首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selenium (Se) is an essential trace element that is often deficient in the natural diets of domestic animal species. The measurement of Se in whole blood or liver is the most accurate way to assess Se status for diagnostic purposes. This study was conducted to compare hydride generation atomic absorption spectroscopy (HG-AAS) with inductively coupled plasma-mass spectrometry (ICP-MS) for the detection and quantification of Se in liver samples. Sample digestion was accomplished with magnesium nitrate and nitric acid for HG-AAS and ICP-MS, respectively. The ICP-MS detection was optimized for 82Se with yttrium used as the internal standard and resulted in a method detection limit of 0.12 microg/g. Selenium was quantified by both methods in 310 samples from a variety of species that were submitted to the Toxicology Laboratory at New Bolton Center (Kennett Square, PA) for routine diagnostic testing. Paired measurements for each sample were evaluated by a mean difference plot method. Limits of agreement were used to describe the maximum differences likely to occur between the 2 methods. Results suggest that under the specified conditions ICP-MS can be reliably used in place of AAS for quantitation of tissue Se at or below 2 microg/g to differentiate between adequate and deficient liver Se concentrations.  相似文献   

2.
In cows from 15 dairy herds (n = 210), serum selenium (Se) concentrations ranged from 0.021 to 0.789 microgram/ml, whereas 0.05 to 0.40 microgram/ml is the reported range for adequate serum Se concentrations in cattle. Serum Se concentrations of dairy cattle appeared to follow a geographic distribution pattern. On the basis of herd mean serum Se concentrations, adequate serum Se concentrations were found in cattle from only 1 of 5 herds grazing forage in the geographic area classified as Se deficient for cattle. Adequate mean serum Se concentrations were found in cattle from 4 of 5 herds located in geographic areas described as having variable forage Se concentrations (Se-marginal areas). Of the 10 herds from these 2 areas, there were only 2 herds in which 95% of the cattle had serum Se concentrations in the Se-adequate range (0.05 to 0.40 microgram/ml). In 2 selected neighboring farms in the Se-deficient area, cattle in 1 herd had adequate serum Se concentrations and cattle in the other herd had less than adequate serum Se concentrations (less than 0.05 microgram/ml). Therefore, more cattle are at risk of developing Se-deficiency disease than is commonly believed and forage of neighboring farms may have different Se concentrations. Serum Se concentrations (up to 0.789 microgram/ml) correlated with glutathione peroxidase enzyme activity; this serum Se concentration (0.789 microgram/ml) is approximately 6.2 times higher than previously reported in dairy cattle. Therefore, RBC glutathione peroxidase activity may be useful in determining the diagnosis of chronic Se toxicosis.  相似文献   

3.
This study was designed to assess the effects of a moderate increase in dietary sulphur (S) in cattle. Twelve animals were initially fed a basal concentrate (S = 0.2%) and then divided into two groups; one fed basal and the other high S (S = 0.75%) concentrates. Health, body weight gains, and activities of erythrocyte enzymes-glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G6PD), acetylcholinesterase (AChE), plasma- asparate aminotransferase (AST), and whole blood concentrations of selenium (Se) were monitored at various stages of the study. Marked increases in the activities of GSH-Px, SOD and G6PD from the pretrial values were observed upon initial feeding of basal concentrate diet. Sex related differences were not evident in enzyme activities and Se concentrations of the blood. A high linear correlation (r = 0.92) between averages of GSH-Px activity and Se concentration of blood was observed in both sexes. Increasing the amount of S in the concentrate diet (from 0.2 to 0.75%) did not produce any statistically significant change in enzyme activities and Se concentrations, body weight gains, and health of the cattle during the 85 days feeding period. The results indicate that a moderate increase in the dietary S would not impair Se and copper status or cause related disorders in cattle.  相似文献   

4.
A study was conducted to determine the efficacy of organic (Se-yeast, SelenoSource AF, Diamond V Mills Inc., Cedar Rapids, IA) and inorganic sources of Se on growth performance, tissue Se accretion, and carcass characteristics of growing-finishing pigs fed diets with high endogenous Se content. A total of 180 pigs at 34.4 +/- 0.06 kg of BW were allotted to 1 of 5 dietary treatments: a negative control without added Se (NC); 3 treatment diets with 0.1, 0.2, or 0.3 mg/kg of added Se from an organic source; and a diet with 0.3 mg/kg of added Se as sodium selenite. Each treatment had 6 pens, with 6 pigs per pen-replicate. Experimental diets were changed twice at 66.1 +/- 0.5 kg and 99.0 +/- 0.9 kg of BW, and were fed until the pigs reached market weight. Growth performance was measured at the end of each phase. Upon reaching 129.9 +/- 1.4 kg of BW, the pigs were transported to a local abattoir (Seaboard Foods, Guymon, OK), where carcass, loin, and liver samples were obtained. Hair and blood samples were obtained at the beginning and end of the study for Se analysis. Growth performance did not differ (P > 0.05) among treatments. Percent drip loss of the NC pigs was greater (2.41 vs. 1.75, P = 0.011) compared with pigs supplemented with Se. Pigs fed diets with added Se had greater Se concentrations in the liver (0.397 vs. 0.323 ppm, P = 0.015), loin (0.236 vs. 0.132 ppm, P < 0.001), serum (0.087 vs. 0.062 ppm, P = 0.047), and hair (0.377 vs. 0.247 ppm, P = 0.003) compared with the NC pigs. Percentage drip loss was linearly reduced [percent drip loss = 2.305 - (2.398 x Se), r2 = 0.29, P = 0.007] as dietary organic Se concentration increased. The Se concentration (ppm) in the liver [liver Se = 0.323 + (0.291 x Se), r2 = 0.33, P = 0.003], loin [loin Se = 0.122 + (0.511 x Se), r2 = 0.57, P < 0.001], serum [serum Se = 0.060 + (0.113 x Se), r2 = 0.33, P = 0.004] and hair [hair Se = 0.237 + (0.638 x Se), r2 = 0.56, P < 0.001] increased linearly as dietary organic Se concentration increased. Slope ratio analysis indicated that the relative bioavailability of organic Se for percent drip loss and loin and hair Se response was 306, 192, and 197% of that for inorganic Se, respectively. The results of the study show a potential advantage of organic Se supplementation in reducing drip loss even when the basal diet contains an endogenously high Se concentration of 0.181 ppm.  相似文献   

5.
Herbage selenium (Se) concentration is generally low in Norway. It is unknown whether feeding practices on Norwegian organic farms fulfil the dietary needs of Se and vitamin E for sheep and dairy cattle. Therefore we analysed Se in soil and herbage, and Se and vitamin E in animal blood in the indoor feeding season at 14 organic dairy and 14 organic sheep farms. The herbage Se concentration was low. Approximately 50 and 35% of all samples in the first and second cut, respectively, had Se concentrations below the detection limit of 0.01 mg/kg dry matter (DM). The median (10th, 90th percentile) Se concentrations were <0.01 (<0.01, 0.03) and 0.02 (<0.01, 0.06) mg/kg DM in the first and second cuts, respectively. Whole blood Se concentrations were 0.10 (0.04, 0.15) μg/g in dairy cattle and 0.14 (0.03, 0.26) μg/g in sheep. Vitamin E concentrations were 4.2 (2.7, 8.4) mg/l in dairy cattle and 1.3 (0.9, 2.4) mg/l in sheep. None of the soil or plant variables explained the variation in herbage Se concentration, although Se in soil and plant tended to be correlated. Herbage Se concentration was inadequate to meet the dietary Se requirements. Vitamin E requirement was only met in dairy herds. We recommend Se and vitamin E supplementation to ruminants on organic farms.  相似文献   

6.
Selenium (Se) deficiency disease has been described in camelids and only clinical data is available for administration of parenteral Se supplements. This study investigated the pharmacokinetic effects of subcutaneous Se injection (0.1 mg/kg) in llamas fed a diet adequate in Se. Absorption of Se was rapid with peak whole blood Se concentration at the first sampling time. Significant differences in whole blood Se concentration from before injection of Se were not found past 2 days after Se injection. Parenteral Se is unlikely to have a long-term effect on whole blood Se concentration in llamas fed adequate dietary Se.  相似文献   

7.
To identify a simple method for assessing the selenium demand in cattle, the relationship between selenium content in whole blood and the concentration of the selenium containing enzyme glutathione peroxidase (EC 1.11.1.9; GSH-Px) in red blood cells was studied. On six farms with suspected low soil selenium content, blood samples were collected from groups of calves, yearlings and adults at the end of the housing period and of the grazing period. The data obtained showed a highly significant correlation between the parameters mentioned: GSH-Px (U/g Hb) = 3.261 * Se (micrograms/kg) - 40.553. In growing animals there was a decline in Se supply with age, followed by a gradual recovery in heifers. This was most pronounced on some sandy soils and on peat soil. Seasonal effects could not be demonstrated.  相似文献   

8.
The potential impact on aquatic ecosystems of supplementing the diets of beef cattle with selenium (Se) was studied on 4 northern California ranches. All study sites included an area of concentrated use by cattle that had diets supplemented with Se. In each case, a stream flowed through the site and provided a control sampling area upstream and a treated sampling area downstream. Specimens of water, sediment, algae, aquatic plants, aquatic invertebrates, and fish were analyzed fluorometrically for total Se content. Significant differences in Se concentration were not found between specimens from upstream control areas and those from downstream areas subjected to use by Se-treated cattle. Evidence was not found that Se supplementation in cattle at maximal permitted concentrations caused Se accumulation in associated aquatic ecosystems.  相似文献   

9.
The objective was to determine the concentration of total Se and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in postmortem tissues of beef cattle offered diets containing graded additions of selenized enriched yeast (SY; Saccharomyces cerevisiae CNCM I-3060) or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of edible muscle tissue were assessed 10 d postmortem. Thirty-two beef cattle were offered, for a period of 112 d, a total mixed ration that had been supplemented with SY (0, 0.15, or 0.35 mg of Se/kg of DM) or SS (0.15 mg of Se/kg of DM). At enrollment (0 d) and at 28, 56, 84, and 112 d following enrollment, blood samples were taken for Se and Se species determination, as well as whole blood GSH-Px activity. At the end of the study beef cattle were killed and samples of heart, liver, kidney, and skeletal muscle (LM and psoas major) were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances were determined in skeletal muscle tissue (LM only). The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, as well as GSH-Px activity. There was also a dose-dependent response to the graded addition of SY on total Se and proportion of total Se as SeMet in all tissues and GSH-Px activity in skeletal muscle tissue. Furthermore, total Se concentration of whole blood and tissues was greater in those animals offered SY when compared with those receiving a comparable dose of SS, indicating an improvement in Se availability and tissue Se retention. Likewise, GSH-Px activity in whole blood and LM was greater in those animals offered SY when compared with those receiving a comparable dose of SS. However, these increases in tissue total Se and GSH-Px activity appeared to have little or no effect in meat oxidative stability.  相似文献   

10.
In southern Australia, cattle at risk from selenium (Se) deficiency can be given an oral dose of supplements that are effective in maintaining adequate Se status for between 9 and 12 months. The present study was undertaken to assess the duration of the effect of parenteral barium selenate (BaSe) in raising the Se status of cattle at pasture in an area of marginal Se deficiency. The BaSe was given subcutaneously to Hereford heifers, using an 18-gauge needle. Cattle had regular blood sampling to assay Se, from 8 days before dosing to 1155 days afterwards. Results show that a single injection of BaSe was effective in elevating blood and plasma Se concentrations to normal values for at least 2 to 3 years, when given to beef cattle of low normal Se status. We suggest that a prophylactic dosage of 0.5 mg Se/kg body weight as BaSe should be given every 2 years to prevent Se inadequacy in beef cattle grazing pasture of marginal Se content.  相似文献   

11.
To investigate the effects of supplemental Se on the transfer of Se to nursing pigs when sows are fed diets containing a Se level above the NRC recommendation (0.15 ppm), sows were fed diets containing no supplemental Se or supplemental (0.3 ppm) Se from sodium selenite or Se yeast. A nonSe-fortified corn-soybean meal basal diet with a high endogenous Se content served as the negative control (0.20 to 0.23 ppm Se). Fifty-two sows were fed diets from 60 d prepartum until 14 d of lactation. Six sows per treatment were bled at 60 and 30 d prepartum, at farrowing, and at 14 d postpartum to measure serum Se concentrations. Colostrum was collected within 12 h postpartum, and milk was collected at 14 d of lactation. Blood was obtained from 3 pigs each from 12 litters per treatment at birth and at weaning (d 14), and pooled serum was analyzed for Se and immunoglobulin G concentrations and glutathione peroxidase activity. Regardless of treatment, serum Se in sows declined throughout gestation and gradually increased during lactation. Sows fed Se yeast tended (P < 0.06) to have greater serum Se at farrowing than sows fed unsupplemented diets. Colostrum and milk (d 14) Se concentrations increased (P < 0.01) when sows were fed Se from yeast but not from sodium selenite. At birth, serum Se was increased (P < 0.01) for pigs whose dams were fed Se yeast compared with pigs from sows fed the basal diet. At 14 d of age, there was no difference in serum Se concentration of pigs from dams fed any of the treatments. Pig serum immunoglobulin G concentrations and glutathione peroxidase-1 activity were unaffected by dietary Se source. Supplementation of gestating and lactating sow diets with Se (0.3 ppm) from an organic or inorganic source reduced the number of stillbirths per litter. However, only pigs born to sows fed organic Se (Se yeast) had greater serum Se at birth. Organic Se increased Se concentration of colostrum and 14-d milk to a greater degree than inorganic Se.  相似文献   

12.
Effect of selenium supplementation on dairy cattle.   总被引:1,自引:0,他引:1  
The adequacy of current supplemental dietary selenium allowances for dairy cattle has been reviewed from the literature and by monitoring responses of dairy herds in a veterinary practice specializing in nutritional consultation. Both information sources tend to agree that a reference range of 70 to 100 ng of Se/mL of serum is an acceptable target concentration. This range can be attained most often by providing > 6 mg of supplemental Se.animal-1.d-1, but several factors affect the serum Se responses of different cows to specific Se intakes. These factors may include forage types and sources, ruminal environment, supplemental fat, dietary calcium, trace metals, and genetics. The major benefits, observed experimentally, of maintaining optimal Se intakes include minimizing the incidence of mastitis and preventing calf losses associated with myopathy and(or) respiratory disease.  相似文献   

13.
AIM: To evaluate the efficacy of a new long acting injectable selenium ( Se ) formulation to increase the Se status and prevent Se deficiency in red deer. METHODS: Groups of weaned red deer (four stags and six hinds/group) grazing pastures containing <30 mg Se/kg DM were injected subcutaneously with either 0.5, 1.0 or 2.0 mg Se/kg as a new formulation of BaSeO4 (Deposel Multidose), 1.0mgSe/kg of a current formulation (Deposel), or not treated. Blood Se concentrations and liveweight were measured nine times at intervals over 377 and 270 days, respectively. RESULTS: Both formulations of Se elevated blood Se concentrations from 105 nmol/l pre-injection for at least 377 days with peak levels of 1894, 1395 and 818 nmol/l for high, medium and low doses of Deposel Multidose, respectively, at 73141 days, and 1508 nmol/l at 73-141 days for the medium dose of Deposel, which persisted at similar levels for the duration of the study. Deposel Multidose produced fewer and less severe subcutaneous tissue reactions than Deposel. Pastures contained 10 to 30 mg Se/kg DM. There was no significant difference in growth rate between treated and control deer. There was a significant (p<0. 01) linear relationship (y = 1.25x + 71.6, R2=0.86) between blood (x) and liver (y) Se concentrations in the range of 120 - 2100 nmol/l for blood concentrations, and 200 - 3000 nmol/kg for liver concentrations. CONCLUSION: Injections of BaSeO4 in both formulations studied were effective in increasing the Se status of deer but the new formulation produced fewer and less-severe tissue reactions. Young growing red deer appear less sensitive to Se deficiency as measured by weight gain, than sheep and cattle, suggesting that reference ranges for those species are not appropriate for deer. There was a linear correlation between blood and liver selenium concentrations.  相似文献   

14.
The aim of this trial was to determine whether the selenium status of suckling calves could be improved by supplementing their dams' diet with organic Se instead of sodium selenite. A herd of 103 Hereford cows, which were on grass paddocks all year round, was divided into two groups. Both groups had free access to a mineral supplement that contained 30 mg of Se/kg; for one group the source of the Se was a Se yeast product, and for the other group the source was sodium selenite. The basal feed contained .02 mg of Se/kg DM. During the trial, the mean daily consumption of the mineral supplement was approximately 110 g/cow. The calving season started in the middle of March and ended in the middle of May. Blood samples were taken from 11 cows and their calves in the yeast group and from nine in the selenite group at the end of April and again at the beginning of June, and milk samples were taken at the same times. At both samplings, the concentration of Se in whole blood and the activity of glutathione peroxidase (GSH-Px) in the erythrocytes of the cows and calves in the yeast group were higher than in the samples from the animals in the selenite group. The same pattern was seen for plasma, except for the cows at the first sampling. The mean concentrations of Se in whole blood from calves in the yeast and selenite groups were 130 and 84 microg/L, respectively, and plasma concentrations were 48 and 34 microg/ L, respectively. Mean Se concentration in the milk from the yeast group (17.3 microg/L) was higher than that in milk from the selenite group (12.7 microg/L). There were significant correlations (r = .59 to .68) between the concentrations of Se in the cow's milk or cow's whole blood compared with Se concentrations in the calves whole blood and plasma or with the erythrocyte GSH-Px activity of the calves. The Se status of the calves in the selenite group was considered to be marginal, but the status of the calves in the yeast group was considered to be adequate. Supplementation of the suckler cows' diet with organic Se in the form of Se yeast rather than sodium selenite improved the Se status of their calves when the Se was mixed into a mineral supplement containing 30 mg of Se/kg. In practice, such supplementation would probably eliminate the risk of nutritional muscular degeneration in suckling calves.  相似文献   

15.
A 2-yr study was conducted at the Range Cattle Research and Education Center, University of Florida – Institute of Food and Agricultural Sciences (IFAS) (Ona, FL), to evaluate differences in the metabolism of Cu and Se of Angus (Bos taurus) and Brahman (Bos indicus) cattle. Thirty-two pregnant beef cows (n = 8 Brahman and 8 Angus/yr) were enrolled in the study in the first trimester of gestation. This study consisted of three phases: 1) restriction (day 0 to 90), 2) supplementation (day 91 to 150), and 3) calving. During all three phases, cows were individually fed and housed in partially covered drylot pens. During the restriction and supplementation phases, cows were provided a 1.5 kg/d of a grain-based concentrate supplement, which was fortified with flowers of S (50 g of supplemental S/cow daily; restriction phase) or Cu and Se (100 and 3 mg/d of Cu and Se, respectively; supplementation phase). Blood and liver samples were collected from all cows at 30 d intervals and from both cows and calves within 24 h of calving. Colostrum and milk samples were collected at calving and 7 d after birth. All data were analyzed using the MIXED procedure of SAS, where cow and calf were the experimental unit. During the restriction phase, a breed × day effect (P = 0.03) was observed where Brahman had greater liver Cu concentration than Angus cows in all sampling days. For liver Se concentration, a tendency (P = 0.07) for a breed effect was observed where Angus cows tended to have greater liver Se concentration than Brahman. During the supplementation phase, breed (P < 0.001) and day (P < 0.01) effects were observed, where Brahman cows had greater liver Cu concentration than Angus. For liver Se concentration, a day effect (P < 0.001) was observed, where liver Se concentration increased (P < 0.001) from day 90 to 120 and remained unchanged (P = 0.86) until day 150. At calving, no effects of breed (P = 0.34) were observed for liver Cu concentration of cows; however, Brahman calves tended (P = 0.09) to have greater liver Cu concentration than Angus calves. For Se liver concentration at calving, Angus cows tended (P = 0.07) to have greater liver Se concentration than Brahman cows; however, no breed differences (P = 0.70) were observed for liver Se concentration of calves at birth. In summary, substantial differences in multiple indicators of Cu and Se status were observed between Angus and Brahman cattle, implying that Angus and Brahman cattle possibly have different mechanisms to maintain adequate Cu and Se status.  相似文献   

16.
Seventy-two Hereford X Simmental cows, averaging 498 kg in body weight and 5.2 yr of age, were used in a 2-yr study to ascertain if selenium (Se)-vitamin E (E) injections and winter protein supplementation would affect growth, reproduction and health of beef cattle maintained year-round on feedstuffs marginally deficient in Se (.03 to .05 mg/kg). Cows received either no injection or a mixture of 30 mg Se (as sodium selenite) and 408 IU E injected subcutaneously beginning 3 to 4 mo prepartum and at 60-d intervals throughout the 2-yr period. Calves born to Se-E treated cows were injected with 5.5 mg Se and 75 IU E/100 kg body weight at 60-d intervals beginning at 1 mo of age. Calves were born between December 30 and February 20 and cows were bred between March 20 and May 20. Cattle grazed pasture (.05 mg Se/kg) that consisted of orchardgrass, bluegrass and white clover during the fall, spring and summer. During winter (December 15 to May 2), cattle were fed corn silage (.03 mg Se/kg) supplemented with either: no protein supplement (control), soybean meal or a urea-corn mixture. Cows and calves receiving Se-E had higher (P less than .01) whole blood glutathione peroxidase (GSH-Px) activity and plasma Se concentrations than controls. Selenium-E injections reduced (P less than .05) calf death losses from 15.3% to 4.2% and slightly increased (P less than .10) adjusted calf weaning weights. Hemoglobin concentrations were higher (P less than .05) in Se-E-injected supplemented calves at 1 mo of age but not at 5 or 7 mo of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The objectives of this study were to investigate the determinants of the anion gap (AG) in cattle and to evaluate the utility of AG in detecting hyperlactatemia in sick neonatal calves and adult cattle. The AG was calculated as AG = ([Na+] + [K+]) - ([Cl-] + [HCO3]), with all values in mEq/L. The AG of healthy neonatal calves (n = 16) was 29.6 ± 6.2 mEq/L (mean ± SD), and the blood L-lactate concentration ranged from 0.5 to 1.2 mM/L. The AG was significantly (P > .05) correlated with serum phosphate (r = .66) and creatinine (r = .51) concentrations. The AG of neonatal calves with experimentally induced diarrhea (n = 16) was 28.6 ± 5.6 mEq/L, and the blood L-lactate concentration ranged from 1.1 to 2.9 mM/L. The AG was significantly correlated with blood L-lactate concentration (r = .67), serum phosphate concentration (r = .63), creatinine concentration (r = .76), and blood pH (r = -.61). The AG of adult cattle with abomasal volvulus (n = 41) was 20.5 ± 7.8 mEq/L, and the blood L-lactate concentration ranged from 0.6 to 15.6 mM/L. The AG was significantly correlated with blood L-lactate concentration (r = .60), serum phosphate concentration (r = .71), creatinine concentration (r = .65), albumin concentration (r = .47), total protein concentration (r = .54), blood pyruvate concentration (r = .67), and blood pH (r = -.41) but not plasma β-OH butyrate concentration. The results indicate that the AG in cattle is only moderately correlated with blood L-lactate concentration and is similarly correlated with serum phosphate and creatinine concentrations in neonatal calves and adult cattle, as well as with serum albumin and total protein concentrations in adult cattle. Anion gap determination is of limited usefulness in predicting blood L-lactate concentration in sick cattle, whereas the correlation between AG and serum creatinine concentration in sick cattle suggests that an increased AG should alert the clinician to the potential presence of uremic anions.  相似文献   

18.
Thirty crossbred wethers (60 kg avg initial wt) were used to study the time-dose response to dietary Se as sodium selenite (Na2SeO3). Sheep were fed a basal diet (.20 mg/kg Se, M basis) for 10 d; three wethers were killed and tissues were collected for controls. The remaining 27 sheep were assigned randomly to diets supplemented with either 3, 6 or 9 mg/kg Se (as-fed basis) from reagent grade Na2SeO3 and fed for 10, 20 or 30 d. Feed offered was restricted to 1,200 g daily and tap water was available ad libitum. Sheep were stunned and killed by exsanguination and liver, kidney, muscle, heart and spleen were removed and frozen for Se analysis. No toxic effects were noted as expressed by feed intake or hemoglobin concentration. Added dietary Se increased Se linearly (P less than .01) in liver, kidney, and serum. Selenium in liver, kidney and serum also increased (P less than .01) as time advanced. Serum, liver and kidney were more sensitive to dietary Se than were muscle, heart and spleen. Ten days appeared to be an adequate length of time for further Se bioassay studies of this nature. Reagent grade Na2SeO3 was nontoxic when fed to sheep for 30 d at levels up to 90 times the Se requirement.  相似文献   

19.
A study was conducted to evaluate the short-term effects of feeding two dietary Se sources at various Se levels on the transfer of Se to the dam's milk and nursing pig. Six dietary treatments were arranged in a 2 x 2 factorial arrangement with two additional treatments in a randomized complete block designed experiment. Inorganic (sodium selenite) or organic (Se-enriched yeast) Se sources were added to the diet at .15 or .30 ppm Se. A non-Se-fortified corn-soybean meal basal diet served as a negative control, and a sixth group was fed .15 ppm Se from both inorganic and organic Se sources. A total of 43 sows were fed their treatment diets at 2.2 kg/d from 6 d prepartum to parturition and at full feed through a 14-d lactation period. Ten sows were initially bled at 6 d prepartum, and three sows and three pigs from their litters were bled at 7 and 14 d postpartum. Serum was analyzed for its Se concentration and glutathione peroxidase (GSH-Px) activity. Colostrum was collected within 12 h postpartum and milk at 7 and 14 d of lactation. When the basal diet was fed, sow serum GSH-Px activity declined from 6 d prepartum and remained low throughout lactation. When dietary Se levels increased, sow serum Se concentration and serum GSH-Px activity increased (P < .05) at both 7 and 14 d postpartum. The short-term feeding of either Se source at .15 or .30 ppm Se did not affect colostrum Se content when inorganic Se was fed, but it was increased when organic Se was provided. This resulted in a significant Se source x Se level interaction (P < .01). Milk Se at 7 and 14 d postpartum was 2.5 to 3 times higher when the organic Se source was provided and resulted in a significant Se source x Se level interaction (P < .05). When the combination of inorganic and organic Se was fed at .15 ppm Se, colostrum and milk Se contents were similar to those of sows fed .15 ppm Se from the organic Se source. Pig serum GSH-Px activity was not affected at 7 and 14 d of age by dietary Se level or Se source fed to the sow, but serum Se increased (P < .05) as dietary Se level increased, particularly when sows had been fed organic Se. The results demonstrated that organic Se increased milk Se content more than did inorganic Se and increased the nursing pig's serum Se. These results indicate that inorganic Se was more biologically available for sow serum GSH-Px activity, but organic Se was more effectively incorporated into milk.  相似文献   

20.
AIM: To compare serum selenium and liver selenium concentrations with whole blood concentrations in samples taken at the same time from unsupplemented cattle, and to use these comparisons to establish a reference range for use in diagnosing selenium deficiency. METHODS: Selenium was measured in concurrent whole blood, serum and liver samples obtained from cattle in unsupplemented herds in the Manawatu, Waikato and Wairarapa regions of New Zealand. The results were statistically analysed. RESULTS: The revised reference ranges are as follows. [table: see text] CONCLUSION: The serum and liver selenium concentrations used as reference values prior to this study were inaccurate for the detection of selenium deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号