首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
《现代农业装备》2021,42(4):64-68
中国水资源严重缺乏,而农业用水又占了总用水量的大部分,根据土壤湿度信息来控制农业灌溉对农业节水具有重要意义。本文基于STM32F103CRT6单片机设计了土壤湿度采集及控制装置,利用TDR-3型土壤湿度传感器的相关物理特性和STM32RCT6单片机的控制功能实现土壤湿度的检测及自动灌溉。该装置包括单片机微控制器模块、土壤湿度传感器模块、液晶显示模块、按键模块、串口模块、水肥机继电器模块和电源模块,可实现自动测量土壤湿度并在液晶上显示,并通过键盘设定适宜作物生长的土壤湿度范围:当土壤湿度小于下限值时,启动水肥机增加土壤湿度;当土壤湿度大于上限值时,水肥机停止工作,实现了对农作物的自动节水灌溉。  相似文献   

2.
针对传统果园灌溉自动控制系统的通信方式中存在的问题,以ST7540芯片为核心设计了电力线载波通信模块,以STM32F103芯片作为总控制器节点主控芯片,以STM8S103作为传感器节点和水泵控制节点的主控芯片,提出一种将果园灌溉自动控制系统中电磁阀的电源线和控制信号线合二为一的方案,研究了基于低压电力线载波通信的灌溉智能控制系统,解决了传统控制灌溉控制系统中,电磁阀的电源线和控制线重复布线及无线灌溉控制系统中信号的稳定问题,提高通信可靠性、节省了田间电缆,降低了后期维护的复杂性。在长度100 m,截面积0.5 mm~2的双绞线上进行试验,传输速率达4 800 bps,误码率低于0.1%,在华南农业大学山地荔枝园的试验中,实现了高可靠性的荔枝园分区轮灌,将工业中常用的电力线载波通信技术应用于农业自动控制系统中,有广阔的应用前景。  相似文献   

3.
针对当前灌溉设备控制系统智能化水平低等问题,设计了一种基于ARM嵌入式系统和电力线载波的智能灌溉控制系统.该系统由5个模块组成:数据处理控制模块、数据通讯模块、数据采集模块、控制驱动模块和人机交互模块.数据处理控制模块的中央处理器采用基于ARM Cortex-M3架构的32位微处理器STM32F103CBT6.数据通讯模块的电力线载波采用总线主站控制器PB620芯片搭建.软件采用实时操作系统μC/OS-II,内核版本V2.91.基于土壤实时墒情数据、短期气象预报等多源数据,构建土壤水分盈亏量预测模型和灌溉量估算模型,分别用于估算土壤墒情和作物适宜灌溉量.结果表明,该系统实现了土壤墒情监测、灌溉量智能计算和自动轮灌等功能.电力线载波实现了土壤墒情传感器、电磁阀供电和通讯功能,并节省了通信电缆.网络通信丢包率均值为0.09%,电力线载波误码率小于0.01%,电磁阀响应时间均值为0.497 s.在籽粒产量不降低情况下,模型生成方案比传统灌溉方案节水31.37%.相比设置灌溉上下限参数的自动化灌溉控制系统,该系统具有设备操作简单,安装成本低,运行可靠稳定,灌溉量自动估算和调节等特点,有效提高了大田灌溉效率和用水效率,具有良好的应用前景.  相似文献   

4.
胡天让 《南方农机》2023,(12):51-53+60
【目的】传统模式下的农田灌溉通常采用人工方式对农田进行灌溉,随意性较强,水资源利用率低,为了有效解决上述问题,提高农业水资源利用率,实现传统农业向智能农业的转变。【方法】笔者结合物联网技术,从传感器信息采集模块设计、终端控制模块设计以及无线传输模块设计、上位机设计等方面进行研究,设计了一款基于物联网技术的农田滴灌远程控制系统。【结果】该农田滴灌远程控制系统在应用过程当中能够保持正常运行,满足不同类型环境的需求,尤其适用花园、温室蔬菜大棚等封闭的环境,有效降低了人力成本,充分满足了农田区域化的灌溉需要。【结论】该农田滴灌系统实现了对农田中的电磁阀启停控制以及节水灌溉任务,保障了农作物能够在适宜的环境中生长,推动了农业增产增收,实现了智能化精准农业,应用前景广阔。  相似文献   

5.
为了实时获取农业灌溉泵的性能参数信息以及农业灌溉用水水质信息,以达到优化灌溉泵运行,降低灌溉泵能耗,减少灌溉泵安全隐患,保证灌溉用水水质,防止农作物污染的目的,研发了一种基于STM32F103ZET6单片机设计的灌溉泵智能运行监测系统.该系统主要包括MCU核心控制模块、水质监测模块、驱动电动机电压电流信号采集模块、GP...  相似文献   

6.
郎朗  冯晓蓉 《农机化研究》2022,44(3):116-119
以水肥一体机智能控制系统为研究对象,对作物生长过程中所需的水分及肥料进行分析,利用工控机作为上位机、STM 32控制板作为下位机,搭建水肥一体机智能控制系统.系统可根据作物生长状态、灌溉面积及环境参数,结合作物生长需求进行灌溉量和肥量的分析计算,并根据肥料溶解特性进行灌溉施肥时间的分配转换,在STM 32控制板的输出指...  相似文献   

7.
【目的】有效促进测控一体化技术在引黄农业灌区的推广应用,提高灌区灌溉管理水平和水资源利用率。【方法】在探讨测控一体化技术组成和应用的基础上,从测控一体化闸门的作用和重要性、调控技术原理、调控技术方法和措施、调控技术数据分析与调控效果评估方面探究了测控一体化闸门的调控技术。【结果】闸门调控技术的核心是自动化控制,基于传感器采集的实时数据,控制系统能够智能地调节闸门的状态,确定何时打开或关闭闸门,以及以何种速度和水量进行灌溉,灌溉策略的设计需要考虑农田的特性、作物需水量和水资源供应情况,进一步优化灌溉策略以及改进技术性能,提高精度和效率。【结论】农业灌区测控一体化闸门调控技术具有广阔的应用前景,可以提高水资源利用效率、降低能源消耗、保护环境、提高农业生产效益,为实现农业灌溉高效管理和水资源高效利用提供技术支撑。  相似文献   

8.
为解决农业灌溉中智能化监测与远程控制问题,提高农业灌溉效率与智能灌溉的可靠性,设计了基于安卓系统与MCU的智能灌溉系统。系统主要包括上位机Android手机APP、下位机单片机,以及云服务平台3部分:上位机采用HTML5+CSS+JavaScript在API Cloud Studio环境下实现的移动应用程序;下位机采用STM32F411处理器作为智能灌溉系统的核心CPU;借助物联网云平台实现上位机与下位机的通讯,并通过PWM控制薄膜泵灌溉速度。用户通过手机即可实时监测环境信息和作物生长状态、设置灌溉模式、控制灌溉开启及灌溉速度。试验表明:系统各方面运行正常可靠,在农业远程智能监测和灌溉方面有一定的实用价值。  相似文献   

9.
北方温室微环境在线监控系统设计与分析   总被引:1,自引:0,他引:1  
通过对温室环境和调控策略的分析,提出一个总体方案,设计了一套符合北方温室环境的智能控制系统。该系统采用分布主从式设计结构,下位机以STM32F103VCT6单片机为核心,搭载丰富的外围模块;上位机主要实现用户指令下发和信息汇总,完成对温室环境的实时遥测、遥调和遥控。通过对温室环境的监控保证温室内作物的生长条件,实现了温室大棚的科学、高效、智能化的管理。   相似文献   

10.
为解决因无法应用大型耕地设备、零散耕地的土地利用率低下、造成土地资源浪费等一系列问题,笔者设计了一种基于STM32的小型智能播种机.该播种机以STM32F103C8T6单片机为主控芯片,由电源模块和驱动模块等构成移动主体,采用显示模块和远控模块进行控制,通过声音模块、避障模块、播种模块和传感器进行整体调节和系统工作,最...  相似文献   

11.
农业灌溉用水是粮食生产安全的重要保障,合理的灌溉用水规划是水资源高效利用的重要保障。不同类型农作物在整个生长周期对水的实际需求是一个动态变化过程,传统大水漫灌会造成水资源的严重浪费,同时在灌溉过程中作物缺水或用水过量都不利于作物生长。为提高水资源利用效率,在灌溉过程准确估算作物实际用水需求,根据未来农业智能化发展和节水灌溉需求,结合项目实际及农业智能化灌溉理论研究发展现状,以作物实际需水量研究为基础,按作物类型建立全生长周期需水基础数据库及实际需水量决策模型实施按需灌溉。在灌溉区域布置传感器及微型气象监测系统,传感器网络节点监测和采集农田土壤参数,微型气象监测系统监测周边环境温度、湿度、风速及辐射等数据,通过LoRa无线通信将数据传输至数据处理终端,数据处理终端利用农作物实际需水量灌溉决策模型,综合考虑蒸腾、土壤蒸发、作物需水量等因素,分析计算得出作物实际需水量,生成灌溉时间、灌溉水量等指令,通过智能灌溉控制系统实现对作物的及时性、精准性灌溉,实现智能化、高效率、可持续的农业用水管理。  相似文献   

12.
温室环境智能控制系统的研究与开发   总被引:4,自引:7,他引:4  
温室环境智能控制系统以中心计算机和PLC智能控制器为控制核心,基于人工智能和农业专家系统知识库,采用主从监控管理形式,对温室内外环境因子进行实时监测和智能化决策调节,为农作物创造最优化的生长条件。系统主要由环境因子实时监控模块、智能决策模块、数据处理模块、数据库管理模块、人工控制模块、系统参数设定模块、灌溉控制模块、远程监控等模块构成,具有智能决策、易于操作、运行可靠、便于升级扩充等特点,已实现产品化。运用该套控制系统,采用配套的栽培技术措施,达到实现作物周年高产、高效、优质生产的目的。  相似文献   

13.
基于灰色神经网络与模糊控制的寒地水稻灌溉制度   总被引:1,自引:1,他引:0  
【目的】精确判断寒地水稻的灌溉水量并建立适当的灌溉管理方式,保证作物正常生长需求,起到节水效果。【方法】根据寒地水稻特殊的生长环境和作物各生育期需水量,设计了基于灰色神经网络与模糊控制的寒地水稻灌溉制度,该智能灌溉制度通过建立微型气象站监测、传输稻田环境数据,并通过灰色神经网络预测理论预测出作物灌溉需水量和灌溉制度影响因子;以预测作物灌水量和作物最佳灌水量的差值及差值变化率作为模糊控制器的输入,灌溉时间长度为输出,驱动电磁阀,达到适时适量灌溉的目的。【结果】MATLAB仿真结果表明,该灌溉控制方式比传统控制方式响应速度快、超调量小、控制效果好。在东北农业大学水稻试验田的试验结果表明该灌溉控制制度的节水率为11.59%,水稻产量和结实率也有所提高;在黑龙江省建三江农场的田间试验表明该灌溉制度的节水率高达13.54%。【结论】该灌溉制度与传统控制方式相比具有很好的节水效果,能对作物各生育期灌溉需水量进行综合判断和管理,对提高水资源利用率、降低农业生产成本、实现精细农业有重要意义。  相似文献   

14.
随着经济的发展和城市化进程的加快,我国耕地面积日益减少、水资源持续短缺,粮食安全问题日益严峻。智能植物生长柜因具有节水、环保、安全、不受环境制约等优点,是解决该问题的有效方法之一。【目的】提高智能植物生长柜的水资源利用率。【方法】设计了基于模糊控制的智能植物滴灌装置,该装置主要由植物支架、控制器、传感器、水箱、电磁阀及滴箭构成,利用模糊控制算法实现智能滴灌。【结果】基于模糊控制的智能植物滴灌装置能很好地实现数据采集、灌溉控制、参数设置和数据处理等功能,将土壤湿度控制在合理的范围内,在用水量相同的情况下作物长势更优。【结论】该装置可有效提高智能植物生长柜的水资源利用率以及自动化程度,并可推广至其他智能滴灌系统。  相似文献   

15.
西北地区水资源短缺,在农业灌溉过程中靠经验漫灌,会造成水资源利用不充分、利用率不高等问题。为解决西北地区农业灌溉过程中智能化程度低、灌溉用水利用效率低等问题,课题组结合项目研究进展和国内外研究成果,对作物实际需水量模型、传感器技术、无线通信技术、自动控制技术在智能农业灌溉控制系统开发和应用方面进行了系统分析,讨论了在西北地区实施智能灌溉技术的有效途径和技术应用手段,为西北地区作物智能化高效节水灌溉提供了实现途径和解决方案,有利于实现粗放灌溉模式向精准化、智能化、规模化农业灌溉模式转变。  相似文献   

16.
【目的】为了确保农业植保无人机能够在合适的位置喷洒农药,提高控制精度、作业效率并降低成本,有必要对多旋翼无人机的飞行控制系统进行优化设计。【方法】本研究团队以STM32F428IGT6芯片为核心,设计了农业植保多旋翼无人机飞行控制系统。首先概述了无人机飞行控制系统的整体架构,该飞控系统由主控系统、惯性测量单元、喷洒系统、空速测量系统等构成。其次,详细分析了无人机飞行控制系统的电源供电系统设计、通信设计、传感器选择、喷洒系统设计等硬件设计。最后,阐述了无人机飞行控制系统的算法设计,主要包括无人机姿态解算和PID控制算法,并介绍了该系统应用优势。【结果】该系统各模块之间执行SPI和CAN总线协议,可以将传感器实时采集的高度、速度、偏航角等参数传输到主控系统中,利用MCU芯片完成参数的分析处理,在此基础上发出新的调控指令,让多旋翼无人机沿着既定航线飞行,在到达特定位置后启动喷洒系统并完成喷药作业。【结论】该系统能让无人机在合适位置喷洒农药,达到远程控制、自动作业的效果,提高了植保作业效率,有利于促进现代农业机械化高质量发展。  相似文献   

17.
吴延勇 《南方农机》2023,(14):156-158
【目的】提升悬挂农机生产性能,提高农业生产效率。【方法】笔者分析了悬挂式农机具电液控制系统的整体构成模块,包括驾驶员控制面板、智能传感器、液压系统、电子控制单元以及悬挂机构;根据电液控制系统原理,提出了硬件设计与软件设计方案;利用STM32F103单片机作为核心控制单元,通过脉宽调制(Pulse Width Modulation, PWM)信号输出可有效驱动电路,以实现对比例阀及液压调速的合理控制。【结果】当PWM信号占空比不断增加时,马达转速也在不断提升。当占空比在5%~25%变化时,液压马达运行转速从18.1 r/min提升至610.9 r/min,整体提升速度较快。尤其是当动力输出轴占空比为25%时,受到负载反馈影响,转速增幅较大。当占空比在5%以内时,产生了比例阀开度死区,流量不足,此时的转速为0。当占空比为55%时,比例阀开度处于最大状态,出现了流量饱和现象,此时的液压马达运行转速最大,且不再提升。【结论】通过PWM信号占空比对控制系统的性能进行试验分析,该设计通过控制比例阀液压来进行调速和提升手柄控制模块性能,实现了悬挂式农机具的智能化控制。  相似文献   

18.
为了给微型植物工厂内部作物提供良好的生长环境,设计了一种基于STM32F407的微型植物工厂智能控制系统,包括微控制器模块、人机交互模块、数据采集模块、网络模块和执行机构驱动模块等。同时,制定了环境因子控制策略,构建了微型植物工厂智能控制系统软硬件,并进行了作物种植试验。结果表明:该系统稳定可靠,能够为作物生长提供适宜的光照、温湿度和水肥条件。  相似文献   

19.
基于多传感器的精准变量施肥控制系统   总被引:1,自引:0,他引:1  
为实现田间精准变量施肥,设计基于多传感器的变量施肥控制系统。该系统以STM32F103ZET6微处理器为核心,搭配GPS定位模块、作物生理信息监测模块、温湿度与光照度监测以及施肥机构监测模块,可实现水稻田间精准变量施肥作业环境参数、地理位置信息、作物生长信息以及施肥机构的执行状态实时监测,系统根据内置施肥算法,结合采集的多源传感信息,实现实时变量施肥控制。系统测试结果表明,调速测试试验最大控制误差为6.25%,开度测试试验最大控制误差为11.1%,系统的控制精度达到88%以上,性能稳定,满足精准作业的要求。  相似文献   

20.
我国50%的淡水资源用于农业灌溉,以传统的漫灌方式为主,造成了巨大浪费。物联网技术在农业生产中得到了广泛应用,与专家决策系统的结合可以实现对果园的智能化灌溉。葡萄在不同生育时期和季节的需水量不同,对灌溉精度的要求较高。明渠和漫灌方式不仅浪费水资源,还影响葡萄的生长和产量。为此,基于物联网技术,设计了一种葡萄园的信息获取和智能灌溉系统。信息采集模块采集各种环境信息,通过基于Zig Bee技术的无线通信网络发送到信息处理模块中进行分析管理和整合;专家决策模块诊断葡萄园的需水情况并做出决策,以控制指令的形式发送给指令执行模块,控制电磁阀的开关而实现智能灌溉。在准确性和实时性验证试验中,系统测量的5种环境信息参数的最大误差分别为2.33%、3.18%、2.46%、3.24%、2.45%,表现出较高的准确性。智能灌溉的土壤含水率始终处于设定的阈值之间,说明系统可以实时灌溉,为葡萄园的科学管理提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号