首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E.De Jong  K.B. MacDonald 《Geoderma》1975,14(3):207-221
Detailed measurements of the soil moisture regime under untreated native grassland are reported over a 4-year period and compared with similar data for fertilized grassland, burned grassland, patches of buckbrush and wheat on fallow. Water use of the untreated native grassland ranged from 21.5 to 35.5 cm; fertilization with nitrogen increased water use by about 1 cm during the year of application but had little or no residual effect. The major effects of burning were a reduction in soil moisture recharge during the winter period and lower water use in the year following the burn. Average water use of the buckbrush patches was about 4 cm higher than that of the surrounding native grassland. Water use of wheat grown on fallow was similar to that of native grassland in one out of three years, but in the other two years was several centimeters lower.Over the 4-year period, average water use (29.4 cm) of the native grassland accounted for about 90% of the annual precipitation (32.6 cm). The remaining 10% is probably lost by evaporation during late fall, winter and early spring, and perhaps some runoff during snowmelt. The water use data for the untreated native grassland were related to aboveground dry matter production (r = 0.99). The production of untreated native grassland is compared with long-term data for wheat on stubble.The Versatile Soil Moisture Budget was used successfully to simulate the moisture regime of the untreated grassland as it is affected by soil, climatic, and vegetation properties. The relationship between soil temperature and root activity is discussed in some detail.  相似文献   

2.
The carbon dynamics in soils is of great importance due to its links to the global carbon cycle. The prediction of the behavior of native soil organic carbon (SOC) and organic amendments via incubation studies and mathematical modeling may bridge the knowledge gap in understanding complex soil ecosystems. Three alkaline Typic Ustochrepts and one Typic Halustalf with sandy, loamy sand, and clay loam texture, varying in percent SOC of 0.2; S1, 0.42; S2, 0.67; S3 and 0.82; S4 soils, were amended with wheat straw (WS), WS + P, sesbania green manure (GM), and poultry manure (PM) on 0.5% C rate at field capacity (FC) and ponding (P) moisture levels and incubated at 35 °C for 1, 15, 30 and 45 d. Carbon mineralization was determined via the alkali titration method after 1, 5, 7 14, 21, and 28 d. The SOC and inorganic carbon contents were determined from dried up (50 °C) soil samples after 1, 15, 30, and 45 d of incubation. Carbon from residue mineralization was determined by subtracting the amount of CO2-C evolved from control soils. The kinetic models; monocomponent first order, two-component first order, and modified Gompertz equations were fitted to the carbon mineralization data from native and added carbon. The SOC decomposition was dependent upon soil properties, and moisture, however, added C was relatively independent. The carbon from PM was immobilized in S4. All the models fitted to the data predicted carbon mineralization in a similar range with few exceptions. The residues lead to the OC build-up in fine-textured soils having relatively high OC and cation exchange capacities. Whereas, fast degradation of applied OC in coarse-textured soils leads to faster mineralization and lower build-up from residues. The decline in CaCO3 after incubation was higher at FC than in the P moisture regime.  相似文献   

3.
河北省土壤温度与干湿状况的时空变化特征   总被引:5,自引:0,他引:5  
土壤温度和干湿状况是表征土壤特性的重要参数,在土壤系统分类中作为诊断土壤某些亚纲、土类及亚类划分的参考依据。基于河北省142个气象观测站1951—2010年的日值气象数据,利用GIS空间分析技术,对河北省近60年的土壤温度和干湿状况的时空变化规律进行了分析。结果表明:(1)1951—2010年的平均土温和平均干燥度指数呈现上升趋势,且1981—2010年的上升速率均高于1951—1980年。(2)河北省主要有冷性和温性两种土壤温度状况,与1951—1980年相比,1981—2010年的温性土壤向北有所移动,移动的距离和面积大约为14.26 km和5 665 km2。(3)河北省的土壤干湿状况分布具有明显的地域差异,地表干湿状况可分为湿润、半湿润和半干旱三个等级;东部和北部区域气候湿润状况优于西部和南部,也间接表明了土壤的干湿分布状况。该研究结果为土壤系统分类定量化的诊断特性取代传统土壤分类中的地带性概念提供参考。  相似文献   

4.
Water deficit is a serious problem for most agricultural crops, especially in arid–semiarid regions, and limits sustainable development. Production can be improved by reducing evapotranspiration and loss of infiltrated water by the use of a plastic cover. We monitored soil moisture fortnightly over 1 yr using a neutron probe near four trees in an olive grove (Olea europaea, var. Arbequina), two of which had a plastic cover buried in the topsoil around them. These trees were monitored using three neutron probe access tubes per tree to compare the behaviour of soil moisture over time with two other identically instrumented and nearby trees with no cover. Analysis was based on the resultant moisture profiles. The plastic cover retained moisture and increased soil water residence time. During the dry season, the amount of water retained in the plots was at most 15–20% greater in the mid‐season and at least 5–6% greater at the end of season than in the central part of the plots near the trunk. The plastic cover was effective to ca. 50 cm with maximum water content near the soil surface. During the wet season, the cover did not affect soil water. Soil moisture was greater near the tree trunk as a result of stemflow and throughfall.  相似文献   

5.
During the dry growing seasons of 2011 and 2012, mulching of a sod-podzolic soil with coniferous litter maintained the moisture of the upper soil layer at high and fairly stable levels. By varying the spruce litter thickness, it is possible to maintain optimum conditions for acidophilic plants characterized by varying responses to the soil moisture content. In dry years (PER 0.5–0.8), the degree of influence of the mulch layer on the soil moisture content is closely related to the magnitude of the moisture deficit calculated for a warm season.  相似文献   

6.
The herbicide sulfentrazone is classified as highly mobile and persistent and this study aimed to examine degradation of this compound on a Typic Hapludox soil that is representative of regions where sulfentrazone is used in Brazil. Soil samples were supplemented with sulfentrazone (0.7 μg active ingredient (a.i.) g?1 soil), and maintained at 27 °C. Soil moisture was corrected to 30%, 70%, or 100% water-holding capacity (WHC) and maintained constant until the end of the experimental period. Soils without added herbicide were used as controls. Aliquots were taken after 14, 30, 60, 120, 180, and 255 days of incubation for quantitative analysis of sulfentrazone residues by gas chromatography. Another experiment was conducted in soil samples, with and without the herbicide, at different temperatures (15, 30, and 40 °C), with moisture kept constant at 70% of WHC. The sulfentrazone residues were quantified by gas chromatography after 14, 30, 60, and 120 days of incubation. Sulfentrazone degradation was not affected by soil moisture. A significant effect was observed for the temperature factor after 120 days on herbicide degradation, which was higher at 30 °C. A half-life of 146.5 days was recorded. It was observed that the herbicide stimulated growth of actinomycetes, whereas bacterial and fungal growth was not affected. The microorganisms selected as potential sulfentrazone degraders were Rhizobium radiobacter, Ralstonia pickettii, Methylobacterium radiotolerans, Cladosporium sp., Eupenicillium sp., and Paecilomyces sp.  相似文献   

7.
秸秆覆盖对盐渍土水分状况影响的模拟研究   总被引:15,自引:1,他引:15  
用三种质地、三种盐化程度的土壤为试材进行试验。结果表明,覆盖秸秆可明显降低土壤水分蒸发,与不覆盖相比,覆盖1.5t/hm2的土壤水分蒸发减少40%;覆盖6.75t/hm2的可减少70%。覆盖的效果还因土壤质地和盐化程度不同而异。  相似文献   

8.
为提高农业生产的抗旱减灾信息化水平,减少农作物因干旱和灌水不及时所造成的经济损失,该文把墒情预报技术与信息技术结合起来,采用WebGIS、动态交互网页、网络数据库技术,设计并开发了安徽淮北地区墒情监控和抗旱信息系统,实现了墒旱情、雨水情、农工情信息的网络化存储、发布、查询及统计图表自动生成。系统界面直观,实用性和操作性强。  相似文献   

9.
Soil moisture regime (SMR) and soil temperature regime (STR) classes as soil classification criterions are required by US Soil Taxonomy because they affect genesis, use, and management of soils. The lack of sufficient soil moisture and temperature data requires the characterization of the pedoclimate on the basis of climatic data processed by simulation models. This research was conducted to consider the new approach for SMR and STR mapping. The objectives of this study were to compare the four interpolation schemes including ordinary kriging (OK), cokriging (Co-K), inverse distance weighting, and conditional simulation for interpolating the monthly mean total precipitation (MMTP) and monthly mean air temperature (MMAT) and to apply the Java Newhall simulation model for the MMTP and MMAT predictive values at each node of 1 km2 grids across the Mazandaran province, northern Iran, for delineating the SMR and STR classes. The semivariogram analyses showed moderate to strong spatial dependence of data sets. The accuracy of interpolators varied within months for both MMTP and MMAT data sets. In most cases, OK and Co-K methods had the highest accuracy with lower mean error, root mean square error, and higher concordance correlation coefficient. The predictive maps show high diversity of SMR classes including Aridic, Ustic, Udic, and Xeric. The STR classes comprise Mesic, Thermic, and Cryic regimes. Results herein indicated that geostatistical approaches can potentially provide the opportunity for mapping of SMR and STR classes in data scarce regions.  相似文献   

10.
《Soil & Tillage Research》2007,93(1):126-137
Although reduced tillage itself is beneficial to soil quality and farm economics, the amount of crop residues returned to the soil will likely alter the success of a particular conservation tillage system within a farm operation. We investigated the impact of three cropping systems (a gradient in silage cropping intensity) on selected soil physical, chemical, and biological properties in the Piedmont of North Carolina, USA. Cropping systems were: (1) maize (Zea mays L.) silage/barley (Hordeum vulgare L.) silage (high silage intensity), (2) maize silage/winter cover crop (medium silage intensity), and (3) maize silage/barley grain—summer cover crop/winter cover crop (low silage intensity). There was an inverse relationship between silage intensity and the quantity of surface residue C and N contents. With time, soil bulk density at a depth of 0–3 cm became lower and total and particulate C and N fractions, and stability of macroaggregates became higher with lower silage intensity as a result of greater crop residue returned to soil. Soil bulk density at 0–3 cm depth was initially 0.88 Mg m−3 and increased to 1.08 Mg m−3 at the end of 7 years under high silage intensity. Total organic C at 0–20 cm depth was initially 11.7 g kg−1 and increased to 14.3 g kg−1 at the end of 7 years under low silage intensity. Stability of macroaggregates at 0–3 cm depth at the end of 7 years was 99% under low silage intensity, 96% under medium silage intensity, and 89% under high silage intensity. Soil microbial biomass C at 0–3 cm depth at the end of 7 years was greater with low silage intensity (1910 mg kg−1) than with high silage intensity (1172 mg kg−1). Less intensive silage cropping (i.e., greater quantities of crop residue returned to soil) had a multitude of positive effects on soil properties, even in continuous no-tillage crop production systems. An optimum balance between short-term economic returns and longer-term investments in improved soil quality for more sustainable production can be achieved in no-tillage silage cropping systems.  相似文献   

11.
12.
13.
水分状况对红壤水稻土中有机物料碳分解和分布的影响   总被引:2,自引:0,他引:2  
以室内模拟的方法研究了好气、淹水和干湿交替3种水分条件下有机物料碳在红壤水稻土中分解和分布的差异。试验结果表明,干湿交替条件下有机物料的分解速率最高,好气条件下次之,淹水条件下较低。好气和淹水条件下添加物料促进土壤原有有机碳的矿化,产生正激发效应,而干湿交替条件显著抑制了土壤原有有机碳的矿化,呈负激发效应,随着培养时间的延长激发效应减弱。干湿交替条件下添加有机物料处理的土壤胡敏酸(Humic acid,HA)色调系数和E4/E6比值显著低于淹水和好气条件,淹水培养使土壤胡敏酸的结构简单化,干湿交替使胡敏酸芳构化和腐殖化程度增加,结构复杂化。有机物料碳在土壤腐殖质组分中的分配比例显示,干湿交替和好气条件促进了胡敏酸的形成,提高了土壤原有富里酸(Fulvic acid,FA)组分的转化和胡敏酸组分的分解;淹水条件下物料碳在富里酸组分中分布比例较高,且抑制了土壤原有胡敏酸组分的分解。有机物料碳在0.053 mm粒级团聚体中分布比例较大,干湿交替和淹水条件下更为明显。  相似文献   

14.
The interaction of soil microbes with their physical environment affects their abilities to respire, grow and divide. One of these environmental factors is the amount of moisture in the soil. The work we published almost 25 years ago showed that microbial respiration was linearly related to soil-water content and log-linearly related to water potential. The paper arose out of collaboration between two young researchers from different areas of soil science, physics and microbiology. The project was driven by not only our curiosity but also the freedom to operate without the constraints common to the current system of science management. The citation history shows three peaks, 1989, 1999 and from 2002 to the present day. Interestingly, the annual citation rate is as high as it has ever been. The initial peak is due to the application of the work to studies on microbial processes. The second peak is associated with the rise of simulation modelling and the third with the relevance of the findings to climate change research. In this article, our paper is re-evaluated in the light of subsequent studies that allow the principle of separation of variables to be tested. This re-evaluation lends further credence to the linear relationship proposed between soil respiration and water content. A scaled relationship for respiration and water content is presented. Lastly, further research is suggested and more recent work on the physics of gas transport discussed briefly.  相似文献   

15.
Four insecticides, viz., BHC, phorate, carbofuran, and fenvalerate, were applied at the rate of 7.5, 1.5, 1.0, and 0.35 kg a.i. ha(-)(1), respectively, to investigate their effects on the growth and activities of N(2)-fixing and phosphate-solubilizing microorganisms in relation to the availability of N and P in laterite (Typic Orchragualf) soil. Insecticides in general, and BHC and phorate in particular, stimulated the proliferation of aerobic nonsymbiotic N(2)-fixing bacteria and phosphate-solubilizing microorganisms and also their biochemical activities, such as nonsymbiotic N(2)-fixing and phosphate-solubilizing capacities, which resulted in greater release of available N (NH(4)(+) and NO(3)(-)) and P in soil. All the insecticides were persistent in soil for a short period of time, and the rate of dissipation was highest for fenvalerate followed by phorate, carbofuran, and BHC, depicting the half-lives (T(1/2)) 8.8, 9.7, 16.9, and 20.6 days, respectively. The insecticides followed first-order reaction kinetics during their dissipation in soil.  相似文献   

16.
Farmers are increasingly using zero tillage in Central Argentina to replace other tillage systems. Intensive tillage decreases soil organic matter content and causes physical degradation. The objective of this work was to evaluate changes in some soil biological properties induced by different tillage systems. A 6 year experiment in which continuous maize (Zea mays L.) was grown using three tillage systems (conventional tillage, reduced tillage and zero tillage) was carried out at Córdoba Province, Argentina, on a Typic Argiudoll. Variations in total organic C content, microbial biomass C, metabolic quotient (qCO2) and the proportion of the organic C present in the microbial biomass were evaluated at two sampling depths (0–5 and 5–15 cm). Additional samples from a nearby site (undisturbed grassland) were also taken and considered as a control. Concentrations of soil organic C and microbial biomass C were higher under zero tillage as compared with conventional tillage, at the 0–5 cm soil depth. Differences were not evident among tillage systems at the 5–15 cm soil depth. An analysis of the microbial biomass C content, in relation to the organic C, revealed higher values at the 0–5 cm soil depth only for those systems which provoke less disturbance of the soil (i.e. reduced tillage and zero tillage). Significantly greater amounts of CO2---C were released from zero tillage and reduced tillage soils than from conventionally tilled soils. This release was positively correlated with microbial biomass C. qCO2 values were not significantly different between tillage systems. Zero tillage proved to be more efficient in the conservation of organic C and microbial biomass C. The tillage system's impact on respiration was due to its effect on the microbial biomass.  相似文献   

17.
Imbalanced application of nutrients in the intensively cropped areas results in deterioration of soil fertility. Application of recommended dose of potassium (K) is essential for improving the use efficiency of other nutrients. To assess the buffering capacity of soil, three composite soil samples were collected from the surface soil (0–30?cm) during 2015 from 3 production systems viz., organic, inorganic and integrated which was maintained from 2004 with basmati rice–wheat–Sesbania system under Network Project on Organic Farming at ICAR-Indian Institute of Farming Systems Research, Modipuram. Fractionation of potassium (K) was achieved by sequential extraction of soil samples with distilled water, ammonium acetate and nitric acid in the same order. The relationship between the adsorbed and equilibrium potassium concentration, quantity was determined by plotting Freundlich adsorption isotherms. This was used to determine the buffering capacity and the concentration levels of potassium adsorbed on un-specific sites in the soil. The suitability of the adsorption equation was determined by applying the least square regression analysis. The results revealed that available potassium in the soils ranged from 119.51 to 135.01?mg/kg with 126.02?±?5.24?mg/kg as mean (ammonium acetate method) while water soluble and nitric acid extracted potassium ranged from 28.51 to 29.05?mg/kg and 2594.49?±?19.33?mg/kg (mean) in various production systems. The mean free energy of replacement was found to be ?1998.01?±?28.38?cal/mol indicating that soils have comparatively higher potassium supply under organic system. The potassium buffering capacity of the soils was found to be 0.7462?±?0.16?mg/kg, 0.6295?±?0.20?mg/kg and 0.6774?±?0.09?mg/kg in organic, integrated and inorganic systems, respectively. The amount of potassium adsorbed on un-specific sites of the organic, integrated and inorganic systems was found to be 7.4730?±?1.81, 15.11?±?2.40 and 11.6 89?±?3.58?mg/kg, respectively. It can be concluded that long-term organic production system improves K+ buffering capacity of Typic Ustochrept soil as compare to the integrated as well as inorganic production systems.  相似文献   

18.
Microbial activity is affected by changes in the availability of soil moisture. We examined the relationship between microbial activity and water potential in a silt loam soil during four successive drying and rewetting cycles. Microbial activity was inferred from the rate of CO2 accumulating in a sealed flask containing the soil sample and the CO2 respired was measured using gas chromatography. Thermocouple hygrometry was used to monitor the water potential by burying a thermocouple in the soil sample in the flask. Initial treatment by drying on pressure plates brought samples of the test soil to six different water potentials in the range -0.005 to -1.5MPa. Water potential and soil respiration were simultaneously measured while these six soil samples slowly dried by evaporation and were remoistened four times. The results were consistent with a log-linear relationship between water potential and microbial activity as long as activity was not limited by substrate availability. This relationship appeared to hold for the range of water potentials from ?0.01 to ?8.5 MPa. Even at ?0.01 MPa (wet soil) a decrease in water potential from ?0.01 to ?0.02 MPa caused a 10% decrease in microbial activity. Rewetting the soil caused a large and rapid increase in the respiration rate. There was up to a 40-fold increase in microbial activity for a short period when the change in water potential following rewetting was greater than 5 MPa. Differences in microbial activity between the wetter and drier soil treatments following rewetting to the original water potentials are discussed in terms of the availability of energy substrate.  相似文献   

19.
黑土土壤水分反射光谱特征定量分析与预测   总被引:3,自引:0,他引:3  
选择单一土类黑土作为研究对象, 并准确调配其不同含水量,实验室测定土壤高光谱反射率,利用光谱分析与统计方法,定量描述了不同含水量黑土反射光谱特征,并建立了黑土含水量反射光谱预测模型,结果表明,随土壤含水量的增加,达到一定阈值(300 g kg-1),反射率存在过饱和现象,但其倒数对数微分可以有效去除饱和问题;土壤反射率倒数对数微分对土壤含水量的响应表现出三个变化阶段,导致1 870 nm波段的倒数对数微分也表现为非线性变化,需要利用分段函数进行土壤含水量的光谱精确速测。  相似文献   

20.
A laboratory study at the Indian Agricultural Research Institute, New Delhi showed that DCD was an efficient nitrification inhibitor under field capacity moisture (???30 kPa) but not so under submerged soil conditions. Nitrification inhibition by DCD was 79.6% after 1 week of incubation and decreased to 59.3% after 3 weeks of incubation under field capacity moisture, while it was only 19.3% after 1 week of incubation and 10.6% and 18.4% after 2 and 3 weeks of incubation under submergence, respectively. DCD can play an important role in reducing N losses from agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号