首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
用混凝剂聚合硫酸铁(PFS)和助凝剂聚丙烯酰胺(PAM)对中纤板废水进行预处理,考察了PFS和PAM投加量,以及投加后各自的搅拌时间,这4个因素对混凝效果的影响。结果表明,4个因素的较优水平分别为1.8g/L、15mg/L和30、90s时,废水中CODcr和SS的去除率分别达到了64.59%和91.06%;且PFS投加量对试验结果的影响最为显著。  相似文献   

2.
研究对实验室制备污水,采用PAC(聚合氯化铝)、PFS(聚合硫酸铁)为絮凝剂,PAM(聚丙烯酰胺)为助凝剂,对不同条件下各混凝剂对污水浊度的去除率进行了对比,正交实验结果显示:当PAC投加量为0.36 g/L、PAM投加量为0.002 g/L、pH值为9、快速转速为450 r/min时,污水的浊度去除率最高,可达到99.2%。  相似文献   

3.
采用混凝沉淀工艺处理玻璃纤维薄毡生产废水,考察了不同pH值、PAC投加量对废水的浊度、CODcr去除效果的影响。试验结果表明:废水pH值调至10左右、PAC投加量为4mg/L、PAM投加量为3mg/L条件下,废水浊度及CODcr的去除率可分别达到97%、90%以上。  相似文献   

4.
采用正交试验,对微污染窖水混凝预处理中的药剂及水力条件进行了研究,考察了聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合硫酸铁(PFS)和聚合氯化铝铁(PAFC)四种混凝剂对微污染窖水中浊度去除率的影响,并比选出最优混凝剂,结合Zeta电位和分形维数考察指标确定了最佳投加量及水力条件,探究了窖水预混凝机理。结果表明:最优混凝剂为PAC;当投加量30mg/L,絮凝转速40r/min,絮凝时间30min时,微污染窖水的预混凝效果最好;实验中絮体凝聚受网捕卷扫作用影响较大。  相似文献   

5.
张金梅 《绿色科技》2022,(8):100-102
以生活污水为原水,开展了混凝实验研究,确定了最佳的混凝实验条件,为水厂运行提供数据参考。结果表明:在相同条件下,PFS的浊度去除率高于PAC,当100 g/L聚合硫酸铁(PFS)投加量为7 mL,3 g/L聚丙烯酰胺(PAM)投加量为4 mL,搅拌速度为600 r/min,沉淀时间为15 min时,浊度的去除率最高,为99.87%,混凝沉淀效果最好。  相似文献   

6.
对以使用草酸混凝沉淀法去除钢铁废水中总硬度进行了系统研究,草酸与钙生成沉淀后,用PAC、PAM作为混凝剂进行絮泥沉淀,对总硬度进行了测定,确定了投加浓度和投加后的pH值.结果表明,混凝沉淀时间为30min,投加浓度为40mg/L,总硬度的去除率达到了16%,随着投加浓度的增加,去除率增高,pH降低.  相似文献   

7.
混凝-紫外光催化氧化法处理垃圾渗滤液的模拟试验   总被引:1,自引:0,他引:1  
研究了混凝—紫外光催化氧化法对含有大量难降解有机物垃圾渗滤液的处理效果,考察了混凝pH值、混凝剂用量、搅拌强度及光催化氧化pH值、Fe2+用量、H2O2/Fe2+摩尔比及反应时间7个因素对CODcr去除率的影响。结果表明,这7个因素对CODcr去除率有明显的影响。混凝试验的最优条件为:PAM用量为5 mg.L-1,PAC用量为800 mg.L-1,pH值为5,搅拌速度为200 r.min-1;紫外光催化氧化试验的最优条件为:pH值为3,Fe2+的用量为0.01 mol.L-1,nH2O2/nFe2+为10∶1,反应时间为60 min。在工艺优化的条件下,垃圾渗滤液原水CODcr的浓度为3 500 mg.L-1,处理后CODcr的浓度为82.95 mg.L-1,CODcr去除率可达到97.6%,药剂处理费用为2.25元/t,适合于小城镇垃圾填埋场垃圾渗滤液的处理。  相似文献   

8.
周坤  汤超 《绿色科技》2023,(4):120-124
采用实验室条件下的混凝实验研究了混凝剂(PAC)用量、pH值、助凝剂(PAM)用量、混合阶段转速和搅拌时间、絮凝阶段转速等强化混凝措施对高浊度地表水混凝处理的影响,确定了强化混凝优化反应条件和运行成本。结果表明:在最优混凝条件,即PAC用量为70 mg/L、pH=7、PAM用量为1.3 mg/L、混合阶段转速为400 r/min、混合阶段搅拌时间为0.75 min、絮凝阶段转速为80r/min时,高浊度地表水浊度去除率可达96.2%,剩余浊度低于7 NTU,运行成本为0.1644元/t。浊度去除率随着絮凝阶段转速(速度梯度)的增加总体上呈上升趋势,在80 r/min时达到最大值。  相似文献   

9.
采用"Fenton氧化+双碱软化"法处理垃圾渗滤液膜滤浓缩液,考察了初始pH值、H_2O_2投加量、H_2O_2/Fe~(2+)摩尔比、反应时间和双碱投加量对CODcr和硬度去除率的影响并确定最优处理方案。结果表明:"Fenton氧化+双碱软化"法处理垃圾渗滤液膜滤浓缩液有很好的处理效果,对CODcr的去除率可达81%,硬度去除率可达98.5%。  相似文献   

10.
采用酸化-芬顿法对成分复杂、有机污染物浓度高、色度大及难生化降解的煤焦油废水进行了预处理实验研究,主要考察了反应时间、pH值、温度、FeSO4及H2O2投加量等不同反应条件对煤焦油废水中COD去除率的影响。结果表明:Fe2+质量浓度为20.g/L的FeSO4溶液用量为2mL/100mL废水,质量分数为15%的H2O2用量为4mL/100mL废水,pH值为5.0,反应时间为3h时,CODcr从4.58g/L降至1.20g/L以下,去除率达85%以上,处理后的水质可满足后续生物处理的要求。  相似文献   

11.
利用CaO结合聚合氯化铝(PAC)来选择性去除预水解液中的木质素。分别探讨了酸化法、碱化法及其结合PAC选择性去除木质素的效果,并分析了PAC选择性去除木质素的机理。结果表明:酸化法pH值为1.5时,木质素去除率最大(杨木15.68%,麦草18.76%);而采用CaO调节pH值为12时,木质素去除率最大(杨木33.33%,麦草30.67%),碱化法去除效果优于酸化法。添加CaO将pH值调至10并使PAC浓度为36 mmol/L时,预水解液中木质素的去除率(杨木50.59%,麦草49.17%)及选择性(杨木86.57%,麦草82.76%)效果最佳。  相似文献   

12.
试验用已知分子量的乳酸菌肽和溶菌酶为标准品,将其混合物通过Sephadex-G50葡聚糖凝胶柱,获得标准品的洗脱时间及洗脱体积,在同等条件下将辣木絮凝剂粗提物上柱,根据标准品获得的洗脱时间与分子量的关系,收集分子量为3kDa~13kDa的组分。经过纯化后的辣木絮凝剂可把污浊度为82.00NTU的澜沧江水降到3.66NTU,去除率达95.54%,较辣木絮凝剂粗提物的去除率提高23.48%。  相似文献   

13.
叶平平  金杰  侍远 《绿色大世界》2012,(11):138-140
以巢湖流域常见的3种浮萍——紫背浮萍(以下称紫萍)、稀脉浮萍萍和芜萍为对象,研究了三种浮萍对地表水浓度范围内(0.01mgP/L,0.05mgP/L,0.1mgP/L,0.2mgP/L,0.5mgP/L)的磷的去除作用,以及磷在三种浮萍体内的积累变化和三种浮萍对磷的吸收作用占总去除作用。探讨了浮萍处理含磷污水系统的去除磷途径。实验表明:植物体对磷的直接吸收是其净化作用的主要机制之一。三种浮萍对磷都有较高的去除效率。并且磷去除率紫萍〉稀脉浮萍〉芜萍,并且随浓度的降低而增加。三种浮萍对磷的利用率较高。紫萍对磷的利用率在60%~48.9%;稀脉浮萍在90%~47.2%;芜萍在90%~34.2%。三种浮萍对磷的吸收作用基本上占总去除作用的70%以上;并且不同品种,不同磷浓度之间存在差异,为浮萍进行巢湖流域的除磷生态修复提供了理论基础。  相似文献   

14.
应用三维电催化氧化技术对高浓度焦化废水进行了中试研究,结果表明:在常温常压下,使用三维电催化氧化技术处理宝钢高浓度焦化废水,废水CODcr,可从800000mg/L降到87400mg/L,去除率达到89.0%;T—CN从40.6mg/L降到11.0mg/L,去除率达到72.9%,B/C可从0.3提高到0.68,从而有利于后续生化处理。  相似文献   

15.
采用了“SBR-沸石”法处理氨氮废水,研究了沸石的影响因素、SBR系统的曝气时间以及有无沸石对SBR系统中氨氮废水的处理效果。结果表明:SBR-沸石法对氨氮废水具有较好的效果,进水氨氮浓度越大,沸石对氨氮的吸附量就越大,且吸附速度越快。pH值、COD对沸石吸附氨氮的能力影响很小,可忽略。SBR-沸石法对氨氮、COD和总氮的去除率比纯SBR法分别提高了6.5%、1%、27.6%。加入10g沸石后,即1L废水加3g左右沸石,SBR系统对氨氮和总氮的去除作用一直持续了1个月左右,因此,采用SBR-一沸石的方法还是比较经济,且效果比较明显。  相似文献   

16.
王昆  张书良 《绿色科技》2019,(16):137-139
在分析了制药废水的水质特点基础上,进行了精馏/好氧加Fenton的方法处理制药废水的实验研究,结果表明:该方法对制药废水的处理出效果显著。将精馏后的制药废水混合液COD稀释到500 mg/L,再加上COD为200 mg/L的生活污水,经过好氧和Fenton处理后的COD去除率可达80%左右;且出水COD稳定在120 mg/L左右。出水水质符合(GB-T-31962-2015)中的C级排放标准。  相似文献   

17.
普拉索芦荟组织培养技术研究   总被引:1,自引:1,他引:1  
取普拉索芦菩嫩茎作外植体,培养于附加不同种类和激素浓度的MS或改良的MS培养基上,在附加 6-BA1.5 mg/L时,丛生芽诱导效果最佳,萌发数量最多;在附加 6-BA1.0mg/L+NAA0.3mg/L时,丛生芽生长最好,芽长且健壮,;在附加I AA0.2 mg/L时,生根效果最佳;当苗高 3 cm以上,根长达2 cm以上时,开盖 3 d移入温室(10~16℃),炼苗 3 d后,移栽于蛙石;河沙;腐质土为0.5:1:1.5的混合基质的土壤中,成活率达91.3%。  相似文献   

18.
监测的某化机浆厂每吨浆废水发生量在24~55 m3/t之间变动,高浓化机浆废水经过了沉淀—厌氧—好氧生物处理后,化学需氧量(COD)降至500 mg/L左右,去除了废水中90%的污染负荷。对好氧出水进行了催化氧化试验,探讨了主要处理因素对COD去除率的影响,结果表明:最佳工艺条件pH值为3,H2O2和FeSO4.7H2O用量分别为2和3 mmol/L,COD去除率为86.1%,用空气作催化剂在1.2 L/L用量下可使废水COD去除率再提高5.6个百分点,达90%以上。在工程上,曝气可引自好氧处理的风机房,节省了工程投资。在工厂现场完成放大试验后,设计建造了催化氧化工程,工程运行表明:COD在500 mg/L的好氧出水经过氧化处理后排放水COD降至54 mg/L,生化需氧量(BOD)降至17 mg/L,悬浮固形物(SS)降至32 mg/L,色度降至30倍,完全满足新国家排放标准(GB 3544-2008)。  相似文献   

19.
Green pruning of Eucalyptus nitens (Deane and Maiden) Maiden increases instantaneous rates of light-saturated CO(2) assimilation (A), and changes patterns of total leaf area and foliage distribution. We investigated the importance of such changes on the rate of recovery of growth following pruning. A simple process-based model was developed to estimate daily net biomass production (G(d)) of three-year-old plantation-grown trees over a 20-month period. The trees had been pruned by removal of 0, 50 or 70% of the length of green crown, equivalent to removal of 0, 55 or 88% of leaf area, respectively, when the plantation verged on canopy closure. Total G(d) was reduced by only 20% immediately following the 50%-pruning treatment, as a result of both the high leaf dark respiration and low A in the portion of the crown removed compared to the top of the crown. Pruning at the time of canopy closure preempted a natural and rapid decline in G(d) of the lower crown. Although leaf area index (L) was approximately 6.0 at the time of pruning, high light interception (95%) occurred with an L of 4.0. The 50%-pruning treatment reduced L to 3.5, but the physiological responses to pruning were sufficient to compensate fully for the reduction in intercepted radiation within 110 days of pruning. The 70%-pruning treatment reduced L to 1.9, and reduced G(d) by 77%, reflecting the removal of branches with high A in the mid and upper crown. Physiological responses to the 70%-pruning treatment were insufficient to increase G(d) to the value of unpruned trees during the study. Model sensitivity analysis showed that increases in A following pruning increased G(d) by 20 and 25% in the 50- and 70%-pruned trees, respectively, 20 months after pruning. Changes in leaf area/foliage distribution had a greater effect on G(d) of 50%-pruned trees (47% increase) than did changes in A. However, the reduction in photosynthetic potential associated with the 70%-pruning treatment resulted in only small changes in leaf area/foliage distribution, which consequently had little effect on G(d). The effects of physiological processes occurring within the crown and in response to green pruning on G(d) are discussed with respect to pruning of plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号