首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Working with Malaysian agricultural soils, high Freundlich adsorption distribution coefficients (Kads(f)) were observed for paraquat (28·7 and 1419) and glyphosate (83·8 and 417) and lower values for 2,4-D (0·57 and 5·26) and lindane (2·65 and 14·1) in a sandy loam and a muck soil, respectively. Desorption of 2,4-D and lindane from the muck soil occurred. The adsorption of the pesticides was not affected by temperature (20°C/30°C), pH or addition of the pesticides as a mixture. Leaching of 2,4-D and lindane was evident under a high water influx (200 mm). Comparable results in the leaching of 2,4-D were observed between laboratory studies and a VARLEACH model prediction. © 1997 SCI.  相似文献   

2.
Experiments were conducted under controlled conditions to quantify the effects of temperature, water regime and irrigation system on the release of Mycosphaerella nawae ascospores from leaf litter in Spanish persimmon orchards. The effect of temperature on ascospore release was best described by a Gompertz model. The end of the lag phase of ascospore release occurred at 9·75°C, and the end of the exponential phase at 15·75°C. Few ascospores were discharged from dry leaves wetted with 0·1 or 0·5 mm water, but significant amounts were recovered with 1–50 mm water. About half of the total ascospores were released after three wetting and drying cycles, but 32 cycles were necessary for a complete discharge. No significant difference in ascospore release was detected when the leaf litter was wetted by flood and drip irrigation. However, considering the proportion of soil area wetted in both systems, inoculum release was significantly reduced by drip irrigation. The potential of drip irrigation as a cultural control measure should be investigated.  相似文献   

3.
Although glyphosate (N‐(phosphonomethyl)glycine) is one of the most frequently used herbicides, few controlled transport experiments in undisturbed soils have been carried out to date. The aim of this work was to study the influence of the sorption coefficient, soil‐glyphosate contact time, pH, phosphorus concentration and colloid‐facilitated transport on the transport of [14C]glyphosate in undisturbed top‐soil columns (20 cm height × 20 cm diameter) of a sandy loam soil and a sandy soil. Batch sorption experiments showed strong Freundlich‐type sorption to both soil materials. The mobility of glyphosate in the soil columns was strongly governed by macropore flow. Consequently, amounts of glyphosate leached from the macroporous sandy loam soil were 50–150 times larger than from the sandy soil. Leaching rates from the sandy soil were not affected by soil‐glyphosate contact time, whereas a contact time of 96 h strongly reduced the leaching rates from the sandy loam soil. The role of pH and phosphorus concentration in solution was relatively unimportant with respect to total glyphosate leaching. The contribution of colloid‐facilitated transport was <1 to 27% for the sandy loam and <1 to 52% for the sandy soil, depending on soil treatment. The risk for glyphosate leaching from the top‐soils seems to be limited to conditions where pronounced macropore flow occurs shortly after application. © 2000 Society of Chemical Industry  相似文献   

4.
The activity of GR7 and Striga germination stimulant(s) from Euphorbia aegyptiaca Boiss. showed adequate persistence (6–8 days) in acidic soils (pH 5·0–6·3), but residual activity was short (1–3 days) in alkaline soils. The compounds tended to lose activity at a faster rate in the alkaline clay Gezira soil (pH 7·8), than in its sandy equivalent (pH 8·1). In solution, pH had no influence on initial activity, but residual action was reduced more rapidly by alkalinity and high temperature. However, the rate of loss of activity in solution was slower than in soils.  相似文献   

5.
Imperata cylindrica and Cyperus rotundus were grown under three different light regimes; unshaded, 50% shade, and 75% shade and no shade plus 75% shade before and after spraying, (temporary shade) in a heated greenhouse. Six weeks after the start of the experimenis, glyphosate was applied to the plants at 0·2, 0·4 and 0·8 kg/ha (for Imperata) or 0·3, 0·6 and 1·2 kg/ha (for Cyperus). Glyphosate toxicity was enhanced as shade increased. In Imperata, all shade regimes at all rates of glyphosate eaused greater damage to the plants than the unshaded regime. The reduction in shoot dry weight, rhizome dry weight and total carbohydrate content of Imperate rhizotties at 75% continuous and temporary shaiie conditions, with the lowest rate of glyphosate, was almost twice as much as the reduction in the same features m the unshaded plants caused by the highest rate of glyphosate. In Cyperus. glyphosate at the intermediate and highest rates decreased the shoot dry weight at 75% continuous shade by 79% and 98% respectively. Plants in 50% shade were significantly affected only at the highest rate of glyphosate. Sprouting ability of the tubers al 75% continuous shade was inhibited when the tubers were replanted for recovery. Enhanced toxicity of glyphosate in reduced light intensity was attributed to the morphological changes in the nature of the leaves caused by shade.  相似文献   

6.
The effects of soil temperature and soil moisture content on the rate of loss of N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine (I, AC 92,553) were measured under controlled conditions. The time for 50% disappearance in a sandy loam soil at 75% of field capacity was inversely related to temperature (98 days at 30°; 409 days at 10°). At 25°, the half-life increased with decreasing soil moisture content (122 days at 75% of field capacity; 563 days at 12.5%). In seven soils with different properties there was a trend towards a slower rate of loss as the organic matter content of the soils increased and the half-life varied from 72 to 172 days, first-order kinetics being obeyed. The herbicide was lost rapidly from an inert surface and 97% loss was recorded after 28 days at 25°. Losses from soil surfaces occurred more slowly and were greater from wet compared with dry soil. In the field, it was more persistent when incorporated than when applied to the soil surface. More than 60% of I incorporated in April 1975 could be detected the following September, but when applied to the soil surface, only about 20% of the applied dose remained by this time. Residues measured by gasliquid chromatography using a thermionic nitrogen detector closely paralleled those measured by a bioassay based on the root growth of buckwheat.  相似文献   

7.
Sorption, mineralization and mobility of glyphosate were studied in six substrates: the five types of gravel most frequently used as surfacing in Denmark and a sandy agricultural soil from Simmelkaer that served as a reference soil. Cumulative mineralization of [methyl-14C]glyphosate in batch studies was highest in coarse gravel, amounting to 14% after 4 days at 30 degrees C and 32% after 31 days. Mineralization was slowest in the sandy reference soil, amounting to only 2% after 31 days. The adsorption coefficient (Kd) of glyphosate in gravel ranged from 62 to 164 litre kg(-1), while that in the sandy reference soil was 410 litre kg(-1). The results indicate that the relatively low Kd in gravel allows a relatively high rate of glyphosate mineralization by the biomass. When Kd is high, in contrast, mineralization is slow. Lowering the temperature to 10 degrees C decreased mineralization by 50% in one of two gravels. The leaching of glyphosate was screened in simple columns of gravel or soil in which precipitation events (20 mm over a 2-h period) were simulated on three occasions, starting either immediately after or 2 days after application of glyphosate. [14C]Glyphosate was applied as a tracer mixed with the commercial product Roundup Garden at the recommended rate of 2.4 kg glyphosate ha(-1), equivalent to 1 microg g(-1) soil. The highest concentration of [14C] compounds (expressed in terms of glyphosate concentration) in leachate from the columns exceeded 1300 microg litre(-1), and was detected in rounded gravel after the first rain event. No glyphosate was detected in leachate from the sandy reference soil.  相似文献   

8.
The behaviour and fate of chlorsulfuron in aqueous and soil systems were examined in laboratory studies. Aqueous hydrolysis was pH-dependent and followed pseudo-first-order degradation kinetics at 25°C, with faster hydrolysis occurring at pH 5 (half-life 24 days) than at either pH 7 or 9 (half-lives >365 days). Degradation occurred primarily by cleavage of the sulfonylurea bridge to form the major metabolites chlorobenzenesulfonamide (2-chlorobenzenesulfonamide) and triazine amine (4-methoxy-6-methyl-1,3,5-triazin-2-amine). This route is a major degradation pathway in water and soil systems. Aqueous photolysis (corrected for hydrolysis) proceeded much more slowly (half-life 198 days) than aqueous hydrolysis and is not expected to contribute significantly to overall degradation. Hydrolysis in soil thin-layer plates exposed to light (half-life 80 days), however, progressed at a much faster rate than in dark controls (half life 130 days), which suggests that a mechanism other than direct photolysis may have been operative. An aerobic soil metabolism study (25°C) in a Keyport silt loam soil (pH 6·4, 2·8% OM) showed that degradation was rapid (half-life 20 days). Dissipation in an anaerobic sediment/water system (initial pH of water phase 6·7, final pH 7·4) progressed much more slowly (half-life >365 days) than in aerobic soil systems. Major degradation products in aerobic soil included the chlorobenzenesulfonamide and triazine amine as in the aqueous hydrolysis study. Neither of these degradation products exhibited phytotoxicity to a variety of crop and weed species in a glasshouse experiment, and both exhibited an acute toxicological profile similar to that of chlorsulfuron in a battery of standard tests. Demethylation of the 4-methoxy group on the triazine moiety and subsequent cleavage of the triazine ring is another pathway found in both aqueous solution and soils, though different bonds on the triazine amine appear to be cleaved in the two systems. Hydroxylation of the benzenesulfonamide moiety is a minor degradation pathway found in soils. Two soils amended with 0·1 and 1·0 mg kg-1 chlorsulfuron showed slight stimulation of nitrification. The 1·0 mg kg-1 concentration of chlorsulfuron resulted in minor stimulation and inhibition of 14C-cellulose and 14C-protein degradation, respectively, in the same soils. Batch equilibrium adsorption studies conducted on four soils showed that adsorption was low in this system (Koc 13–54). Soil thin-layer chromatography of chlorsulfuron (Rf=0·55–0·86) and its major degradation products demonstrated that the chlorobenzenesulfonamide (Rf=0·34–0·68) had slightly less mobility and that the triazine amine (Rf=0·035–0·40) was much less mobile than chlorsulfuron. In an aged column leaching study, subsamples of a Fallsington sandy loam (pHwater 5·6, OM 1·4%) or a Flanagan silt loam (pHwater 6·4, OM 4·0%) were treated with chlorsulfuron, aged moist for 30 days in a glasshouse and then placed upon a prewet column of the same soil type prior to initiation of leaching. This treatment resulted in the retention of much more total radioactivity (including degradation products) than by a prewet column, where initiation of leaching began immediately after chlorsulfuron application, without aging (primarily chlorsulfuron parent). © 1998 SCI  相似文献   

9.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

10.
Studies on the effect of a pesticides spray sequence on the behaviour of terbutryn residues and on soil microbial activity. Part I. Behaviour of terbutryn residues In laboratory incubation studies (at 10 and 20°C and 30 and 60% soil water-holding capacity) terbutryn dissipated with half lives of 19–113 days at a standard rate of application (2·09 or 2·8mg kg?1) and 62–258 days at a 10-fold higher rate. There was little difference between two soils of different sorptive properties. The water-extractable residues showed that terbutryn was extensively adsorbed by both soils with only 12–18%‘plant-available'. Persistence of terbutryn in the field was consistent with the laboratory results and was predicted satisfactorily with a mathematical simulation model. In the laboratory, terbutryn breakdown was inhibited by the simultaneous application of dinoseb acetate and stimulated by triadimefon and parathion but these results were not confirmed in the field.  相似文献   

11.
施用7%草甘膦水剂对土壤盐化和碱化的影响   总被引:2,自引:0,他引:2  
通过室内盆栽模拟实验,研究了5种浓度的7%草甘膦水剂对土壤盐化和碱化的影响。结果表明,施药后土壤盐度(用电导率表示)、钠碱化度(ESP)、钠吸附比(SAR)、总碱度及pH值都明显增大,且随施药次数的增加,上述各项盐化和碱化指标不断增大;每次施药后,土壤的各项盐化和碱化指标都随施药浓度的升高呈增大趋势。6次施用0.352 g/L的7%草甘膦水剂后,土壤的电导率由施药前的1 010增加为2 460 μS/cm,ESP由2.247%增加为7.983%,SAR由1.576增加为4.305,总碱度由1.443 mmol/L增加为4.485 mmol/L,pH值由6.92变为7.89。虽然土壤各项盐化和碱化指标的变化都还在非盐化和非碱化土范围内,但有盐化和碱化的趋势。  相似文献   

12.
The rate of aerobic evolution of 14CO2 from 14C-glyphosate labelled in the methylphosphonyl carbon, varied 100-fold within a group of five Hawaiian sugarcane soils. The rate depended inversely on the degree of soil binding, probably associated with the phosphonic acid moiety, and to a less certain extent on soil pH and soil organic matter. After an initial rapid degradation, the rate of 14CO2 evolution in three soils reached a constant at 16–21 days which continued to the 60-day termination. The other two soils showed a continually decreasing rate throughout. Two soils released over 50% of the labelled carbon in 60 days, a third released 35%, while the remaining soils released 1.2 and 0.8% respectively. Labelled carbon in the soils after 60 days consisted of glyphosate and one metabolite, aminomethyl-phosphonic acid, with glyphosate predominating in high fixing soils. The 14C could be extracted almost completely with NaOH solution, and remained mainly in solution after acidification.  相似文献   

13.
Off-target glyphosate deposits were measured downwind of aerial silvicultural applications which used D8-46 hollow-cone hydraulic nozzles, ‘Micronair’ AU 5000 rotary atomisers, and the ‘Thru Valve Boom’ (030), with volume application rates of 35, 20 and 20 litre ha?1 respectively, and a glyphosate application rate of 2·1 kg ha?1. Crosswind spray lines were released 10 m above ground level over a short forest canopy, from a fixed-wing aircraft flying at 45 m s 1 in atmospheric boundary layers with average wind speeds and air temperatures of 2·2-3·7 m s?1 and 8-23°C at release height. Ground sheets and artificial foliage clusters were exposed at downwind distances of between 50 and 300 m. Glyphosate deposit measurements at various downwind distances (x) were fitted with non-linear regression lines; deposits were attenuated at rates inversely proportional to x at powers of 1·3-2·3. For a particular trial, deposits on ground sheets and artificial foliage were generally similar, and ranged between 19 and 0·04 mg m?2 over the sampling distances used. For 100-ha applications the estimated buffer-zone widths around water bodies were less than 50 m, whereas those around non-target vegetation ranged between 75 and 1200 m, depending on the application method and the meteorological conditions.  相似文献   

14.
Chlorpyrifos is an organophosphorus insecticide used to control insect pests in soil. The fate of chlorpyrifos in soils under different moisture regimes is of interest because application directions specify soil-surface treatments for a number of agricultural and urban pests. Chlorpyrifos was degraded rapidly in all air-dry soils and slightly more slowly in soils at field capacity and/or under submerged conditions. Degradation rates were influenced by clay-catalysed hydrolysis under air-dry conditions and neutral or alkaline hydrolysis under submerged conditions. Degradation was faster in Bellary soil (chromic haplustert) and slower in Chettalli soil (ustic palehumult) under all three moisture regimes. The calculated half-lives ranged from 1·6 to 10·0, 5·2 to 22·0 and 8·7 to 25·1 days under air-dry, field capacity and submergence respectively at an application rate of 10 mg kg-1. © 1997 SCI.  相似文献   

15.
Studies on the effect of a pesticide spray sequence on the behaviour of terbutryn residues and on soil microbial activity. Part II. Influence on microbial activity In laboratory incubation experiments (at 10 and 20°C and 30 and 60% soil water-holding capacity) soil microbial activities (dehydrogenase, respiration after glucose amendment and nitrogen transformations) were scarcely affected by 20·9 and 28·0 mg kg?1, respectively, of terbutryn in two soils of different sorption properties. In contrast, dinosebacetate, alone or mixed with terbulryn, triadimefon or parathion, inhibited dehydrogenase activity and respiration even at a low rate of application (2·87 mg kg?1). Following application of a 10 times higher rate to a highly adsorbent soil there was an initial inhibition of nitrification followed by an enhanced rate of nitrogen mineralization. Triadimefon and parathion, alone and in combination with other pesticides, caused both stimulation and inhibition of microbial activity; the reason is not clear. The effects on dehydrogenase and respiration were confirmed in field experiments. Dehydrogenase activity was the most sensitive and so could be a useful test for the side-effects of pesticides on soil micro-organisms. Additional work on nitrogen transformations is needed to interpret the results.  相似文献   

16.
Factors that influence the persistence of TCA in soil   总被引:1,自引:0,他引:1  
D. McGRATH 《Weed Research》1976,16(2):131-137
The persistence of TCA in soil was examined using the pyridine-alkali colorimetric procedure. Loss of TCA was essenlially similar when determined by colorimetry, chloride release or bioassay. Persistence of TCA when incubated with soil at 25°C or sprayed on the soil surface in the field was slightly influenced by soil type. Degradation of TCA occurs largely by microbial action after a lag phase. Soils treated with TCA acquire the ability to degrade further additions of ihe compound without a lag phase. The three soils examined still possessed this ability to differing extents 32 months after they had been sprayed once with TCA at the rate of 22.4 kg/ha. In one experiment the persistence of TCA was shortened appreciably in a plot that had twice previously been sprayed with TCA.  相似文献   

17.
Structure-concentration–foliar uptake enhancement relationships between commercial polyoxyethylene primary aliphatic alcohol (A), nonylphenol (NP), primary aliphatic amine (AM) surfactants and the herbicide glyphosatemono(isopropylammonium) were studied in experiments with wheat (Triticum aestivum L.) and field bean (Vicia faba L.) plants growing under controlled-environment conditions. Candidate surfactants had mean molar ethylene oxide (EO) contents ranging from 5 to 20 and were added at concentrations varying from 0·2 to 10 g litre?-1 to [14C]glyphosate formulations in acetone–water. Rates and total amounts of herbicide uptake from c. 0·2–μl droplet applications of formulations to leaves were influenced by surfactant EO content, surfactant hydrophobe composition, surfactant concentration, glyphosate concentration and plant species, in a complex manner. Surfactant effects were most pronounced at 0·5 g acid equivalent (a.e.) glyphosate litre?-1 where, for both target species, surfactants of high EO content (15–20) were most effective at enhancing herbicide uptake: surfactants of lower EO content (5–10) frequently reduced, or failed to improve, glyphosate absorption. Whereas, at optimal EO content, AM surfactants caused greatest uptake enhancement on wheat, A surfactants gave the best overall performance on field bean; NP surfactants were generally the least efficient class of adjuvants on both species. Threshold concentrations of surfactants needed to increase glyphosate uptake were much higher in field bean than wheat (c. 2 g litre?-1 and < 1 g litre?-1, respectively); less herbicide was taken up by both species at high AM surfactant concentrations. At 5 and 10 g a.e. glyphosate litre?-1, there were substantial increases in herbicide absorption and surfactant addition could cause effects on uptake that were different from those observed at lower herbicide doses. In particular, the influence of EO content on glyphosate uptake was now much less marked in both species, especially with AM surfactants. The fundamental importance of glyphosate concentration for its uptake was further emphasised by experiments using formulations with constant a.i./surfactant weight ratios. Any increased foliar penetration resulting from inclusion of surfactants in 0·5 g litre?-1 [14C]glyphosate formulations gave concomitant increases in the amounts of radiolabel that were translocated away from the site of application. At these low herbicide doses, translocation of absorbed [14C]glyphosate in wheat was c. twice that in field bean; surfactant addition to the formulation did not increase the proportion transported in wheat but substantially enhanced it in field bean.  相似文献   

18.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

19.
Triazole fungicides are now widely used commercially and several are known to be persistent in soil. The degradation rates of five such fungicides were measured in laboratory tests with two soils over 720 days, with analysis of soil extracts by high-pressure liquid chromatography. Behaviour in a sandy loam and a clay loam were similar, and incubation of the compounds either singly or in admixture did not influence loss rates except for those of flutriafol which were lower in the latter. Triadimefon was quite rapidly reduced to triadimenol, though traces of the former were always found, indicating a possible redox equilibrium. Flutriafol, epoxiconazole and triadimenol (derived from triadimefon) were very persistent, breakdown following first-order kinetics with half-lives greater than two years at 10 °C and 80% field capacity. Propiconazole was moderately persistent, with a half-life of about 200 days under these conditions. Degradation rates increased about 3-fold as the temperature was increased from 5 to 18 °C, though decreasing soil moisture to 60% field capacity only slightly slowed degradation. The rate constants obtained are used in a companion paper describing field studies on these two soils to compare laboratory-measured degradation rates with losses in the field following commercial sprays. © 1999 Society of Chemical Industry  相似文献   

20.
The rate of volatilization of the formulated herbicides triallate and terbutryn was studied in a volatilization chamber under controlled laboratory conditions using two soils with sand and loam textures, respectively. The influence of the most relevant experimental variables was investigated by measuring the amount of volatilized herbicides after their incorporation to the soils. The effect of soil temperature was studied in the range from 5 °C to 25 °C. Initial soil water content was fixed at field capacity depending on the physical characteristics of each soil. The volatilized herbicide was trapped in C18 cartridges during different time intervals and analyzed by HPLC. The volatilization losses for triallate ranged from 7 to 58%, whereas the losses for terbutryn ranged from 1 to 6%. Sorption and volatilization resulted in two coupled effects of major importance in these experiments: the sorption process was favoured as temperature decreased, whereas volatilization increased as temperature increased. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号