首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat (cv. WH-147) and five biotypes of Phalaris minor Retz. (KR-1, H-4, K-2, H-2 and J-1) were treated with isoproturon in controlled environmental conditions to assess their level of resistance. Resistance of P. minor to isoproturon was found in the order of KR-1 > H-4 > K-2 > H-2 = J-1. Compared with the susceptible (S) biotype (H-2), the resistant (R) biotypes (KR-1. H-4 and K-2) of P. minor required 13.0, 4.5 and 2.7 times higher doses of isoproturon for a 50% reduction in growth (GR50) and 2.4 times that of the S biotype (H-2) by wheat. The corresponding figures for KR-1, H-4, K-2 biotypes and wheat were 18, 4.1, 2.4 and 4.6 times based on dry weight reduction. The effect of isoproturon on photosynthesis was studied in vitro using five biotypes of P. minor and in viro with wheat. KR-1 (R) and H-2 (S) biotypes of P. minor. Under in vitro treatment conditions isoproturon inhibited the photosynthesis of all five P. minor biotypes, whereas in vivo the recovery was greater in the R biotype than in the wheat and the S biotype. Effects on chlorophyll fluorescence were also measured in wheat and the KR-1 (R) and H-2 (S) biotypes of P. minor. A 4-h treatment of excised leaves incubaled in isoproluron solution (0.025 and 0.05 mm concentration) resulted in a decreased fluorescence coefficient (Fv Fm ratio in which Fv= variable fluorescence (Fm - Fo): Fm= the maximum fluorescence and Fo= initial fiuorescence) in wheat (Triticum aestivum L.) and both biotypes of P. Minor. The recovery was, however, greater in the R biotype than in wheat and it was completely recovered within 24 h. No recovery was recorded in the case of the S biotype of P. minor and a greater recovery time was required for wheat than the R biotype. The higher dose required for growth inhibition in the R biotype and rapid recovery of oxygen evolution and fluorescence coeflicient under in viro conditions together with the absence of selectivity in vitro suggests that the target site was unaffected. It can be conjectured that resistance to isoproturon is most probably because of enhanced metabolism or sequestration of isoproturon, resulting in decreased target site delivery.  相似文献   

2.
Two populations of Echinochloa crus-galli (R and I) exhibited resistance to quinclorac. Another population (X) exhibited resistance to quinclorac and atrazine. The R and I populations were collected from monocultures of rice in southern Spain. The X population was collected from maize fields subjected to the application of atrazine over several years. The susceptible (S) population of the same genus was collected from locations which had never been treated with herbicides. The quinclorac ED50 value (dose causing 50% reduction in shoot fresh weight) for the R and I biotypes were 26- and 6-fold greater than for the S biotype. The X biotype was 10 times more tolerant to quinclorac than the S biotype and also showed cross-resistance to atrazine, being 82-fold more resistant to atrazine than the R, I and S biotypes. Chlorophyll fluorescence and Hill reaction analysis supported the view that the mechanism of resistance to atrazine in the X biotype was modification of the target site, the DI protein. Quinclorac at 20 mg litre-1 did not inhibit photosynthetic electron transport in any of the test biotypes. The quinclorac I50 values (herbicide dose needed for 50% Hill reaction reduction) of the S population was over 50000-fold higher than the atrazine I50 value for the same S population, indicating that quinclorac is not a PS II inhibiting herbicide. Propanil at doses greater than 0·5 kg ha-1 controlled all the biotypes. © 1997 SCI  相似文献   

3.
An Avena sterilis biotype was found to be highly resistant to aryloxyphenoxypropionate (APP) herbicides, especially diclofop-methyl. At the enzyme level, this biotype contained a modified acetyl-coenzyme A carboxylase (ACCase) with six-fold resistance to diclofop acid. Absorption and translocation of [14C]diclofop-methyl applied to the leaf axil of the two-leaf stage plants were similar in both susceptible and resistant biotypes. However, the rate of metabolism of [14C]diclofop was increased 1·5-fold in this resistant biotype compared to the susceptible. Experiments with tetcyclacis, a cytochrome P450 monooxygenase inhibitor, indicated that inhibition of this enhanced diclofop metabolism increased diclofop-methyl phytotoxicity in this biotype. Studies with ten individual families of the resistant biotype indicated that both mechanisms of resistance, an altered target site and enhanced metabolism, are present in each individual of the population. Hence, it is likely that these two mechanisms of resistance both contribute to resistance in this biotype. © 1997 SCI.  相似文献   

4.
Several ethyl 2,3-dihydro-3-oxoisothiazolo[5,4-b]pyridine-2-alkanoate derivatives were synthesized as herbicides. Only 5-methyl derivatives inhibited both hypocotyl and root growth in the lettuce (Lactuca sativa L.) seedling test at 100 mg litre-1. Only ethyl propionate and valerate derivatives showed significant inhibition at 0·1 mg litre-1, whereas ethyl acetate or butyrate derivatives were inactive. Contrary to unoxidized derivatives, the inhibitory effect of 1-oxide and 1,1-dioxide derivatives was strongly dependent on concentration; ethyl 2,3-dihydro-5-methyl-3-oxoisothiazolo[5,4-b]pyridine-2-propionate 1,1-dioxide inhibited 100% of germination at 100 mg litre-1 and 45% of lettuce seedling growth at 0·1 mg litre-1. Quantitative structure–inhibition of growth relationship analysis carried out by adaptive least-squares (ALS) method gave a good correlation with small and hydrophobic 5-substituents as well as with odd carbon-chain ethyl alkanoates in position 2. Active compounds did not show auxin-like activity from 0·1 to 100 mg litre-1. © 1997 SCI.  相似文献   

5.
Resistance of weeds to triazine herbicides has been recorded in many countries. The extent of the problem in South Africa is uncertain. In a pilot study, the atrazine resistance of Amaranthus hybridus L. (smooth pigweed) was investigated. Suspected resistant (R) and susceptible (S) biotypes were treated with commercially formulated atrazine. After post-and pre-emergence applications under tunnel conditions, it was found that the suspected R biotype plants were not affected at herbicide dosages of belween 1.25 and 25.0 kg a.i. ha-1, i.e. up to 20 times gieater than the lowest recommended dosage. However, the S biotype plants were killed by the lowest dosage. In the fieid, mortalities in the R biolype were not observed after post-emergence applications of 1.25-10.00 kg a.i. ha-1. In contrast, all S biotype plants were killed. In tunnel experiments, the R biotype was also found to be resistant to cyanazine and cyanazine+atrazine, while slight tolerance to linuron was observed. All these treatments resulted in 100% mortality of the S biotype. Although S biotype seeds oi A. hybridus were found to germinate slightly sooner under controlled conditions than R biotype seeds, preliminary results suggest that there are no major differences. Indications are that, although the growth of the S biotype may be greater than that of the R biotype, the competitive effect of the two biotypes on crop seedlings may well be similar.  相似文献   

6.
BACKGROUND: Trifluralin‐resistant biotypes of water foxtail (Alopecurus aequalis) have been identified in wheat fields from northern Kyushu, Japan. Water foxtail is a winter‐annual grassy weed, causing substantial crop losses. This study reports on mutation in α‐tubulin (TUA) genes from water foxtail, the site of action of trifluralin. RESULTS: Two trifluralin‐sensitive (S) Chikugo and Ukiha biotypes and four trifluralin‐resistant (R) Asakura‐1, Asakura‐2, Tamana and Tosu biotypes of water foxtail were used for herbicide resistance analysis. R biotypes showed 5.7–30.7‐fold trifluralin resistance compared with the S biotypes. No differences in the uptake and translocation of 14C‐trifluralin were observed between Chikugo (S) biotype and Asakura‐1 (R) biotype. Most of the 14C detected in the plant material was in the root tissue, and no substantial increases were noted in shoot tissues. Comparative TUA sequence analysis revealed two independent single amino acid changes: change of Val into Phe at position 202 in TUA1 and change of Leu into Met at position 125 in TUA3 in Asakura‐1 biotype. In the Tamana (R) biotype, two amino acid changes of Leu to Phe at position 136 and Val to Phe at position 202 were observed in the predicted amino acid sequence of TUA1, compared with Chikugo (S) biotype. CONCLUSION: The results provide preliminary molecular explanation for the resistance of water foxtail to trifluralin, a phenomenon that has arisen as a result of repeated exposure to this class of herbicide. This is the first report of α‐tubulin mutation in water foxtail and for any Alopecurus species reported in the literature. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Seeds of proso millet (Panicum miliaceum L.) are moved between and within fields on combine harvesters. The dispersal of seeds of two biotypes of P. miliaceum by combine harvesters was quantified. The golden-seeded biotype of this weedy annual grass was known to have larger seeds and to experience less seed shattering than the black-seeded biotype. An average of 3·3% of the seeds on the plants of the black-seeded biotype was carried more than 50 m by combines, while 0·9% of the golden seeds were carried the same distance. The densities of the seed rain within 50 m of the weedy patches were 3·7 seeds m−2 for the black-seeded biotype and 9·7 seeds m−2 for the golden-seeded biotype. This difference was proportional to the difference in the number of seeds in the respective source patches. The numbers of seeds deposited at various points within 50 m of source patches were close to uniform for both biotypes. There was, however, a significant difference (P < 0·05) in the distributions of the seeds of the two biotypes.  相似文献   

8.
Glasshouse and laboratory experiments were conducted on acetolactate synthase (ALS) homozygous resistant Solanum ptycanthum biotypes from Illinois (IL‐R) and Indiana (IN‐R), and homozygous susceptible biotypes from Illinois (IL‐S) and Indiana (IN‐S). Genetic similarity of biotypes was assessed by random amplified polymorphic DNA (RAPD) markers, which determined that the Illinois biotypes are more similar to each other than to the IN‐R biotype. ALS enzyme activity from the IL‐R and IN‐R biotypes had I50 values of 362 and 352 μM imazamox respectively. Dose–response experiments using three‐ to four‐leaf‐stage plants of the IL‐R and IN‐R biotypes had GR50 values of 242 and 69 g ae ha−1 imazamox respectively. Whole‐plant and ALS enzyme results are different than previously reported values in the literature, which was attributed in the current study to the original IN‐R population having individuals that were segregating for ALS resistance. Metabolism studies showed no difference in percentage [14C]imazamox remaining between the IL‐R and IN‐R biotypes up to 72 h after treatment. The IL‐S biotype metabolised [14C]imazamox approximately two times faster than the IL‐R and IN‐R biotypes and this trait was heritable. Response of F3 plants containing homozygous ALS‐resistant alleles from the IL‐R biotype in a genetic background of 50% Illinois and 50% Indiana biotypes suggests that genetic factors other than an altered target site or metabolism may also contribute to the magnitude of resistance at the whole‐plant level in resistant biotypes.  相似文献   

9.
Two Alisma plantago‐aquatica biotypes resistant to bensulfuron‐methyl were detected in rice paddy fields in Portugal’s Mondego (biotype T) and Tagus and Sorraia (biotype Q) River valleys. The fields had been treated with bensulfuron‐methyl‐based herbicide mixtures for 4–6 years. In order to characterize the resistant (R) biotypes, dose–response experiments, absorption and translocation assays, metabolism studies and acetolactate synthase (ALS) activity assays were performed. There were marked differences between R and susceptible (S) biotypes, with a resistance index (ED50R/S) of 500 and 6.25 for biotypes Q and T respectively. Cross‐resistance to azimsulfuron, cinosulfuron and ethoxysulfuron, but not to metsulfuron‐methyl, imazethapyr, bentazone, propanil and MCPA was demonstrated. No differences in the absorption and translocation of 14C‐bensulfuron‐methyl were found between the biotypes studied. Maximum absorption attained 1.12, 2.02 and 2.56 nmol g−1 dry weight after 96 h incubation with herbicide, for S, Q and T biotypes respectively. Most of the radioactivity taken up by the roots was translocated to shoots. Bensulfuron‐methyl metabolism in shoots was similar in all biotypes. The R biotypes displayed a higher level of ALS activity than the S biotype, both in the presence and absence of herbicide and the resistance indices (IC50R/S) were 20 197 and 10 for biotypes Q and T respectively. These data confirm for the first time that resistance to bensulfuron‐methyl in A. plantago‐aquatica is target‐site‐based. In practice, to control target site R biotypes, it would be preferable to use mixtures of ALS inhibitors with herbicides with other modes of action.  相似文献   

10.
Effects of environmental factors on the germination and seedling emergence of glyphosate‐resistant (R) and ‐susceptible (S) biotypes of Eleusine indica (L.) Gaertn. were examined under laboratory and greenhouse conditions. The R biotype exhibited a higher germination percentage compared with the S biotype at constant temperatures of 20 and 35°C under dark conditions, and alternating temperatures of 30/25°C, and 35/25°C during a 12 h photo period. For both biotypes, germination was optimal at alternating temperatures of 30/20°C and 35/20°C. However, there was no significant difference (P > 0.05) in the germination between the R and S biotypes at these temperature regimes. The germination of both biotypes was inhibited by osmotic stress imposed by a water potential of ?0.80 MPa. When the moisture stress was released and the seeds were subsequently transferred to distilled water, the germination was enhanced to approximately 90% and 16% for the R and S biotype seeds, respectively. Higher emergence rates were obtained in shallow seed depths (0 or 2 cm) compared to deep depths. Emergence percentage of the R biotype was higher than that of the S biotype at 0 cm and 2 cm depths. The maximum emergence percentage of the R biotype was higher than that of S biotype when seeds were sown on the surface of either loamy or clay loam soil taken from three different sites.  相似文献   

11.
The effects of DPX-MP062 [methyl 7-chloro-2,3,4a,5-tetrahydro-2-[methoxycarbonyl(4-trifluoromethoxyphenyl)carbamoyl] indeno[1,2-e][1,3,4] oxadiazine-4a-carboxylate] a broad-spectrum insecticide with a novel mode of action, on the Egyptian cotton leafworm, Spodoptera littoralis, were studied in laboratory experiments. Egg hatch was affected by high concentrations (125 mg AI litre-1) of DPX-MP062. Larvae that hatched from treated eggs were significantly affected at concentrations of 12·5 mg AI litre-1 and greater. Larvae were fed castor bean leaves treated with DPX-MP062; 1st-instar larvae were the most susceptible development stage. Pupation and adult formation were determined in assays with 5th-instar larvae. There was strong suppression of adult formation; 65 and 91% at 0·5 and 0·75 mg AI litre-1, respectively. Highly affected larvae died before pupation; slightly affected ones reached pupation 2–4 days later, were smaller than larvae in the untreated control, and were sometimes unable to develop into normal adults. Comparatively high concentrations (50 and 100 mg AI litre-1) of the test compound were necessary to affect adults by ingestion, but no effects from contact application could be determined at a concentration of 100 mg AI litre-1. © 1998 Society of Chemical Industry  相似文献   

12.
The resistance mechanism of Leptochloa chinensis Nees to propanil was investigated, based on propanil metabolism, aryl acylamidase activity, and chlorophyll fluorescence at the 8 week growth stage of L. chinensis. The concentration of propanil in the leaf and culm extracts of the resistant (R) and susceptible (S) biotypes, as measured by gas chromatography (GC), was found to increase after propanil treatment. The concentration of propanil in the leaf and culm extracts of the S biotype at 72 h was 1.55 and 0.49 µg mL?1, respectively. However, a lower concentration of propanil was observed in the R biotype, as compared to that in the S biotype. The residue of 3,4‐dichloroaniline, as measured by GC, was detected only in the leaf extracts of the R biotype. In contrast, no residue of 3,4‐dichloroaniline was observed in the S biotype. The level of aryl acylamidase in the leaf tissue extracts of the R biotype was ~140% higher than that in the S biotype. The fluorescence studies showed that propanil inhibited the quantum efficiency of the photosystem II in both the R and S biotypes after 2 h of incubation time. However, when the leaf disks were transferred and incubated in deionized water for 48 h, the quantum efficiency increased in the R biotype but decreased in the S biotype. These results suggest that propanil metabolism, enhanced by aryl acylamidase activity, is the most likely factor contributing towards the mechanism of propanil resistance in L. chinensis plants at the 8 week growth stage.  相似文献   

13.
Laboratory studies were conducted to determine the effect of the naturally derived compound spinosad on Ceratitis capitata Wied. (Diptera, Tephritidae). The organophosphate fenthion was used as a standard. Direct dose-dependent mortality and reduced fecundity were observed in oral treatment of adults with spinosad. The LC90 values 14 h and seven days after treatment were 19·50 and 0·49 mg litre−1 respectively. Fenthion was less active (the LC50 eight days after treatment was 1·17 mg litre−1) and did not affect the fecundity of the fly. Adults were also very susceptible to spinosad and fenthion via residual contact. For spinosad, 100% mortality was recorded 48 h after treatment for a dose of 10 mg litre−1. Spinosad was more effective than fenthion in suppressing larval development when neonate larvae were reared on treated diet supplemented with a range of concentrations from 0·02 to 0·83 mg kg−1 diet. Last-instar larvae were much less susceptible to spinosad or fenthion when exposed via dipping or when they pupated in treated medium and both products had similar performance. A lack of ovicidal activity was observed in direct egg-treatments with spinosad but significant reductions from 1 mg litre−1 onwards were recorded for fenthion.  相似文献   

14.
In order to obtain residue data from the application of the algicide endothal in Italian rice paddy fields, two experiments were carried out using a 50 g kg?1 granular formulation in a small pond and the same granular and two liquid formulations in actual paddy fields of the Italian rice growing area. Endothal decay in the pond water was very rapid, reaching residue levels of 0·01-1·02 mg litre?1 in two days and 0·004-0·01 mg litre?1 at the third day. The muddy soil of the pond was free from measurable endothal residues( <0·02 mg kg?1). In the paddy-field waters, the endothal decay was slower, with an average half-life time of 3·3 days, independently of the type of formulation. The actual residues in water after 6 days ranged from 0·3 to 1·3 mg litre?1 according to the initial amount of product applied, and, consequently, to the initial concentration in water. Rice samples collected at the normal harvest time from the two paddy fields, treated with three different formulations, showed no endothal residue at the minimum detectable level of 0·01 mg kg?1.  相似文献   

15.
BACKGROUND: Quinclorac (3,7-dichloro-quinoline-carboxylic acid) is a selective herbicide widely used to control annual grasses and certain broadleaf weeds. Echinochloa phyllopogon (Stapf) Koss. is the most noxious grass weed in California rice fields and has evolved resistance to multiple herbicides with different modes of action. A quinclorac-resistant (R) E. phyllopogon biotype found in a Sacramento Valley rice field where quinclorac has never been applied was investigated. RESULTS: Resistant to susceptible (S) GR50 (herbicide rate for 50% growth reduction) ratios ranged from 6 to 17. The cytochrome P450 inhibitor malathion (200 mg L−1) caused R plants to become as quinclorac susceptible as S plants. Quinclorac rapidly (6 HAT) stimulated ethylene formation in S plants, but only marginally in R plants. Malathion pretreatment did not reduce ethylene formation by quinclorac-treated S and R plants. Activity of β-cyanoalanine synthase (β-CAS) in tissue extracts was 2-3-fold greater in R than in S plants, and incubation of shoot extracts with 1 mM malathion reduced β-CAS activity by 40% in both biotypes. CONCLUSION: Resistance to quinclorac in R E. phyllopogon involved at least two mechanisms: (a) insensitivity along the response pathway whereby quinclorac induces ethylene production; (b) enhanced β-CAS activity, which should enable greater HCN detoxification following quinclorac stimulation of ethylene biosynthesis. This unveils new resistance mechanisms for this multiple-resistant biotype widely spread throughout California rice fields. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The uncalibrated predictive ability of four preferential flow models (CRACK‐NP, MACRO/MACRO_DB, PLM, SWAT) has been evaluated against point rates of drainflow and associated concentrations of isoproturon from a highly structured and heterogeneous clay soil in the south of England. Data were available for four plots for a number of storm events in each of three successive growing seasons. The mechanistic models CRACK‐NP and MACRO generally gave reasonable estimates of drainflow over the three seasons, but under‐estimated concentrations of isoproturon over a prolonged period in the first season and over‐estimated them in the two remaining seasons. CRACK‐NP simulated maximum concentrations of isoproturon over the first two events of each of the three seasons of 156, 527 and 24.4 µg litre?1, respectively, and matched the observed data (465, 65.1 and 0.65 µg litre?1) slightly better than MACRO (69.1, 566 and 58.5 µg litre?1). Automatic selection of parameters from soils information within MACRO_DB reduced the emphasis on preferential flow relative to the stand‐alone version of MACRO. This gave a poor simulation of isoproturon breakthrough and simulated maximum concentrations were 0, 50.1 and 35.1 µg litre?1, respectively. The capacity model PLM gave the best overall simulation of total drainflow for the first two events in each season, but over‐estimated concentrations of isoproturon (967, 808 and 51.3 µg litre?1). The simple model SWAT represented total drainflow reasonably well and gave the best simulation of maximum isoproturon concentrations (140, 80.2 and 8.2 µg litre?1). There was no clear advantage here in using the mechanistic models rather than the simpler models. None of the models tested was able to simulate consistently the data set, and uncalibrated modelling cannot be recommended for such artificially drained heavy clay soils. © 2001 Society of Chemical Industry  相似文献   

17.
MSMA-resistant (R) and -susceptible (S) biotypes of common cocklebur (Xanthium strumarium L.) were used to study PSI and PSII activities, and chlorophyll and carotenoid content of MSMA-treated and -untreated R and S biotypes. MSMA at 1, 10, and 100 mg/L did not inhibit either PSI or PSII activities. The R biotype had higher PSI and PSII activity than the S biotype with and without MSMA treatments. R biotype leaf discs had higher chlorophyll and carotenoid content than the S biotype after treatment with MSMA; the S biotype cotyldeons had higher levels of both pigments as compared to the R biotype cotyledons. MSMA induced a reduction in both pigments in S biotype cotyledons, and in young and mature leaf discs. Results indicate that photosynthetic capability might indirectly be involved in the resistance mechanism and carotenoids may protect against MSMA toxicity, possibly caused by an induced free radical mechanism.  相似文献   

18.
Ultrastructural studies of primary roots (goosegrass) from dinitroaniline-resistant (R) and susceptible (S) biotypes of Eleusine indica (L). Gaertnr. establish a possible cytological basis for trifluralin resistance. Although the S biotype has a normal ultrastructure when grown in water, exposure to trifluralin solutions (between 10−8 and 10−5M) for 24 h results in a swelling of the root tip, typical of herbicides that affect microtubule production. The loss of spindle microtubules in the S biotype results in a mitosis arrested at prometaphase and the loss of cortical microtubules results in the formation of isodiametric cells in the zone of elongation. Nuclear membranes reform around the chromosomes in arrested prometaphase, producing abnormal, polymorphic nuclei. The mitotic index is increased in the S biotype after trifluralin treatment because many of the cells are arrested in prometaphase. The root tips of R biotypes are not swollen by even 10−5M trifluralin treatment. Trifluralin does not markedly affect cell division in the R biotype nor are the mitotic irregularities noted in the S biotype after treatment. However, even when the R biotype is not exposed to trifluralin, the microtubules are less abundant than in the S biotype and frequently cell walls are oriented abnormally or are incompletely formed. The level of resistance exhibited by the R biotype, the apparent difference in microtubule number and function between the two biotypes, and the lack of effect on the microtubules at high trifluralin concentrations indicate a site-of-action mutation.  相似文献   

19.
The mechanism of resistance to quinclorac was investigated in a smooth crabgrass biotype [Digitaria ischaemum (Schreb. ex Schweig) Schreb. ex Muhl] from Tulare County, California. Quinclorac (8.96 kg a.i. ha−1) had no effect (P = 0.18) on the resistant (R) biotype, but reduced fresh weight of a susceptible (S) biotype by 93%. After treatment with 4.48 kg a.i. quinclorac ha−1, the S biotype produced about three times more ethylene than the R biotype and accumulated cyanide in tissues. Similar amounts of endogenous cyanide resulting from treatment with KCN reproduced quinclorac phytotoxicity. Pre-treatment with the ACC synthase inhibitor AVG reduced quinclorac phytotoxicity by 37% and ethylene production by 89%. These data suggest a target site-based mechanism of resistance involving stimulation of ACC synthesis and accumulation of cyanide. Also, the R biotype had four times more β-cyanoalanine synthase activity than the S biotype, suggesting a higher ability to detoxify cyanide.  相似文献   

20.
Experiments were conducted to (i) evaluate the efficacy of propanil formulations available in Sri Lanka in controlling Echinochloa crus‐galli; (ii) study the seedling growth of propanil‐resistant (R) and ‐susceptible (S) biotypes of the weed under different temperatures; (iii) quantify the level of resistance in R biotypes and; (iv) to suggest alternative control measures for R biotypes. Field studies showed that retail propanil formulations (36% a.i., EC) applied at 2.7 kg a.i. ha?1 gave less than 30% control of E. crus‐galli collected from several locations of the north dry zone of Sri Lanka. Chemical analysis revealed that there was no adulteration of propanil formulations at the retailer level. Growth studies conducted in controlled environments indicated that per cent germination and seedling growth of R and S biotypes were similar at the day/night temperature regimes imposed. However, per cent germination for plants grown under a 34/31°C (day/night) regime was 27–29% higher compared to those grown at 28/24°C. At the higher temperature regime, R and S biotypes reached the 2–3 leaf stage five days earlier, and the 4–5 leaf stage seven days earlier. The ED50 values from the dose–response experiments indicated that the R biotype was four times more resistant to propanil than susceptible ones. The resistance index (RI) did not vary significantly under different temperature regimes. Quinclorac (25% a.i., SC) applied at 200 g a.i. ha?1 and bispyribac‐sodium (10% a.i., SC) applied at 30 g a.i. ha?1 (recommended dosages) successfully controlled propanil‐resistant biotypes of E. crus‐galli. Conversely, oxadiazon and propanil (8% and 23% a.i., EC, respectively) applied at 280 + 805 g a.i. ha?1 did not result in satisfactory control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号