首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of famoxadone [Famoxate®, 3-anilino-5-methyl-5-(4-phenoxyphenyl)-1,3-oxazolidine-2,4-dione] in the aquatic and soil environment was examined. It was found to be relatively stable at pH 5, but hydrolysed rapidly in pH 7 and 9 buffer solutions. Primary hydrolytic degradation reactions included the opening of the oxazolidinedione ring and the cleavage of the oxazolidinedione-aminophenyl linkage. The compound degraded rapidly in soil by both hydrolytic and microbial action. In addition to the generation of [14C] carbon dioxide and unextractable bound residues, hydroxylation and hydrolysis reactions occurred to yield multiple degradation products. Nitration of famoxadone at the 2- or 4-phenylamino position was observed as a novel non-biological degradation reaction of famoxadone in soil. Degradation in aqueous solution (pH 5) and on soil surfaces was accelerated under simulated sunlight irradiation. Famoxadone exhibited negligible soil mobility potential, and its primary degradation products were also shown to dissipate rapidly in the environment.  相似文献   

2.
JAMES  HOLLAND  RAHMAN  & LU 《Weed Research》1999,39(2):137-147
The degradation rates of two sulfonylurea herbicides, chlorsulfuron and triasulfuron, were determined at two application rates, 15 and 30 g a.i. ha–1, in a sandy loam soil of volcanic origin under controlled environment and field conditions. Residues were measured using a modified gas chromatographic (gc) determination method. Both herbicides degraded rapidly in the acidic soil (pH 5.7) with high organic matter levels (7.3% o.m.), generally according to first-order rate kinetics. The respective half-lives ranged from 22 to 38 d for chlorsulfuron and from 31 to 44 d for triasulfuron under five controlled temperature/soil moisture regimens, ranging from 10 to 30 °C and between 40% and 80% maximum water-holding capacity. Half-lives in the field were considerably shorter (13 d for chlorsulfuron and 12–13 d for triasulfuron). The degradation rates of the herbicides were influenced more by soil temperature than by soil moisture content. Bioassays using white mustard ( Sinapis alba L.) and forage sorghum [ Sorghum bicolor (L.) Moench] were also used to determine the persistence of phytotoxic residues of both herbicides in the field, and the results showed that the effects of chlorsulfuron disappeared within 8 weeks. Triasulfuron residues disappeared within 9 and 14 weeks for the 15 and 30 g a.i. ha–1 rates respectively.  相似文献   

3.
The hydrolysis of triasulfuron, metsulfuron‐methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH‐sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2–6.2) than under neutral and moderately alkaline conditions (8.2–9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo‐first‐order kinetics. There were no significant differences (P = 0.05) in the rate constants (k, day−1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the ‘rate constant’ on pH. The hydrolysis involving attack by neutral water was at least 100‐fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O‐demethylation of metsulfuron‐methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural alkaline soils. © 2000 Society of Chemical Industry  相似文献   

4.
苦参碱在土壤中的环境行为研究   总被引:1,自引:0,他引:1  
农药在土壤中的吸附、移动及消解等特性是评价其环境安全性的重要指标。为评价植物源农药苦参碱对土壤环境的安全性,依据《化学农药环境安全评价试验准则》,探讨了苦参碱在东北黑土、江西红土、关中娄土及河南二合土等典型土壤中的吸附、移动、消解特性及其影响因素。结果表明:苦参碱在4类典型土壤中均为中等吸附、易移动,且土壤有机质含量与其吸附性呈正相关;在未灭菌条件(25℃,避光)下,苦参碱在4类6种不同土壤中的消解半衰期为4.1~9.8 d,而在灭菌条件下,半衰期为11.6~13.7 d,均为易降解。研究表明,苦参碱对土壤环境较为安全。  相似文献   

5.
Herbicide resistance poses a substantial threat to the agricultural industry throughout the world and during the past decade several reports regarding herbicide resistance have been published. Raphanus raphanistrum L., from two wheat farms located in the winter rainfall region of South Africa, showed indications of resistance to chlorsulfuron. Seeds from these suspected resistant biotypes as well as seeds from a susceptible biotype were collected and transported to the ARC-Small Grain Institute for herbicide resistance studies. Herbicides registered for R. raphanistrum control, i.e. chlorsulfuron, MCPA and bromoxynil, were used in this study. Significant differences in the degree of control were found between the susceptible and two resistant biotypes, when treated with chlorsulfuron. The LD50 values for the resistant biotypes (WR 1 & WR 2) were 45 and 11.3 g a.i. ha–1, respectively, whereas the LD50 value for the susceptible biotype was 5.6 g a.i. ha–1. The almost eightfold difference between the susceptible and resistant biotype (WR 1), indicated that resistance has developed to chlorsulfuron. Only twofold resistance was established between the other resistant biotype (WR 2) and the susceptible biotype. Significant differences between herbicide rates were also established with the MCPA and bromoxynil experiments. No significant difference could, however, be found between the susceptible and resistant biotypes when treated with MCPA and bromoxynil, indicating the importance of different modes of action of herbicide as a strategy to prevent herbicide resistance.  相似文献   

6.
Spinosad is a natural insecticide with potential as a novel biorational control agent for spruce budworm (Choristoneura fumiferana [Clem]), the most destructive insect defoliator of spruce and balsam fir in Canada. Concurrent terrestrial fate experiments were conducted under full coniferous canopy and in a natural opening of a mature white spruce (Piecea glauca [Moench]) plantation of central Ontario to examine the fate and persistence of spinosad in the forest floor and underlying soils. Mean initial residues of spinosyn A and D were approximately 0.2 and 0.02 microgram g-1, respectively, in thatch and exposed soils, but were substantially higher, 2.72 and 0.36 micrograms g-1, in litter under coniferous canopy. Results demonstrated that spinosad residues in spruce litter, graminaceous thatch and exposed sandy loam soils dissipated rapidly, following hyperbolic or exponential decline models. Dissipation time (DT50) values ranged from 2.0 to 7.8 days, depending on matrix and experimental conditions. Transient increases in demethylated metabolite residues confirmed that the parent product was degraded in situ. No evidence of vertical mobility of any of the analytes was observed.  相似文献   

7.
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha(-1) diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t(1/2) degradation averaged 49+/-0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 microg L(-1) respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 microg kg(-1) soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.  相似文献   

8.
Two experimental models simulating the traditional storage conditions prevalent in Kenya, i.e. the open basket model and the modern wooden box model, were used to study the rate of dissipation and fate of malathion residues in maize grains and beans stored for periods of up to one year at ambient temperatures averaging 23°C. The grain samples were initially treated with 10·36 mg kg−1 of radiolabelled malathion dust prior to storage and portions analysed at regular intervals for malathion, malaoxon and the transformation products isomalathion, malathion α-monocarboxylic acid and malathion β-monocarboxylic acid using a combination of chromatographic, radioisotopic and mass-spectrometric techniques. The findings showed a gradual penetration of malathion into the grains in amounts which were slightly higher in maize than in beans irrespective of the method of storage. After 51 weeks of storage, 34–60% of the initial residues persisted in all the grains. The total residual levels were slightly higher in beans than in maize irrespective of the storage methods though the persistence was a little higher in the wooden box than in the open basket. The rates of dissipation of the pesticide from the grains decreased with storage time and followed a biphasic pattern. Applying first-order reaction kinetics, the following half-lives were obtained: maize grains stored in open basket: 194 days; maize grains stored in closed wooden box: 261 days; beans stored in open basket: 259 days; beans stored in closed wooden box: 405 days. Beans stored in the wooden box had higher levels of bound residues than those sampled from the open basket. This trend was similar in maize grains although the concentrations were lower. The analysis of malathion metabolites confirmed the degradation trend of the residues.  相似文献   

9.
10.
Pesticides in soil are subject to a number of processes that result in transformation and biodegradation, sorption to and desorption from soil components, and diffusion and leaching. Pesticides leaching through a soil profile will be exposed to changing environmental conditions as different horizons with distinct physical, chemical and biological properties are encountered. The many ways in which soil properties influence pesticide retention and degradation need to be addressed to allow accurate predictions of environmental fate and the potential for groundwater pollution. Degradation and sorption processes were investigated in a long-term (100 days) study of the chloroacetanilide herbicide, acetochlor. Soil cores were collected from a clay soil profile and samples taken from 0-30 cm (surface), 1.0-1.3 m (mid) and 2.7-3.0 m (deep) and treated with acetochlor (2.5, 1.25, 0.67 microg acetochlor g(-1) dry wt soil, respectively). In sterile and non-sterile conditions, acetochlor concentration in the aqueous phase declined rapidly from the surface and subsoil layers, predominantly through nonextractable residue (NER) formation on soil surfaces, but also through biodegradation and biotic transformation. Abiotic transformation was also evident in the sterile soils. Several metabolites were produced, including acetochlor-ethane sulphonic acid and acetochlor-oxanilic acid. Transformation was principally microbial in origin, as shown by the differences between non-sterile and sterile soils. NER formation increased rapidly over the first 21 days in all soils and was mainly associated with the macroaggregate (>2000 microm diameter) size fractions. It is likely that acetochlor is incorporated into the macroaggregates through oxidative coupling, as humification of particulate organic matter progresses. The dissipation (ie total loss of acetochlor) half-life values were 9.3 (surface), 12.3 (mid) and 12.6 days (deep) in the non-sterile soils, compared with 20.9 [surface], 23.5 [mid], and 24 days [deep] in the sterile soils, demonstrating the importance of microbially driven processes in the rapid dissipation of acetochlor in soil.  相似文献   

11.
宁夏经济增长与环境质量特征分析   总被引:1,自引:0,他引:1  
利用宁夏1986-2005年经济与环境数据,建立人均地区生产总值(人均GDP)与典型环境指标关系模型,并分析了两者之间关系。结果表明:宁夏人均GDP与环境指标总悬浮颗粒物(TSP)年均浓度呈线性负相关,与工业废水、工业COD排放量呈现倒U字型或倒N字型,有明显的EKC关系,原因是环保政策成绩显著和工业内部结构调整及企业内部污染治理投资增加;而宁夏人均GDP与工业废气、工业二氧化硫(SO2)排放量和工业固体废物产生量随着经济的发展呈现上升趋势,符合经济发展初期随着经济发展污染物排放量增加的理论,没有明显的EKC关系;而整体来看,宁夏工业废水、工业COD排放量控制政策相对较为成功,但工业废气和工业固废控制政策尚需加强。  相似文献   

12.
In cold climates, fungicides are used on golf greens to prevent snow mould causing serious damage to the turf. However, fungicide residues have been detected in runoff from golf courses, which may lead to restrictions on use. There is therefore an urgent need to improve understanding of the processes affecting leaching of fungicides from turfgrass systems to allow identification of green construction and management practices that minimize environmental impacts. In this study we monitored the leaching of the fungicide iprodione in a putting green. Sorption and degradation of iprodione was measured in batch and incubation experiments, and the simulation model MACRO was used as a risk assessment tool. Degradation of iprodione was bi-phasic, with a rapid initial phase (half-life 17 h) caused by enhanced biodegradation. Degradation rates slowed considerably after 5 days, with half-lives of up to 38 days. Sorption of iprodione was linear, with a K(oc) value of ca 400 cm(3) g(-1). MACRO reasonably accurately matched measured drainflows and concentrations of iprodione in soil and drainflow. However, peak concentrations in drainage were underestimated, which was attributed to preferential finger flow due to water repellency. The results also showed the importance of the organic matter content in the green root zone in reducing leaching. It was concluded that, with 'reasonable worst-case' use, losses of iprodione from greens can occur at concentrations exceeding water quality limits for aquatic ecosystems. Snow mould problems should be tackled by adopting green root zone mixes that minimize leaching and 'best management practices' that would avoid the need for intensive prophylactic use of fungicides.  相似文献   

13.
BACKGROUND: The natural monoterpenoid pesticides thymol and phenethyl propionate (PEP) are used indoors and outdoors, but their fate in the environment has not been reported. In order better to understand their impact on the environment, water metabolism and soil metabolism studies were conducted with thymol and PEP at a concentration of 10 microg g(-1) in water and in soil under laboratory conditions. RESULTS: Dissipation half-lives of thymol and PEP were 16 and 5 days in water and 5 and 4 days in soil. 2-Phenylethanol and 2-(4-hydroxyphenyl)ethanol were detected as primary degradation products of PEP. Over time, a considerable volatilization loss of thymol, but not of phenethyl propionate, was found in the 1 month study under the experimental conditions used. Less than 6% of thymol and PEP were detected as bound residues, and less than 3% were mineralized during the 30 day study. CONCLUSION: In order to maximize the pesticidal effect, more attention should be paid to the temperature for thymol than for PEP when they are being applied, owing to the high volatility of the former. Thymol and PEP pose low risks to the ecosystem because of their rapid dissipation and low bound residues in the environment.  相似文献   

14.
The route and rate of degradation of florasulam, a low‐rate triazolopyrimidine sulfonanilide herbicide, was investigated in six soil types under aerobic conditions at 20 or 25 °C. Degradation products were isolated and identified by mass spectroscopy. Florasulam was rapidly degraded by microbial action with an average half‐life of 2.4 days (range 0.7 to 4.5 days). The first step in the degradation pathway involved conversion of the methoxy group on the triazolopyrimidine ring to a hydroxy group to form N‐(2,6‐difluorophenyl)‐8‐fluoro‐5‐hydroxy[1,2,4]triazolo[1,5‐c]pyrimidine‐2‐sulfonamide. This metabolite degraded, with a half‐life of 10 to 61 days, via partial breakdown of the triazolopyrimidine ring to form N‐(2,6‐difluorophenyl)‐5‐aminosulfonyl‐1H‐1,2,4‐triazole‐3‐carboxylic acid. This was followed by cleavage of the sulfonamide bridge to form 5‐(aminosulfonyl)‐1H‐1,2,4‐triazole‐3‐carboxylic acid. Other degradation processes involved decarboxylation of the carboxylic acid metabolites and mineralisation to form carbon dioxide and non‐extractable residues. © 2000 Society of Chemical Industry  相似文献   

15.
苦参碱的水解动态及其在自然水体中的降解特性   总被引:2,自引:2,他引:0  
农药的降解特性是评价其环境安全性的重要指标。为评价植物源农药苦参碱对水环境的安全性,依据“化学农药环境安全性评价试验准则”,采用室内模拟试验探讨了苦参碱的水解动态及其在自然水体中的降解特性和影响因素。结果表明:苦参碱在不同pH值缓冲液中水解均较缓慢,120 d后水解率仍低于25%,属于难降解型;其在6种自然水体中降解均较快,半衰期在6.3~12.8 d之间,降解速率排序依次为池塘水河水雨水湖水海水自来水;在6种自然水体中(25℃±1℃),苦参碱降解速率随其初始浓度的升高而减慢,半衰期与初始浓度呈正相关,但均小于30 d,属于易降解型。比对试验表明:微生物是影响苦参碱降解速率的主要因素,水体中微生物的量与其降解半衰期呈显著负相关关系(P=0.006)。可见,苦参碱在自然水体中易降解,该特性对于指导苦参碱的实际应用具有重要意义。  相似文献   

16.
禾草灵的作用机制及环境生态效应研究进展   总被引:1,自引:1,他引:1  
禾草灵 (diclofop-methyl)属芳氧苯氧丙酸类除草剂,广泛应用于禾本科杂草防除,其降解受到土壤有机质含量、pH值、氧气等众多因素的影响。母体化合物禾草灵及其主要降解产物禾草灵酸都具有除草活性,并会对环境中的一些非靶标生物产生急性或慢性毒性,是一类环境内分泌干扰物及过氧化物酶体增殖剂;同时,由于部分杂草产生抗性,进而演替成优势种群,迫使禾草灵的用量增加,更加重了其环境压力。文章就禾草灵的作用机制,其在环境中的降解、吸附等行为以及对非靶标生物的生态效应进行了综述,探讨了其中存在的一些问题,如生态毒理尤其是对映体差异性在毒性方面数据的缺乏等,并对今后的发展方向进行了展望。  相似文献   

17.
BACKGROUND: The behavior of the termiticide fipronil in soils was studied to assess its potential to contaminate ground and surface water. This study characterizes (1) adsorption of fipronil in three different soils, (2) transport of fipronil through leaching and runoff under simulated rainfall in these soils and (3) degradation of fipronil to fipronil sulfide and fipronil sulfone in these soils. RESULTS: The adsorption experiments showed a Freundlich isotherm for fipronil with Koc equal to 1184 L kg?1. In the leaching experiments, the concentration of fipronil and its metabolites in leachate and runoff decreased asymptotically with time. The concentration of fipronil in the leachate from the three soils correlated inversely with soil organic carbon content. The degradation experiment showed that the half‐life of fipronil in the soils ranged from 28 to 34 days when soil moisture content was 75% of field capacities, and that 10.7–23.5% of the degraded fipronil was transformed into the two metabolites (fipronil sulfide and fipronil sulfone). CONCLUSION: Fipronil showed large losses through leaching but small losses via runoff owing to low volumes of runoff water generated and/or negligible particle‐facilitated transport of fipronil. The half‐life values of fipronil in all three soils were similar. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
19.
The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution.  相似文献   

20.
Use of the insecticide lambda-cyhalothrin in agriculture may result in the contamination of water bodies, for example by spray drift. Therefore, the possible exposure of aquatic organisms to this insecticide needs to be evaluated. The exposure of the organisms may be reduced by the strong sorption of the insecticide to organic materials and its susceptibility to hydrolysis at the high pH values in the natural range. In experiments done in May and August, formulated lambda-cyhalothrin was mixed with the water body of enclosures in experimental ditches containing a bottom layer and macrophytes (at different densities) or phytoplankton. Concentrations of lambda-cyhalothrin in the water body and in the sediment layer, and contents in the plant compartment, were measured by gas-liquid chromatography at various times up to 1 week after application. Various water quality parameters were also measured. Concentrations of lambda-cyhalothrin decreased rapidly in the water column: 1 day after application, 24-40% of the dose remained in the water, and by 3 days it had declined to 1.8-6.5%. At the highest plant density, lambda-cyhalothrin residue in the plant compartment reached a maximum of 50% of the dose after 1 day; at intermediate and low plant densities, this maximum was only 3-11% of the dose (after 1-2 days). The percentage of the insecticide in the ditch sediment was 12% or less of the dose and tended to be lower at higher plant densities. Alkaline hydrolysis in the water near the surface of macrophytes and phytoplankton is considered to be the main dissipation process for lambda-cyhalothrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号