首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N,N-Diethyl-, N,N-dipropyl-, N,N-di-isopropyl, and N,N-di-isobutylalkanamides in which the acyl moiety ranged from C8 to C21 were synthesised, and their larvicidal activity was determined against the first-instar larvae of the southern house mosquito Culex quinquefasciatus Say. The four homologous series of amides generally showed an increase in their larvicidal activity as the carbon number in the acyl moiety of the amides increased, until the activity reached a maximum. Subsequently, an increment of carbon number resulted in declining activity in the higher homologues, until the activity disappeared. N,N-Diethyltetradecanamide, N,N-dipropylundecanamide, N,N-di-isopropylundecanamide, and N,N-di-isobutlynonanamide or -dodecanamide were the most active compounds in their respective homologous series of amides; however, they were less active than their analogous N,N-dimethylalkanamides previously studied.  相似文献   

2.
Quinoa panicle rot (QPR) is a novel disease that poses a significant threat to quinoa production in China. Typical symptoms on panicles include a film of pale pink, grey-white, or dark brown mould on the grains during the grain-filling stage. Furthermore, QPR causes quinoa grain discolouration, unfilling, and malformation. In total, 37 isolates were identified as belonging to three species: Trichothecium roseum (nine isolates), Alternaria alternata (12), and Fusarium citri (16) based on morphology, and phylogenetic and pathogenicity characterization. The present study shows for the first time that T. roseum, A. alternata, and F. citri are the pathogens responsible for QPR. An evaluation of the growth and germination rates revealed a significant difference among the three species, with T. roseum and F. citri isolates having higher fitness in warmer (25–30℃) and humid conditions (water activity ≥0.98). However, A. alternata preferred cooler (20–25℃) and more arid conditions, and germinated in a wide range of water activities (water activity of 0.90–1.00). Among the three species, T. roseum and F. citri are probably responsible for the pink and grey diseased grains in humid regions, and A. alternata for the black-brown diseased grains in arid regions. Pathogenicity tests showed that all three species could infect the quinoa panicles. The results of this study provide a basis for the recognition and management of QPR.  相似文献   

3.
This study aimed to elucidate the population dynamics of Rhizoctonia, Oculimacula, and Microdochium species, causing the stem base disease complex of sharp eyespot, eyespot, and brown foot rot in cereals. Pathogen DNA in soil, roots, and stem fractions, and disease expression were quantified in 102 English wheat fields in two seasons. Weather data for each site was collected to determine patterns that correlate with assessed diseases. Oculimacula spp. (66%) and R. solani AG 2-1 (63%) were most frequently detected in soil, followed by R. cerealis (54%) and Microdochium spp. (33%). Oculimacula spp. (89%) and R. cerealis (56%) predominated on roots and soil but were not associated with root rot symptoms, suggesting that these species used soil and roots for survival and as inoculum source. M. nivale was more frequently detected than M. majus on stems up to GS 21–30 and co-occurred on plant samples with O. acuformis. O. yallundae had higher DNA concentration than O. acuformis at the lower 5 cm basal region at GS 37–45. R. cerealis predominated in the upper 15 cm above the base beyond stem extension. Brown foot rot by Microdochium spp. was favoured by cool and wet autumns/winters and dominated in English wheat. Eyespot and sharp eyespot disease index by Oculimacula spp. and R. cerealis, respectively, correlated with wet/humid springs and summers. Results suggested that stem base pathogens generally coexisted; however, their abundance in time and space was influenced by favourable weather patterns and host development, with niche differentiation after stem extension.  相似文献   

4.
In recent years, common bean (Phaseolus vulgaris) and cowpea (Vigna unguiculata) plants in the north of Iran have exhibited symptoms resembling Cercospora leaf spot (CLS) disease. This study was initiated to elucidate the taxonomy and pathogenicity of cercosporoid taxa associated with leaf spot diseases of these two legume crops in Iran. A total of 138 samples with CLS symptoms were collected from cultivated common bean and cowpea species in northern Iran and subjected to microscopic examination, resulting in identification of 98 Cercospora and 59 Pseudocercospora samples. A six-locus phylogenetic analysis (ITS, actA, tef1, gapdh, his3, and cmdA) coupled with examination of the morphology of 42 representative isolates from these samples confirmed that several cercosporoid fungi occur on common bean and cowpea in Iran. Five Cercospora species (C. iranica, C. cf. flagellaris, Cercospora sp. G, Cercospora sp. T, and C. vignigena) and two Pseudocercospora species (P. griseola f. griseola and P. cf. cruenta) were found; of these, C. cf. flagellaris was the dominant species, occurring on both common bean and cowpea. Pathogenicity tests confirmed that all seven species could infect leaves of common bean and/or cowpea. This is the first report of C. iranica, Cercospora sp. G, and Cercospora sp. T associated with common bean and/or cowpea in the world. In addition, C. vignigena was recorded for the first time in Iran. Results achieved in this study will assist strategies for the management of CLS disease of common bean and cowpea.  相似文献   

5.
Over the last decades, tillage, chemical fertilizers, and pesticides have reduced the beneficial fungal population size in arable soils. Though soil inoculation can be a practical way to restore arbuscular mycorrhizal fungi (AMF) population size, weeds may also be benefited, as well. This study was aimed to evaluate the effect of three AMF species (Funneliformis mosseae, Rhizoglomus fasciculatum, and Rhizoglomus intraradices) on photosynthetic rate, secondary metabolites content, reproductive organs percentage and nutrient uptake in Solanum nigrum L. and Digitaria sanguinalis L. weed species. Our results showed species variation in response to AMF inoculation, so that, while inoculation with R. intraradices fungal species decreased total biomass in S. nigrum plants significantly, it increased total biomass of D. sanguinalis plants by 26–49%. In addition, inoculation with F. mosseae species increased phenol, anthocyanin, and total terpenoid content in S. nigrum plants much more than D. sanguinalis. Increased photosynthetic rate, secondary metabolites content, and flowering percentage in AMF‐inoculated S. nigrum plants show the enhanced competitive ability and allelopathic potential of this weed when associated with AMF, which makes it a good competitor against other plant species in the environment.  相似文献   

6.
Seedlings of Solanum scabrum Mill. and Solanum ptycanthum Dun. were treated with [14C]ethalfluralin (N-ethyl-α,α,α-trifluoro-N-(methylallyl)-2,6-dinitro-p-toluidine) and [14C]trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) supplied in nutrient solution to determine the basis for differences in response by these two species to these two herbicides. Plants of S. scabrum absorbed more [14C]ethalfluralin and [14C]trifluralin than plants of S. ptycanthum. During the first 24 h, S. scabrum seedlings, but not S. ptycanthum seedlings absorbed more [14C]ethalfluralin than did plants treated with [14C]trifluralin. More [14C]ethalfluralin than [14C]trifluralin was found in the shoots of plants of both species. Seventy-two hours after treatment with [14C]herbicides, the conversion to water-soluble metabolites was greater for [14C]ethalfluralin than for [14C]trifluralin. In the shoots of plants from both species an average of nearly 55% of the 14C recovered was found in the water-soluble fraction following [14C]ethalfluralin treatment whereas an average of only 40% was found in the water-soluble fraction following [14C]trifluralin treatment.  相似文献   

7.
Cherry spruce rust causes huge yield losses in Norway spruce seed production in Fennoscandia. The causal agent, Thekopsora areolata, has three types of spores that disperse during spring: basidiospores are produced on basidia that grow out from teliospores in overwintered bird cherry leaf litter to infect new pistillate spruce cones, aeciospores are released from old diseased spruce cones to infect bird cherry leaves, and urediniospores are produced from new bird cherry leaves for reinfection. No study has examined the dispersal of T. areolata spores, including the basidiospores that cause primary infection in spruce cones. In this study, teliospores of T. areolata were germinated in the laboratory and the morphology of basidiospores was described. T. areolata spores were sampled in Ultuna, Sweden and Joutsa, Finland with 21 spore traps at each site. Peaks in aeciospores were observed from 11 to 25 May and from 2 to 8 June at the Finnish site, and from 4 to 18 May at the Swedish site. Urediniospores were first observed 2–3 weeks after the peaks in aeciospores and they were mainly distributed within 10 m from the bird cherry trees. Peaks of 1–2 weeks in basidiospore detection coincided with multiple rain events. The basidiospore peak overlapped with the spruce pollen peak in Finland but not in Sweden. The quantities of basidiospores from different spore traps within 100 m from the spore source had no gradient. Information on spatial and temporal spore release is important for making decisions on disease management strategies.  相似文献   

8.
BACKGROUND: Two important pests of the sweet pepper, Capsicum annuum, are the peach potato aphid, Myzus persicae, and the glasshouse potato aphid, Aulacorthum solani. Current aphid control measures include the use of biological control agents, i.e. parasitic wasps, but with varying levels of success. One option to increase parasitoid efficiency is to activate plant defence. Therefore, sweet pepper plants were treated with the naturally occurring plant defence activator cis-jasmone, and its impact upon the behaviour and development of aphids and aphid parasitoids was investigated. RESULTS: Growth rate studies revealed that the intrinsic rate of population increase of A. solani and M. persicae on sweet pepper plants treated with cis-jasmone (cJSP) was not affected compared with untreated plants (UnSP), but the positive behavioural response of alate M. persicae towards the volatile organic compounds (VOCs) from UnSP was eliminated by cis-jasmone treatment 48 h previously (cJSP48). In addition, the aphid parasitoid Aphidius ervi preferred VOCs from cJSP48 compared with UnSP, and a significant increase in foraging time was also observed on cJSP. Analysis of VOCs collected from cJSP48 revealed differences compared with UnSP. CONCLUSION: There is evidence that treatment with cis-jasmone has the potential to improve protection of sweet pepper against insect pests. © Crown copyright 2012. Reproduced with permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The development of resistance to insecticides and the hazards inherent in their use present ever-increasing problems in insect control today. The difficulties and dangers have given impetus to research on other means of combating pests. Australia has always been prominent in the field of biological control, and the CSIRO Division of Entomology is an important centre, keenly seeking controls for both insects and weeds. Progress in the search for and establishment of parasites of Sirex, the pine pest, was described in Rural Research 64. This article reviews six other projects of particular interest, namely those involving potato moth, buffalo fly, white wax scale, green vegetable bug, lantana, and skeleton-weed.  相似文献   

10.
In the present study,Cnaemidophorus rhododactyla (Denis & Schiffermüller) (Lepo Pterophoridae) was noted for the first time as a pest ofRosa spp. in Turkey. The larva ofC. rhododactyla makes a cavity by feeding in the flower-bud and destroys at least 60% of the mass of the flower-bud. There are approximately 12 species ofRosa in Erzurum and Kars provinces, butRosa dumalis Bechst. andR. subcanina L. suffered more damage than the otherRosa species. One species of Tachinidae (Diptera) —Pseudoperichaeta palesoidea (Robineau-Desvoidy), and two species of Ichneumonidae (Hymenoptera) —Sinophorus turionus (Ratz.) andScambus brevicornis Gravenhorst, were reared as larval parasitoids ofC. rhododactyla. C. rhododactyla is a new host record for these parasitoids. Additionally,S. turionus is a new record for the Turkish fauna.  相似文献   

11.
Cherry leaf roll virus (CLRV) isolates from Malus domestica, Ribes rubrum, Rubus idaeus, Rumex obtusifolius and Vaccinium darrowii were characterized based on nucleotide sequences of a 371 bp fragment of the 3′ untranslated region (UTR) of their genomic RNAs, symptoms in the herbaceous hosts, Chenopodium amaranticolor, Chenopodium quinoa, Nicotiana benthamiana, Nicotiana occidentalis and Nicotiana tabacum, and seed transmission in N. occidentalis. The different isolates induced a range of localized and systemic disease symptoms, of varying severity, in the herbaceous hosts. The isolates from M. domestica, R. rubrum, R. obtusifolius and V. darrowii all showed greater than 80% seed transmission in Noccidentalis, but no seed transmission was observed for the R. idaeus isolate. Based on symptoms and seed transmission, the isolates appear to be biologically distinct strains of CLRV. Phylogenetic analysis of the nucleotide sequences from the 3′ UTR, commonly used to detect CLRV, showed that four isolates from M. domestica, R. rubrum, R. idaeus and V. darrowii were almost identical but an isolate from R. obtusifolius exhibited a pairwise nucleotide difference of up to 5·4% when compared to these isolates. There was no obvious correlation between sequence differences and symptomatology.  相似文献   

12.
The relative virulence ofPhytophthora cactorum andP. syringae originating from almond trees, and ofP. citrophthora originating from citrus, to apple, pear, peach, cherry and plum rootstocks, was studiedin vivo andin vitro. Results of the different experiments were in good agreement. All testedPhytophthora isolates showed little virulence to pear rootstocks-causing only minor crown rot symptoms - and no virulence at all to apple rootstocks. In contrast, they were highly virulent to stone fruit rootstocks, causing crown rot disease. The non-pathogenicity of these isolates to pome rootstocks could be interpreted as strict host specificity.  相似文献   

13.
Erwinia pyrifoliae, the causal pathogen of shoot blight in the Asian pear tree (Pyrus pyrifolia cv. Singo), is host-specific and endemic to Korea. To identify the genes associated with the hypersensitive response (HR) and pathogenicity, a genomic library of E. pyrifoliae WT3 was constructed, and the cosmid clone Escherichia coli (pCEP33) was selected. Sequence analysis of 19.7-kb pCEP33 determined disease-specific (dsp) region homolog and approximately 40% of the hrp genes, which included hrpW, hrpNEp, hrpV, hrpT, hrcC, hrpG, hrpF, and partial hrpE homologs, with respect to the cluster of Erwinia amylovora. Additionally, two open reading frames, ORFD and ORFE, were found downstream of the dspEF region. The results of the sequence analysis showed that the pCEP33 did not contain any hrp regulatory genes or most of the genes encoding components of the Hrp protein secretion system. The hrpNEp gene of E. pyrifoliae contained five intergenic nucleotide fragment insertions (INFIs) and produced the HR elicitor protein harpinEp, with a molecular mass of approximately 44kDa. The purified HrpNEp protein elicited faster and stronger HR when infiltrated into tobacco leaves than did HrpNEa from E. amylovora. To observe the role of the hrpL gene in the expression of HrpNEp, the pEL2 containing hrpL was used to transform E. coli (pCEP33). Expression of HrpNEp in E. coli (pCEP33 + pEPL2) was detected with an immunoblot using antiserum raised against HrpNEp, indicating a role of hrpL gene in enhancing the expression of HrpNEp.  相似文献   

14.
Genetic variation of the rice blast (Pyricularia oryzae) population in Thailand was investigated based on the nucleotide sequence of three avirulence genes, AVR-Pi9, AVR-Pik, and AVR-Pita1. Sixty rice blast isolates were collected from rice-growing areas around Thailand. Gene-specific primers were used to amplify these AVR genes and AVR-Pi9, AVR-Pik, and AVR-Pita1 were detected in 60, 57, and 23 isolates, respectively. Based on the AVR-Pi9 sequences, we identified one rice blast isolate containing an amino acid change from glutamic acid to aspartic acid. Moreover, two rice blast isolates had identical sequences to the rice blast strain originating in Japan, indicating a potential movement of this isolate from Japan to Thailand. Three AVR-Pik alleles were found, including AVR-PikA (3.51%), AVR-PikD (71.93%), and isolates with two copies of AVR-PikD and AVR-PikF (24.56%). AVR-PikA and AVR-PikF are virulent to Thai rice variety Jao Hom Nin. Six haplotypes of AVR-Pita1 were identified with one deletion and 12 amino acid substitutions. This study revealed that different AVR genes in Thai rice blast populations have different levels of genetic variation: AVR-Pi9 and AVR-Pik genes have a relatively low genetic diversity, while the AVR-Pita1 gene has high genetic diversity. We found AVR-Pi9 was not under selection pressure, while AVR-Pita1 was under purifying selection pressure. In addition, geographic location has influenced the distribution of genetic variation of AVR-Pita1. The information obtained from this study is valuable for the future development of breeding strategies for rice blast resistance in Thailand.  相似文献   

15.
Inoculum density, temperature, leaf age, and wetness duration were evaluated for their effects on the development of black streak (Itersonilia perplexans) on edible burdock (Arctium lappa L.) in a controlled environment. The effect of relative humidity (RH) on ballistospores production by I. perplexans was also evaluated. Symptoms of black streak on leaves increased in a linear fashion as the inoculum density of I. perplexans increased from 102 to 106 ballistospores/ml. Rugose symptoms on young leaves were observed at densities of ≥104 ballistospores/ml. Disease severity of I. perplexans in relation to leaf age followed a degradation curve when the leaves were inoculated with ballistospores. Disease severity was high in newly emerged leaves up to 5 days old, declined as leaf age increased to 29 days, and was zero when leaf age increased from 30 to 33 days. Disease development of edible burdock plants exposed to ballistospores of I. perplexans was evaluated at various combinations of temperature (10°, 15°, 20°, 25°C) and duration of leaf wetness (12, 24, 36, 48, and 72 h). Disease was most severe when plants were in contact with the ballistospore sources at 15° or 20°C. The least amount of disease occurred at 25°C regardless of wetness duration. Ballistospores required 24–36 h of continuous leaf wetness to cause visible symptoms by infection on edible burdock. Ballistospores production in infected lesions required at least 95.5% RH.  相似文献   

16.
The occurrence and geographic distribution of longidorid nematode species inhabiting the rhizosphere of grapevine plants in southern Spain were investigated. Nematode surveys were conducted on 77 vineyards during the spring seasons of 2006, 2007 and 2008 in the main Andalusian grapevine-growing areas, including the provinces of Cádiz, Córdoba, and Huelva. Morphological and morphometrical studies identified two Longidorus and nine Xiphinema species, viz.: Longidorus alvegus, L. magnus, Xiphinema adenohystherum, X. hispidum, X. index, X. italiae, X. lupini, X. nuragicum, X. pachtaicum, X. rivesi, and X. turcicum. Overall, frequencies of infestation were, in decreasing order: X. pachtaicum 90.8%, X. index 30.3%, X. italiae 13.2%, L. magnus 11.8%, X. hispidum 7.9%, X. lupini 3.9%, L. alvegus and X. rivesi 2.6%, and X. adenohystherum, X. nuragicum and X. turcicum 1.3%. Xiphinema hispidum, X. lupini, L. alvegus and L. magnus were compared with nematode type specimens and are reported for the first time in Spain. Furthermore, the male of L. alvegus is described for the first time in the literature. Molecular characterisation of these species using D2–D3 expansion regions of 28S rRNA, 18S rRNA and ITS1-rRNA was carried out and maximum likelihood and Bayesian inference analysis were used to reconstruct phylogenetic relationships among these species and with other longidorids. The monophily of the genera Xiphinema and Longidorus was accepted and the genera Paralongidorus and Xiphidorus were rejected by the Shimodaira-Hasegawa test based on tree topologies.  相似文献   

17.
Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victoria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, flowers and fruits of 28 host species. Morphological and molecular characteristics were used to confirm the identification of P. psidii from a range of Myrtaceae in Qld and compared with isolates from NSW and overseas. A reconstructed phylogeny based on the LSU and SSU regions of rDNA did not resolve the familial placement of P. psidii, but indicated that it does not belong to the Pucciniaceae. Uredo rangelii was found to be con‐specific with all isolates of P. psidii in morphology, ITS and LSU sequence data, and host range.  相似文献   

18.
Areca palm, rubber tree, and coffee are always planted adjacent to each other or intercropped with each other, and Colletotrichum siamense was found to be the dominant species of Colletotrichum from these crops in Hainan, China. To study the population structure, pathogenicity, and fungicide sensitivity of C. siamense from these three crops in Hainan, isolates were first identified by their morphological characteristics and multilocus phylogeny. Then both permutational multivariate analysis of variance (PERMANOVA) and pairwise FST analysis showed that the original host and geographical origin (counties) had significant effects on genetic variation in the C. siamense population, explaining 5.6% and 16.3% of genetic variation, respectively. There were significant genetic differentiations between coffee and rubber tree populations but the genetic differentiation was small (FST = 0.04), while significant differentiations were observed among all populations from different counties except those between Haikou and Chengmai. Pathogenicity analysis using artificial inoculation showed that isolates had significantly higher disease incidence and diseased lesion diameter on wounded leaves than on nonwounded leaves. However, the original host of an isolate and geographical origin did not significantly affect the pathogenicity of the C. siamense populations from these three hosts. In vitro tests showed that there were no significant differences in the sensitivity of C. siamense populations to carbendazim, prochloraz, difenoconazole, and propiconazole from different original hosts and geographical origins. The present study suggests that host specialization of C. siamense has not occurred yet in coffee, rubber tree, and areca palm.  相似文献   

19.
Erwinia psidii is a gram-negative bacterium that threatens both guava and eucalypt plantations in several countries. Despite the economic importance of both crops, nothing is currently known about the molecular mechanisms underlying E. psidii pathogenicity and, consequently, how it evolved to infect Eucalyptus species besides its presumed native host Psidium guajava. In this study, we predicted putative type III secretion system effectors that may play important roles during plant–E. psidii interactions and conducted effector structure and phylogenetic analyses to gain important insights into their function and evolution. For that, the whole genomes of four E. psidii strains that exhibit differential aggressiveness towards eucalypt clones were sequenced and their effector repertoires predicted based on sequence identity with known effectors of the model phytopathogen Erwinia amylovora. Only proteins sharing significant sequence identity with the DspE and Eop1 effectors were found. Here, it is shown that these two E. psidii effectors retain all structural characteristics of their corresponding protein superfamilies, but exhibit allelic variations that are consistent with the observed aggressiveness differences between strains. Phylogenetic analyses revealed that whereas E. psidii housekeeping gene sequences are more closely related to those from Erwinia tracheiphila, the effector (either nucleotide or amino acid) sequences are more closely related to their Pantoea agglomerans counterparts, suggesting that dspE and eop1 were both acquired through horizontal gene transfer from the latter bacterial species. The results of this study provide important insights on E. psidii pathogenicity and set the stage for future effector functional studies.  相似文献   

20.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号