首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Rice brown spot (BS), caused by Bipolaris oryzae, causes yield loss and deterioration of grain quality. Using single-nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between an American rice cultivar, ‘Dawn’ (resistant), and ‘Koshihikari’ (susceptible). Four QTLs for BS resistance were detected in a three-year field evaluation, and ‘Dawn’ contributed the resistance alleles at all QTLs. The QTL with the greatest effect, qBSR6-kd, explained 15.1% to 20.3% of the total phenotypic variation. Although disease score and days to heading (DTH) were negatively correlated in all three years, qBSR6-kd was located near a QTL for DTH at which the ‘Dawn’ allele promoted heading. Another BS resistance QTL (qBSR3.1-kd) was unlinked to the QTLs for DTH. Therefore, these two QTLs are likely to be useful for breeding BS-resistant varieties without delaying heading. The other two BS resistance QTLs (qBSR3.2-kd and qBSR7-kd) were located near DTH QTLs at which the ‘Dawn’ alleles delayed heading. The QTLs reported here will be good candidates for developing BS-resistant cultivars.  相似文献   

2.
Brown spot is a devastating rice disease. Quantitative resistance has been observed in local varieties (e.g., ‘Tadukan’), but no economically useful resistant variety has been bred. Using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) from ‘Tadukan’ (resistant) × ‘Hinohikari’ (susceptible), we previously found three QTLs (qBS2, qBS9, and qBS11) that conferred resistance in seedlings in a greenhouse. To confirm their effect, the parents and later generations of RILs were transplanted into paddy fields where brown spot severely occurred. Three new resistance QTLs (qBSfR1, qBSfR4, and qBSfR11) were detected on chromosomes 1, 4, and 11, respectively. The ‘Tadukan’ alleles at qBSfR1 and qBSfR11 and the ‘Hinohikari’ allele at qBSfR4 increased resistance. The major QTL qBSfR11 coincided with qBS11 from the previous study, whereas qBSfR1 and qBSfR4 were new but neither qBS2 nor qBS9 were detected. To verify the qBSfR1 and qBSfR11 ‘Tadukan’ resistance alleles, near-isogenic lines (NILs) with one or both QTLs in a susceptible background (‘Koshihikari’) were evaluated under field conditions. NILs with qBSfR11 acquired significant field resistance; those with qBSfR1 did not. This confirms the effectiveness of qBSfR11. Genetic markers flanking qBSfR11 will be powerful tools for marker-assisted selection to improve brown spot resistance.  相似文献   

3.
To improve brown planthopper (Nilaparvata lugens Stål; BPH) resistance of an elite indica cultivar of South China, Hemeizhan (HMZ), we applied marker‐assisted backcross (MABC) to incorporate three BPH‐resistance genes (Bph3, Bph14 and Bph15) into the genetic background of HMZ. In the third backcross (BC3) generation, we obtained near‐isogenic lines (Bph3‐NIL, Bph14‐NIL, Bph15‐NIL and Bph14 + Bph15‐NIL) with more than 96% recovery of recurrent parent genome, and pyramided lines (Bph3 + Bph14‐PYL, Bph3 + Bph15‐PYL and Bph3 + Bph14 + Bph15‐PYL) with more than 89% recovery of recurrent parent genome. These lines showed stronger resistance against BPH than HMZ at seedling and booting stages. The rank of resistance gene effect was Bph3 + Bph14 + Bph15  Bph3 + Bph15  Bph3 +Bph14  Bph14 + Bph15  Bph3  Bph15  Bph14 > none. Compared with HMZ, only Bph3 + Bph14 + Bph15‐PYL had a significant difference in yield per plant, and the lines carrying Bph3 had higher amylose contents, indicating that Bph3 was tightly linked to Wxa allele. These improved lines are good intermediate sources of broad‐spectrum and durable BPH resistance to improve other indica cultivars. Our results demonstrate that MABC is a very efficient approach to improve BPH resistance of elite rice cultivar.  相似文献   

4.
The development of crop varieties with high nitrogen-use efficiency (NUE) is thought to be important in achieving sustainable cereal crop production. The high yield large-grain rice cultivar Oryza sativa L. ‘Akita 63’ (temperate japonica) has high physiological NUE (PNUE) for grain yield (GY). Our previous study revealed that a large-grain allele of GS3 is present in ‘Akita 63’. Here, we verified the influence of GS3 on the yield properties and PNUE for GY in ‘Akita 63’. The frequency distribution of brown rice length in F2 crosses of ‘Iwate 75’ and ‘Akita 63’ showed a continuous distribution that could be explained by GS3. A near-isogenic line was developed to substitute the GS3 segment of ‘Koshihikari’, which harbours a normal-sized grain allele, in the genetic background of ‘Akita 63’ and the line was designated as Akita63NILGS3-Koshihikari. Compared with Akita63NILGS3-Koshihikari, ‘Akita 63’ exhibited a significantly increased grain length, single brown grain weight and GY, although no significant differences were observed in the nitrogen content and above-ground biomass per unit of cultivated area. These results indicate that the GS3 large-grain allele is a contributing factor to high PNUE for GY in ‘Akita 63’. These findings will facilitate the development of nitrogen-efficient rice varieties.  相似文献   

5.
Rice (Oryza sativa L.) yield is severely reduced by the brown planthopper (BPH), Nilaparvata lugens Stål, in Asian countries. Increasing resistance in rice against BPH can mitigate yield loss. Previous reports indicated the presence of three BPH resistance genes, BPH2, BPH17-ptb, and BPH32, in durable resistant indica rice cultivar ‘PTB33’. However, several important questions remain unclear; the genetic locations of BPH resistance genes on rice chromosomes and how these genes confer resistance, especially with relationship to three major categories of resistance mechanisms; antibiosis, antixenosis or tolerance. In this study, locations of BPH2, BPH17-ptb, and BPH32 were delimited using chromosome segment substitution lines derived from crosses between ‘Taichung 65’ and near-isogenic lines for BPH2 (BPH2-NIL), BPH17-ptb (BPH17-ptb-NIL), and BPH32 (BPH32-NIL). BPH2 was delimited as approximately 247.5 kbp between RM28449 and ID-161-2 on chromosome 12. BPH17-ptb and BPH32 were located between RM1305 and RM6156 on chromosome 4 and RM508 and RM19341 on chromosome 6, respectively. The antibiosis, antixenosis, and tolerance were estimated by several tests using BPH2-NIL, BPH17-ptb-NIL, and BPH32-NIL. BPH2 and BPH17-ptb showed resistance to antibiosis and antixenosis, while BPH17-ptb and BPH32 showed tolerance. These results contribute to the development of durable BPH resistance lines using three resistance genes from ‘PTB33’.  相似文献   

6.
C. X. Duan    N. Su    Z. J. Cheng    C. L. Lei    J. L. Wang    H. Q. Zhai    J. M. Wan 《Plant Breeding》2010,129(1):63-67
Small brown planthopper (SBPH) is a serious pest of rice ( Oryza sativa L.) in China. An indica variety 'Kasalath' is highly resistant to SBPH. A mapping population consisting of 98 BC1F9 lines, derived from a backcross of 'Nipponbare'/'Kasalath'//'Nipponbare', was applied to detect quantitative trait loci (QTL) for resistance to SBPH. In the modified seedbox screening test, three QTLs for SBPH resistance were mapped on chromosomes 3 and 11, explaining 49.9% of the phenotypic variance. In the antixenosis test, a total of three QTLs conferring antixenosis against SBPH were detected on chromosomes 3, 8 and 11, which accounted for 36.4% of the total phenotypic variance. In addition, two QTLs expressing antibiosis to SBPH were detected on chromosomes 2 and 11, explaining 13.8% and 14.7% of the phenotypic variance, respectively. Qsbph11e , Qsbph11f and Qsbph11g were located in the region between S2260 and G257 on chromosome 11, indicating that the locus is significant in conferring resistance to SBPH in 'Kasalath'. The molecular markers linked to these QTLs should be useful in the development of varieties with horizontal resistance to SBPH.  相似文献   

7.
8.
A wide variation in resistance to blast disease caused by Magnaporthe grisea (Hebert) Barr. ( Rossman et al. 1992 ) was found using 922 rice ( Oryza sativa L.) varieties collected mainly from Asia. These were classified into six varietal groups, termed clusters A–F, according to Ward's hierarchical cluster analysis, based on the reaction pattern to 20 standard differential blast isolates from the Philippines. The most susceptible two clusters, B and C, dominated in varieties from the Far East (Japan). Varieties from East Asia and Southeast Asia occurred less frequently in B and C clusters than those of Japan, and more frequently in E and F clusters, which were the most resistant of the cluster groups. Varieties from South Asia showed the widest variation, occurring in all clusters but less frequently in cluster B. The cluster B varieties dominated in Japan and showed a high frequency of isozyme type VI, corresponding to Japonica type. In contrast, the frequency of cluster B was low in the groups with isozyme types I, II, III and V, which dominated in South Asia. Isozyme type I corresponds to Indica type varieties. The distribution of resistance corresponded to the geographical distribution of rice varieties and might be related to differentiation into Indica and Japonica types. These findings will provide useful information for understanding the variation in blast resistance at the global level.  相似文献   

9.
Common beans (Phaseolus vulgaris) are separated into two distinct groups: Andean and Middle American. We identified CAL 143 as the first Andean bean with resistance to angular leaf spot disease caused by Phaeoisariopsis griseola. Angular leaf spot is the most widespread and economically important bean disease in southern and eastern Africa, and it is especially severe on the extensively grown Andean beans. Cal 143 was resistant in Malawi, South Africa, Tanzania, and Zambia, but it was susceptible in Uganda. This was attributed to the presence of races of P. griseola in Uganda not present in the other countries. We identified two additional Andean bean lines, AND 277 and AND 279, with resistance to angular leaf spot in Malawi. We also characterized the virulence diversity of 15 isolates of P. griseola from southern and eastern Africa into nine different races. Five of six isolates from Malawi and two of seven from Uganda, obtained from large-seeded Andean beans, were characterized into four different races considered Andean. These were compatible only or mostly with large-seeded Andean cultivars. The other eight isolates from Uganda, Malawi, and the Democratic Republic of Congo, obtained from a small- or medium-seeded Middle American beans, were characterized into five different Middle American races. These were compatible with Middle American and Andean cultivars. CAL 143 was resistant or intermediate under greenhouse conditions to all but one of the same 15 isolates from southern and eastern Africa, but it was susceptible to an isolate from Uganda obtained from a medium-seeded Middle American bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号