首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
银杏叶提取物具有广泛的药理学作用,银杏提取物的生物活性,如免疫调节、抗肿瘤、改善心血管功能等已有报道。高媛等以S180种鼠建立模型,研究银杏叶多糖对实体瘤、腹水瘤的作用,结果证实(GBLP)可明显抑制实体瘤、腹水瘤的生长,延长荷瘤水鼠的存活时间。陈群等也对银杏叶提取物的抗肿瘤作用进行研究,结果与高嫒等的报道基本一致。  相似文献   

2.
The effect of feeding aflatoxin B1 (AFB1) (0.5 ppm) was studied in young chicks. The frequency and the severity of gross and microscopic lesions of Marek's disease were significantly higher in those birds which had been vaccinated with turkey herpesvirus (HVI) and birds challenged with Marek's disease virus which had been given AFB1 in the feed than in those given normal feed. The protective efficacy of HVT vaccine, as judged on the basis of gross and histopathological lesions, was 86.1 and 77.3 per cent in normally fed birds in comparison to 37.6 and 8 per cent in AFB1 fed birds.  相似文献   

3.
用表达传染性喉气管炎病毒gB基因和新城疫病毒F基因的重组鸡痘病毒(rFPV~gB—F)制备的疫苗免疫4周龄SPF鸡,免疫后的7、14、21、30、60、90、120、150、180d分别采血,分离血清,检测抗FPV和gB的抗体。结果表明重组疫苗免疫后14d,免疫鸡血清抗体已经全部阳转,免疫后的21d血清抗FPV的抗体出现峰值;此后便开始回落,到免疫后的6个月抗体水平已经接近阴性对照的水平。抗gB的抗体在免疫后的第二周达到阳性,之后的六个月都为阳性。在免疫后的每个月将免疫鸡取20只再分成两组。分别用新城疫强毒与传染性喉气管炎强毒的攻击。在免疫后的第一个月对新城疫的保护率为8/10,第2个月对新城疫的保护为7/10,第3个月为2/10,因此对新城疫的免疫保护期为2个月。在免疫后的5个月内可以使免疫鸡对传染性喉气管炎强毒攻击的保护率达到8/10以上,免疫后的6个月对ILT为8/13.因此rF—PV-gB—F对传染性喉气管炎的免疫保护期为5个月。  相似文献   

4.
禽痘病毒感染对禽流感重组禽痘病毒疫苗免疫效力的影响   总被引:1,自引:0,他引:1  
表达禽流感病毒 (AIV)HA和NA基因的重组禽痘病毒rFPV_HA_NA能够诱导鸡体产生 10 0 %抵抗高致病性禽流感病毒 (HPAIV)H5N1的攻击。而当鸡群已进行禽痘疫苗免疫或者感染了禽痘病毒的情况下 ,此重组疫苗的免疫效力如何 ?首先用禽痘病毒S_FPV_0 17人工感染SPF试验鸡 ,既而在感染后的不同间隔时间接种重组疫苗 ,免疫后检测鸡群的HI抗体水平 ,同时用 10 0LD50 的HPAIVH5N1进行攻击。结果重组疫苗免疫与禽痘病毒人工感染时间间隔在 4周 (或以上 )时 ,预先感染禽痘病毒对重组疫苗的免疫效力不构成影响 ,对禽流感的保护力为 10 0 % ,而间隔时间在 1、2、3周时 ,重组疫苗的免疫保护效力则受到不同程度的影响。  相似文献   

5.
Effectiveness of vaccine that used recombinant R7 protein (rR7) as antigen that is derived from second-generation schizont (2GS) of Leucocytozoon caulleryi was verified under a field condition against chicken leucocytozoonosis. Chickens reared in a poultry farm where the chickens are attacked by leucocytozoonosis in every year were inoculated with oil-adjuvanted rR7 vaccine (O-rR7), and the immunized chickens were found to have production of antibodies against 2GS at a high level by one shot. Leucocytozoonosis was observed at post-injection. During the epidemic period of leucocytozoonosis, the unique clinical signs of the disease such as discharge of green feces and anemia, and also parasitemia were observed, however, compared to chickens in control group, those in O-rR7 vaccinated group had significantly slight symptoms (P<0.05). In addition to this, immunized chickens had better result of egg production than the unvaccinated chickens did, and the maximum difference of egg production rate, 22%, was observed at the peak of the disease. In conclusion, it is verified that O-rR7 vaccine has efficacy against leucocytozoonosis under field condition, and this vaccine can be put into practical use.  相似文献   

6.
于魁 《中国家禽》2000,22(1):18-19
将火鸡疱疹病毒(HVT)疫苗接种于鸡胚卵黄囊、然后检查绒毛尿囊膜(CAM)上病毒痘斑(以下简称“痘斑”)生长情况,以此作为HVT疫苗免疫前效力检测的手段,得到满意效果。1材料与方法1.1MD强毒(vMDV)分离自本公司某鸡场严重感染MD鸡的血液,经原北京农业大学鉴定为一株vMDV。历年采购的国产和进口HVT疫苗30批次,分甲、乙、丙3组进行观察。1.2经血清学检查(MD-AGP)并证明无MD抗体的种鸡所产种蛋,按常规方法,孵育到4~5d的鸡胚用于接种;卵黄囊接种已稀释好的HVT疫苗,每份HVT疫苗分1,2…  相似文献   

7.
Efficacy of a bivalent vaccine against Marek's disease   总被引:1,自引:0,他引:1  
A bivalent vaccine was prepared by combining inactivated Marek's disease virus and turkey herpesvirus. The efficacy of this vaccine, compared to turkey herpesvirus and inactivated Marek's disease virus separately, was studied in unsexed White Leghorn chicks which were vaccinated at one day old and then challenged at 21 days old with fowl blood infected with virulent Marek's disease virus. The bivalent vaccine appreciably delayed mortality resulting from Marek's disease and elicited the highest protective efficacy as judged on the basis of Marek's disease-specific mortality and percentage occurrence of lesions. The occurrence, extent and severity of gross lymphomas and microscopic lymphoproliferative lesions in various organs of the bivalent vaccinated birds were less than in the other challenged groups. In addition, the level of viraemia remained consistently and significantly lower in the bivalent vaccinated birds.  相似文献   

8.
将重组鸡痘病毒vFV282疫苗用生理盐水作10^-1,10^-2,10^-3,10^-4系列稀释,分别免疫7天龄鸡,于免疫后21d,分别用NDV、IBDV和FPV攻毒,观察其保护率,结果除NDV攻毒在10^-4组保护率为40%(4/10),其余各组均为100%(10/10)保护。表明该疫苗的最小免疫剂量≤10^-3TCID50/0.02mL。  相似文献   

9.
One-day-old White Leghorn and broiler chicks with maternal antibody to turkey herpesvirus (HVT) were vaccinated with 300 or 1,000 plaque-forming units (PFU) of cell-free or cell-associated HVT vaccine and challenged with virulent Marek's disease virus (MDV) by contact exposure. Broiler chicks receiving 300 PFU of cell-associated HVT had a 3.3% incidence of MD lesions, whereas only 2.0% of those receiving 1,000 PFU had macroscopic lesions. Broiler chicks vaccinated with 300 PFU of cell-free vaccine had 6.8% gross lesions, and 0.67% of the birds receiving 1,000 PFU had MD lesions. Unvaccinated broiler chickens had a 28.3% incidence of MD lesions. Unvaccinated White Leghorn chickens had a 48.9% incidence of macroscopic lesions, whereas 5.4% of the birds receiving 300 PFU of cell-associated HVT had gross lesions, and 8.3% of the birds vaccinated with 1,000 PFU had lesions. In contrast, 6.7% of the chicks vaccinated with 300 PFU of cell-free HVT had MD lesions, and only 4.0% of those receiving 1,000 PFU of cell-free HVT had macroscopic lesions.  相似文献   

10.
Marek's disease vaccine: its implications in biology and medicine   总被引:1,自引:0,他引:1  
  相似文献   

11.
An account is given of the present international position in immunoprophylactic control of Marek's disease. An assessment is made of the method used for immunisation in the GDR. In that context, reference is made to problems for which solutions will have to be found in the long run.  相似文献   

12.
We previously reported that deletion of the Meq gene from the oncogenic rMd5 virus rendered it apathogenic for chickens. Here we examined multiple factors affecting Marek's disease vaccine efficacy of this nonpathogenic recombinant Meq null rMd5 virus (rMd5deltaMeq). These factors included host genetics (MHC haplotype), strain or dose of challenge virus, vaccine challenge intervals, and maternal antibody status of the vaccinated chicks. Studies on host genetics were carried out in five chicken lines comprising four different MHC B-haplotypes. Results showed that chicken lines tested were highly protected, with protective indexes of 100% (B*2/*15), 94% (B*2/*2), 87% (B*19/*19), and 83% (B*21/*21). At a challenge dose above 8000 plaque-forming units, differences in protection were observed between the two highly virulent strains examined (648A and 686). The interval between vaccination and challenge indicated a protective efficacy from 0 to 2 days varied greatly (12%-82%) after challenge with vv+686, the most virulent virus. Less variation and significant protection began at 3 days post vaccination and reached a maximum at 5 days post vaccination with about 80%-100% protection. Taken together, our results indicate that the factors examined in this study are important for vaccine efficacy and need to be considered in comparative evaluations of vaccines.  相似文献   

13.
14.
Two experiments determined the influence of an experimental reovirus-antibody complex vaccine on Mareks disease virus (MDV) vaccine when used in ovo. Designs were the same except that specific-pathogen-free (SPF) broiler eggs were used in Experiment 1 and commercial broiler eggs with maternal antibodies against reovirus were used in Experiment 2. At 18 days of incubation, embryos were separated into four groups and inoculated with either diluent, MDV vaccine, reovirus-antibody complex vaccine, or a combination of reovirus-antibody complex and MDV vaccine. At 5 days of age, half the chickens in each group were challenged with MDV. At 7 wk old, all were euthanatized, weighed, and examined. At 7 days of age, remaining chickens in each group were challenged with reovirus. At 21 days old, chickens were euthanatized and weighed. No vaccine adversely affected hatchability or posthatch mortality in SPF or commercial chickens. There were no significant differences in protection against reovirus challenge when vaccines were used separately or in combination, and lesion scores were nearly identical in all vaccinated groups in both experiments. However, percentage of protection against reovirus was lower in Experiment 2, indicating an adverse effect of maternal immunity on efficacy of the reovirus vaccine. There were no significant differences in protection against MDV when the vaccines were used separately or combined. Severity of MDV lesions was nearly identical in all vaccinated groups in both experiments. However, the combination of vaccines gave numerically lower protection against MDV than MDV vaccine alone. Use of a larger number of birds, as in field conditions, may result in statistically lower protection for the vaccine combination. Large field trials are needed to determine the potential of the reovirus-antibody complex vaccine.  相似文献   

15.
OBJECTIVE: To demonstrate the safety and efficacy of the Marek's Disease Virus-1 vaccine (strain BH 16) from field studies in comparison with the CVI 988 Rispens vaccine currently available in Australia. STUDY DESIGN: A small field trial was carried out on nine breeder flocks and a larger trial on 21 breeder flocks. All chickens were obtained from a commercial hatchery and each was vaccinated at hatch with cell-associated Herpes Virus of Turkeys vaccine. A group of chickens vaccinated with BH 16 vaccine was placed in one shed per property and the remainder were vaccinated with the Rispens vaccine and placed in the remaining sheds. At 25, 30, 35, and 40 weeks after hatch, the field veterinarian or farm manager examined all birds dying on two consecutive days in the designated placement sheds. RESULTS: In the small trial there was a significantly lower incidence of MD in birds vaccinated with the MDV-1 vaccine compared with the Rispens vaccine (P < 0.001). In a larger trial there was no difference in the incidence of MD between the treatment groups, due possibly to a lower rate of natural challenge. Egg production results and average weekly mortality results for both groups were similar. CONCLUSION: The present study describes an attenuated type 1 MD vaccine which is at least equivalent to a vaccine derived from the CVI 988 Rispens strain in terms of safety and efficacy when used in combination with HVT vaccine.  相似文献   

16.
17.
R L Witter 《Avian diseases》1987,31(4):752-765
Attempts were made, through selection of optimum viral strains, to develop improved vaccines against Marek's disease (MD). Seven attenuated serotype 1 strains and 22 avirulent serotype 2 strains, both alone and in combination with the FC126 strain of serotype 3, were screened for protective efficacy against challenge with virulent and very virulent MD viral strains. The three viruses selected as most promising were evaluated alone and in various combinations and compared with commercially available vaccines, including FC126, bivalent (FC126 + SB-1), and CV1988/C, in 12 separate assays. Two of these new viruses--301B/1 (serotype 2) and Md11/75C/R2 (serotype 1)--were exceptionally protective compared with prototype vaccine strains. Four new monovalent and polyvalent vaccines based on these two isolates protected chickens better than FC126 alone or CV1988/C alone. Three of these new vaccines provided better protection than the bivalent (FC126 + SB-1) vaccine. Protective synergism was noted commonly between viruses of serotypes 2 and 3 but only sporadically between serotypes 1 and 2 or between serotypes 1 and 3. Strain CVI988/C was protective but was no better than FC126 alone, and it was less effective than bivalent (FC126 + SB-1) vaccine, even when used as a bivalent vaccine with FC126 or SB-1.  相似文献   

18.
19.
Objective To develop a serotype 1 Marek's disease (MD) vaccine from a very virulent MDV (vvMDV) pathotype and demonstrate safety and efficacy against early challenge with very virulent field strains in the presence of maternal antibody.
Study design Strain BH 16 was isolated and attenuated by serial cell culture passage. One of two cloned passages was selected for vaccine development following early laboratory-scale protection trials in commercial birds. Comparative protection trials were carried out on the BH 16 vaccine and on a CVI 988 Rispens vaccine using commercial and SPF chickens. Challenge viruses used were either a low passage strain BH 16 virus, the Woodlands No. 1 strain or MPF 57 strain of MDV. The BH 16 vaccine was back-passaged in SPF chickens six times and virus recovered from the final passage and the original vaccine virus were tested for safety. The immunosuppressive potential of the BH 16 and Rispens vaccines was also assessed in parallel.
Results The BH 16 and Rispens vaccines induced comparable levels of protection when used as monovalent or multi-valent vaccines, although protection achieved with the mono-valent vaccines was lower. No gross tumour formation was evident in any birds receiving the BH 16 vaccine or bird-passaged virus, although microscopic lesions were present in 2/12 birds that received the bird-passaged virus. In tests for immunosuppression, there was no histological evidence of damage to either the bursa of Fabricius or the thymus.
Conclusion The BH 16 vaccine was shown to be safe and at least as protective as the Rispens vaccine against three highly virulent MD challenge viruses.  相似文献   

20.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号