and the rest (240) were “susceptible” to clodinafop. Five and six clodinafop‐resistant populations showed slight resistance to 0.0125 kg ha?1 sulfosulfuron and 0.025 kg ha?1 pinoxaden, respectively. But, sulfosulfuron at 0.025 and 0.050 kg ha?1 and pinoxaden at 0.050 and 0.100 kg ha?1 controlled all the canarygrass populations. Clodinafop used for 4 years increased the chance of resistance evolving, whereas its rotation with sulfosulfuron reduced the chance of resistance evolving. This study showed that considerable canarygrass populations have evolved a low‐to‐high degree of resistance against clodinafop. The further use of clodinafop would lead to the spread of resistance in larger areas through the dispersal of resistant seeds. Clodinafop should be replaced with 0.025 kg ha?1 sulfosulfuron or 0.050 kg ha?1 pinoxaden. Besides, where canarygrass has not evolved resistance, the yearly rotation of sulfosulfuron with clodanafop or pinoxaden might delay the evolution of resistance.  相似文献   

7.
H OM  S KUMAR  & S D DHIMAN 《Weed Research》2005,45(2):140-148
Seed placement, soil temperature and soil moisture content influenced the process of after-ripening in Phalaris minor seeds. Seeds of P. minor collected from the soil just after wheat harvesting exhibited higher germination than seeds from P. minor threshed directly. There was a pronounced impact of periodic inhabitation of seed into the soil on germination after its dispersal. Germination was strongly inhibited when the seed was kept in soil at more than field capacity (FC) or in water. Maximum germination of seed incubated in soil at FC occurred at 30°C while a temperature of 40°C favoured after-ripening of seed when mixed with dry soil or kept dry without any medium. Release from conditional dormancy was quicker in the seed retrieved from the soil kept at 20°C than at 10°C. Seed release from conditional dormancy and germination increased with a rise in temperature from 30 to 40°C when the seed was retrieved from incubation in soil at FC for 70 days. The seed kept immersed in water was least responsive to a rise in temperature. Seed recovered from dry soil, or kept without any medium, responded quickly at both temperatures. Light enhanced the germination of Phalaris minor seed. The seedbank subjected to rice (Oryza sativa) field management conditions lost vigour in comparison with the seed stored in laboratory. There was significant variability in seed viability when exposed to differential water management conditions in rice.  相似文献   

8.
Phalaris minor, the most serious weed in wheat in north‐western India, has developed extensive isoproturon resistance due to continuous isoproturon use. For its control, alternative herbicides (flufenacet, metribuzin and sulfosulfuron) at different application rates and timing were evaluated in wheat. In addition, herbicide carryover risk onto rotational crops (sorghum; maize and green gram, Vigina radiata) was also assessed. Isoproturon at 1 and 2 kg a.i. ha?1 provided only 10.5% and 51.8%P. minor control respectively. Of the other herbicides, early post‐emergent [15–21 days after sowing (DAS)] flufenacet at 180–480 g a.i. ha?1 provided acceptable control of P. minor, but failed to control broad‐leaved weeds and was phytotoxic to the wheat crop. Metribuzin at 210 g a.i. ha?1 was effective in controlling both Phalaris and dicotyledonous weeds. Mixtures of both flufenacet and metribuzin at reduced rates were better than flufenacet for weed control and grain yield. The efficacy of flufenacet and metribuzin was drastically reduced with later growth stages of P. minor (four to five leaf). Whereas sulfosulfuron at 25–30 g a.i. ha?1, applied either early post‐emergence (19 DAS) or post‐emergence (30–42 DAS), was quite effective. Overall, sulfosulfuron was the most effective treatment with regard to weed control and crop yield. However, maize and sorghum grown in rotation after harvest of sulfosulfuron‐treated wheat plots showed 65–73% crop biomass inhibition. The residual effect of sulfosulfuron was also noticed on Trianthema portulacastrum (Horse purslane), causing 73.5% dry matter reduction. By contrast, no carryover damage with flufenacet was observed on maize, sorghum and green gram. Glasshouse pot experiments and field trials investigating crop sensitivity to pre‐plant applications of sulfosulfuron found the decreasing order: sorghum > maize > green gram. The risk of carryover onto rotational crops should be considered when choosing alternative herbicides for P. minor control in wheat.  相似文献   

9.
Five soil samples were taken from each of five fields with different crop management histories. Three of the fields were in an arable rotation, the fourth field was temporary grassland, and the final field was under permanent grass. Of the three arable fields, two had been cropped with winter wheat in three of the preceding 6 years, and the third had last been cropped with winter wheat once only, 6 years previously. With one exception, the winter wheat had been sprayed with the herbicide isoproturon. The rate of isoproturon degradation in laboratory incubations was strongly related to the previous management practices. In the five soils from the field that had been treated most regularly with isoproturon in recent years, <2.5% of the initial dose remained after 14 days, indicating considerable enhancement of degradation. In the soils from the field with two applications of the herbicide in the past 6 years, residues after 27 days varied from 5% to 37% of the amount applied. In soils from the other three sites, residue levels were less variable, and were inversely related to microbial biomass. In studies with selected soils from the field that had received three applications of isoproturon in the previous 6 years, kinetics of degradation were not first‐order but were indicative of microbial adaptation, and the average time to 50% loss of the herbicide (DT50) was 7.5 days. In selected soils from the field that had received just one application of isoproturon, degradation followed first‐order kinetics, indicative of cometabolism. Pre‐incubation of isoproturon in soil from the five fields led to significant enhancement of degradation only in the samples from the two fields that had a recent history of isoproturon application.  相似文献   

10.
Field resistance of Echinochloa spp. to propanil has been previously reported in Costa Rica, Colombia and Arkansas (USA). In this study, the mechanism of resistance was investigated in three resistant (R) and three susceptible (S) biotypes. The shoot fresh weight reduction in pot-grown plants from a post-emergence spray of propanil at 2.44 kg a.i. ha−1 on biotypes R/S from Costa Rica, Colombia and Arkansas was 35/98%, 25/79% and 20/82% respectively. In vitro chlorophyll fluorescence data from leaf tissue incubated in propanil showed that photosynthesis was inhibited in all biotypes, indicating that the propanil-binding site and enzyme were not altered. After transfer to herbicide-free solution, photosynthesis recovered only in resistant biotypes, indicating that the mechanism of resistance was caused by enhanced metabolism of the herbicide. Simultaneous treatment with fenitrothion, an aryl acylamidase inhibitor, prevented the recovery of photosynthesis in leaf tissue in two resistant biotypes. In contrast, the cytochrome P450 mono-oxygenase inhibitor, 1-aminobenzotriazole, did not prevent recovery from propanil in leaf tissue. Application of 14C-propanil to the second leaf of intact Echinochloa plants showed that c . 90% of the radioactivity remained in the treated leaf for up to 72 h after application. No major differences in translocation between R and S biotype plants were found. TLC analysis of tissue extracts from the treated leaves showed substantially less radioactivity associated with propanil, present after 72 h in rice or in the three R biotypes, compared with S biotypes.  相似文献   

11.
小麦品种温度互作中抗条锈微效基因的表达   总被引:2,自引:0,他引:2  
初步研究了不同温度下小麦品种抗条锈性的表达机制 ,结果分析表明 :品种间、温度间及品种×温度间差异均达到了极显著水平。试验进一步证明京核 1号小麦温敏微效基因的存在。在高温潜育发病条件下有利于微效基因抗性的表达。接种前高温处理 1~ 2d ,在常温下潜育发病 ,对温敏基因抗性的表达没有显著影响 ;接种后高温处理 1~ 2d ,在常温下潜育发病 ,对温敏基因抗性的表达有一定的诱导作用。而接种后在常温下处理 1~ 2d ,再于高温下潜育发病 ,更有利于微效基因抗性表达  相似文献   

12.
Thirty separate soil samples were taken from different locations at the Brimstone farm experimental site, Oxfordshire, UK. Incubations of isoproturon under standard conditions (15 °C; ?33 kPa soil water potential) indicated considerable variation in degradation rate in the soil, with the time to 50% loss (DT50) varying from 6 to 30 days. These differences were confirmed in a second comparative experiment in which degradation rates were assessed in 11 samples of the same soil in two separate laboratories using an identical protocol. There was a significant negative linear relationship (r2= 0.746) between the DT50 values and soil pH in this group of soils. In a third experiment, degradation rates of the related compound chlorotoluron were compared with those of isoproturon in 12 separate soil samples, six of which had been stored for several months, and six of which were freshly collected from the field. Degradation of both herbicides occurred more slowly in the stored samples than in the fresh samples but, in all of them, chlorotoluron degraded more slowly than isoproturon, and there was a highly significant linear relationship (r2=0.916) between the respective DT50 values.  相似文献   

13.
Glyphosate [N-(phosphonomethyl) glycine] is currently the most important non-selective, wide-spectrum herbicide used worldwide. Introduced in 1974, glyphosate was initially a non-crop herbicide and plantation crop herbicide, although it is now widely used in no-till crop production and, more recently, for weed control in herbicide-resistant transgenic crops, such as maize, soybean and cotton ( Baylis 2000 ; Caseley & Copping 2000 ). Despite its widespread and long-term use, no case of evolved resistance to glyphosate was documented until 1996 ( Pratley et al . 1996 ). Since then, a few other cases have been reported. To date, evolved resistance to glyphosate has been identified and documented in Lollium rigidum in Australia ( Powles et al . 1998 ; Pratley et al . 1999 ), Eleusine indica in Malaysia ( Lee & Ngim 2000 ), and L. rigidum in South Africa and California (USA), and Conyzia canadensis in Delawere (USA) ( Van Gessel 2001 ). Also, accessions of L. rigidum from South Africa and California have been reported to resist glyphosate ( Heap 2001 ). In Chile, the first case of glyphosate-resistance in Lolium multiflorum was reported in 1999 and documented in 2003 ( Pérez & Kogan 2003 ). This case was the result of an intensive selection pressure caused by the continuous applications of glyphosate in fruit orchards over 8–10 years. The present study is a first approach to elucidating the mechanism involved in the resistance of one biotype of L. multiflorum selected in Chilean orchards.  相似文献   

14.
Herbicide‐resistant populations of Alopecurus myosuroides (black grass) have become widespread throughout the UK since the early 1980s. Previous observations in this laboratory have demonstrated that natural climatic fluctuations caused increases in endogenous glutathione S‐transferase (GST) enzyme activity in A. myosuroides plants as they mature, which is thought to be linked to herbicide resistance in this species. The present study has investigated the effects of plant growth at 10°C and 25°C, and reports GST specific activity and glutathione (GSH) pool size in resistant and susceptible A. myosuroides biotypes. Findings demonstrate differences in GST activity between resistant and susceptible populations, which are transient at lower growth temperatures. The GSH pool size was elevated at lower growth temperature in both biotypes. We speculate that these endogenous responses are part of a natural mechanism of acclimation to environmental change in this species and suggest that resistant plants are more able to adapt to environmental stress, as indicated in this instance by temperature change. These observations imply that the control of resistant A. myosuroides by graminicides may be more effective when applied at lower temperatures and at earlier growth stages.  相似文献   

15.
Germination and appressorium formation of wheat leaf rust urediospores were studied in two experiments. No consistent differences could be detected between 11 genotypes of wheat (Triticum aestivum), two of barley, one ofTriticum dicoccum, one ofT. dicoccoides, one ofT. boeoticum and one ofAegilops squarrosa. Host genotypes and non-hosts gave similar results, suggesting that the phases before penetration of the host leaf are not affected by the resistance mechanisms operating in hosts and non-host genotypes.Samenvatting Kieming en de vorming van appressoria is bestudeerd in twee experimenten. Er zijn geen systematische verschillen waargenomen tussen 11 genotypen van tarwe, twee van gerst, een vanTriticum dicoccum, een vanT. dicoccoides, een vanT. boeoticum en een vanAegilops squarrosa. Waard en niet-waard genotypen gaven overeenkomstige resultaten, dit suggereert dat de fasen voor penetratie van het gastheerblad niet beïnvloed worden door de resistentiemechanismen werkzaam in waard en niet-waard.  相似文献   

16.
 小麦品种Libellula和N. strampelli是甘肃陇南小麦条锈病常发易变区2个典型的持久抗病性品种,其不仅具有良好的成株抗病性,而且具有一定的全生育期抗病性。为了明确其全生育期抗条锈性遗传机制,本研究采用常规杂交分析和潜育期变温处理相结合的方法,分别在苗期常温(昼18℃/夜10℃)和高温(昼24℃/夜15℃)2种温域下,对其主效和微效抗条锈病基因进行遗传分析。结果表明,Libellula常温下对CYR29-mut3的抗病性由1对隐性主效基因控制,高温下对CYR29、CYR31和CYR32的抗病性由2对隐性温敏微效基因累加作用控制。N. strampelli常温下对CYR31的抗病性由2对隐性主效基因互补控制,高温下对CYR32的抗病性由2对隐性温敏微效基因互补控制。Libellula和N. strampelli既含有全生育期主效抗条锈基因,又含有温敏微效基因,建议在小麦抗条锈病育种中加以有效利用。  相似文献   

17.
The metabolism, uptake and translocation of paraquat in resistant (R) and susceptible (S) biotypes of Crassocephalum crepidioides (Benth.) S. Moore (redflower ragleaf) at the 10-leaf stage was investigated. A study on the properties of leaf surface was carried out to examine the relationship between leaf surface characters and paraquat absorption. The extractable paraquat was not metabolized by the leaf tissue of either the resistant or susceptible biotypes. Differential metabolism, therefore, does not appear to play a role in the mechanism of resistance. Both biotypes did not show any significant difference in the amount of cuticle and trichome densities. Furthermore, both biotypes are identical in the structure of stomata, trichomes and epicuticular wax. The results of the leaf surface studies are in agreement with the findings of the uptake study. Both biotypes demonstrated no significant difference in absorption between the resistant and susceptible biotypes. However, 10% of the absorbed 14C-paraquat into the S biotype was translocated basipetally, but not in the R biotype. The results of this study suggest that in C. crepidioides , differential translocation may contribute to the mechanism of resistance at the 10-leaf stage.  相似文献   

18.
采用倒置"W"九点取样法和5级目测法,调查了云南冬季作物田杂草虉草的发生和危害状况。结果表明,截至2017年在云南有7个地州33个区县发现有虉草危害,其中保山地区危害最为严重,占全省受害面积的92%,其次是大理白族自治州。虉草在冬季作物田大麦、小麦、油菜和蚕豆田均有发生。危害的虉草有两个种,分别是小籽虉草Phalaris minor和奇异虉草P.paradoxa。其中小籽虉草的发生较为普遍,奇异虉草为零星发生。虉草造成的危害指数在6%~50%之间,对农作物造成的产量损失在40~110kg/667m2之间。虉草的防除以化学防除为主,人工防除为辅,但目前尚缺乏经济有效的防除农田虉草的除草剂。  相似文献   

19.
从2004年开始,延边地区稻田大量发生抗磺酰脲类除草剂苄嘧磺隆的抗药性生态型雨久花。为解析其抗药性突变机制,采用离体法测定了抗、感性雨久花乙酰乳酸合成酶活性。结果表明,抑制抗、感性雨久花乙酰乳酸合成酶活性50%的苄嘧磺隆剂量为253.44×10-7mol/L和2.80×10-7mol/L;抑制抗、感性雨久花乙酰乳酸合成酶活性50%的吡嘧磺隆剂量为1802.15×10-7mol/L和20.85×10-7mol/L。抗药性雨久花对苄嘧磺隆和吡嘧磺隆的抗性系数(RI50/SI50)值分别为90.6和86.5,并存在交互抗药性。确认抗药性突变系由其乙酰乳酸合成酶对磺酰脲类除草剂苄嘧磺隆、吡嘧磺隆反应钝化所致。  相似文献   

20.
This study examines the CO2‐mediated influence of plant resistance on crown rot dynamics under continuous cropping of partially resistant wheat line 249 and the susceptible cultivar Tamaroi. Disease incidence, severity, deoxynivalenol and Fusarium biomass were assessed after each cycle in microcosms established at ambient and 700 mg kg?1 CO2 using soil and stubble of these wheat lines from a field experiment with free to air CO2 enrichment. Monoconidial isolates from wheat stubble were collected initially, and after five cropping cycles, to compare the frequency and aggressiveness of Fusarium species in the two populations. Aggressiveness was measured using a high‐throughput seedling bioassay. At elevated CO2, the higher initial incidence in Tamaroi increased with cropping cycles, but incidence in 249 remained unchanged. Incidence at ambient CO2 did not change for either line. Elevated CO2 induced partial resistance in Tamaroi, but not in 249. Increased Fusarium biomass in wheat tissue at elevated CO2 matched raised deoxynivalenol of the stem base in both lines. After five cycles of continuous wheat cropping, aggressiveness increased in pathogenic F. culmorum and F. pseudograminearum by 110%, but decreased in weakly pathogenic F. equiseti and F. oxysporum by 50%. CO2 and host resistance interactively influenced species frequency, and the highly aggressive F. pseudograminearum became dominant on Tamaroi irrespective of CO2 concentration, while its frequency declined on 249. This study shows that induced resistance at elevated CO2 will not reduce crown rot severity, or impede the selection and enrichment of Fusarium populations with increased aggressiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号