首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Before natural plant allelochemicals can be exploited as biological pesticides against weeds and for disease control, more than the effect on target organisms needs to be known. This study presents results of aquatic biotests using four organisms, namely, a water flea, a freshwater alga, a soil alga, and a luminescent bacterium. The tested substances were 10 benzoxazinone derivatives, 3 of them known to be wheat allelochemicals, benzoxazolin-2(3H)-one (BOA), 6-methoxybenzoxazolin-2(3H)-one (MBOA), and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (DIMBOA), and 7 identified degradation intermediates and metabolites. For comparison, two commercial pesticide formulations (BAS, Betanal) were tested by applying the same set of biotests. The data set produced could be seen as an ecotoxicological evaluation for effects of allelochemicals against nontarget organisms and as a base for further risk assessment.  相似文献   

2.
The hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and the benzoxazolinones benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA) have been identified as important allelochemicals in wheat. This study examines the possibility of exploiting the allelopathic properties of wheat as a weed control strategy by cultivating wheat as a precrop and incorporating plant residues into the soil before the next crop is sown. Different wheat varieties were cultivated in field plots during two seasons in both conventional and organic farming systems. Plants were sampled at various growth stages, and their contents of DIMBOA, MBOA, and BOA were determined by chemical analyses. The wheat samples were incorporated into soil, and the effect on germination and growth of 12 different weed species was examined in pot experiments under controlled conditions. In some cases significant effects were obtained, but the results were inconsistent and the effects were not correlated to the content of DIMBOA, MBOA, and BOA in the incorporated wheat plants. ED50 doses of the pure compounds were estimated in dose-response experiments in Petri dishes, and these turned out to be much higher than the predicted maximum concentrations of DIMBOA, MBOA, and BOA in the soil water following incorporation. The study shows that a prerequisite for exploiting the incorporation of wheat residues as a weed control strategy is the development of wheat varieties with an increased content of allelochemicals.  相似文献   

3.
4.
Three varieties of winter wheat (Triticum aestivum) were grown in both conventional and organic farming systems. The contents of the benzoxazinone derivatives 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 2-beta-d-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc), 6-methoxybenzoxazolin-2-one (MBOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA), benzoxazolin-2-one (BOA), and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) were analyzed at five growth stages (BBCH 9-10, 12, 21, 31, and 53). Major differences were found between the varieties, with Stakado exhibiting the highest contents. In contrast, only minor and erratic differences were found between the two farming systems, suggesting that the inherent differences in the content of benzoxazinone derivatives of the varieties were not significantly affected by the use of pesticides and synthetic fertilizers. The concentration of benzoxazinone derivatives in the foliage was considerably higher at the early growth stages than later in the growing season, with DIMBOA being the most abundant of the benzoxazinone derivatives. An increase in the concentration was observed in early spring compared to late autumn, suggesting that plants synthesized benzoxazinone derivatives at the commencement of growth in early spring. The concentrations in the roots were considerably lower than in the foliage at the early growth stages but remained relatively constant over time, resulting in a higher concentration than in the foliage at the late growth stages. The results are discussed in relation to previous findings that predominantly originate from experiments done under controlled conditions in either growth cabinets or greenhouses.  相似文献   

5.
Benzoxazinoids are metabolites occurring in a restricted group of plant species including crops such as rye, wheat, and maize. Focus on the analysis of benzoxazinoid metabolites has typically been due to their importance to plant biochemistry and physiology as highly bioactive molecules that plants use as alleochemicals to defend themselves against predators and infections. However, the potential dietary contribution of these compounds has not been addressed. This study conducted a detailed qualitative characterization of benzoxazinoid metabolites present in the whole grain rye and processed fractions of rye bran, and their presence was also detected in whole grain wheat samples. Several novel benzoxazinoid metabolites of the hydroxamic acids (2,4-dihydroxy-1,4-benzoxazin-3-one, DIBOA; 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, DIMBOA), lactams (2-hydroxy-1,4-benzoxazin-3-one, HBOA), and benzoxazolinones (1,3-benzoxazol-2-one, BOA) were identified, including double-hexose derivatives of DIBOA, DIMBOA, and HBOA. This paper presents an important addition to the information on the phytochemical composition of rye and wheat grains, which deserves attention in the discussion of the potential health-promoting effects of these grains.  相似文献   

6.
Benzoxazinones are plant allelochemicals well-known for their phytotoxic activity and for taking part in the defense strategies of Gramineae, Ranunculaceae, and Scrophulariceae plants. These properties, in addition to the recently optimized methodologies for their large-scale isolation and synthesis, have made some derivatives of natural products, 2,4-dihydroxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIBOA) and its 7-methoxy analogue (DIMBOA), successful templates in the search for natural herbicide models. These new chemicals should be part of integrated methodologies for weed control. In ongoing research about the structure-activity relationships of benzoxazinones and the structural requirements for their phytotoxicity enhancement and after characterization of the optimal structural features, a new generation of chemicals with enhanced lipophilicity was developed. They were tested on selected standard target species and weeds in the search for the optimal aqueous solubility-lipophilicity rate for phytotoxicity. This physical parameter is known to be crucial in modern drug and agrochemical design strategies. The new compounds obtained in this way had interesting phytotoxicity profiles, empowering the phytotoxic effect of the starting benzoxazinone template in some cases. Quantitative structure-activity relationships were obtained by bioactivity-molecular parameters correlations. Because optimal lipophilicity values for phytotoxicity vary with the tested plant, these new derivatives constitute a more selective way to take advantage of benzoxazinone phytotoxic capabilities.  相似文献   

7.
酚酸类和萜类是水稻化感作用研究中研究较多、争议较大的2大类化感物质,但目前有关水稻根系分泌物的研究多在实验室条件下进行。本文以国际公认的强化感水稻‘PI312777’和弱化感水稻‘Lemont’为材料,以未种植水稻的土壤为对照,研究了其在田间旱育条件下,不同土壤水分状态(旱地和湿地)时,根际土壤酚酸类和萜类物质的差异。结果表明,不同水分条件下不同化感潜力水稻品种和对照根际土壤中酚酸类物质和萜类物质的组成较为相似,但各物质含量存在一定差异。适度旱胁迫下,各处理根际土壤中所检测到的咖啡酸、对羟基苯甲酸、香草酸、阿魏酸和肉桂酸5种酚酸类物质及总量均有提高,其中强化感水稻‘PI312777’根际土壤中5种酚酸类物质提高最显著,比CK湿地处理提高2.84倍;在各处理根际土壤共检测到的27种萜类物质中,17种是含氧单萜;干旱胁迫导致各处理根际土壤单萜烯、含氧单萜、含氧倍半萜和总萜变化程度和变化趋势不同,单萜烯相对含量在强化感水稻‘PI312777’根际土壤中明显提高,而在弱化感水稻‘Lemont’和对照根际土壤中则降低。本文在此基础上讨论了由此导致2种水稻田间化感抑草效果差异的原因与机制。  相似文献   

8.
9.
Benzoxazinones, such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and benzoxazolinones, such as 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), are biologically active secondary metabolites found in cereals. Because these compounds could be exploited as part of a strategy for reducing the use of synthetic pesticides, ecotoxicological tests were performed recently. In this paper, the transformation of the compounds in the test environment of the ecotoxicological tests was studied. DIMBOA was degraded and partly transformed to MBOA during the period of ecotoxicological testing of the compounds. During testing of MBOA on Poecilus cupreus test media the analysis showed that at the initial concentrations of 2 and 10 mg kg(-1) no MBOA was left after 45 days of testing, but the metabolite 2-amino-phenoxazin-3-one (AMPO) was formed. During testing of BOA on both Folsomia candida and Poecilus cupreus the more biologically active compound 2-amino-phenoxazin-3-one (APO) was formed. Thus, the ecotoxicological test results on MBOA and BOA were partly due to the microbial transformation of the compounds during the time of testing.  相似文献   

10.
Echinochloa crus-galli (E. crus-galli; barnyardgrass) is a weed widely distributed. It constitutes a serious weed problem in 42 countries and has been found in at least 27 more. It is the world's main weed of rice affecting up to 36 crops worldwide. Several biotypes of this plant, with resistance to herbicides with different modes of action have evolved. In our ongoing studies regarding the potential application of benzoxazinones and their soil degradation products for weed control, a complete structure-activity relationships (SARs) study was made by using barnyardgrass as the target plant. Compounds used in this study were previously tested on a wide variety of standard target species (STS), and they include natural allelochemicals 2-O-beta-D-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-Glc), 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA), together with some degradation derivatives found in wheat crop soil and some synthetic analogues. Their phytotoxicity on E. crus-galli is discussed and compared with the results obtained from previous screening. This work constitutes the next step in the search for natural herbicide models based on benzoxazinones and their degradation products. The most active compounds were the degradation product 2-aminophenol (APH) and the synthetic analogue 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA). Their activities confirm the direction proposed in our previous SAR study, which establishes D-DIBOA to be the best lead for natural herbicide model development with benzoxazinone structure.  相似文献   

11.
Analysis by GC-MS/MS showed that a worldwide collection of 58 wheat accessions differed significantly in the amounts of 7 known phenolic acids exuded by the living roots of 17-day-old wheat seedlings. The quantities of exuded allelochemicals varied with the specific compound and ranged from 2.3 to 18.6, from 0.6 to 17.5, from 0.1 to 4.9, from 0.0 to 52.7, from 0.33 to 12.7, from 1.5 to 20.5, and from 1.6 to 23.4 microg/L of water/agar for p-hydroxybenzoic, vanillic, cis-p-coumaric, syringic, cis-ferulic, trans-p-coumaric, and trans-ferulic acids, respectively. The concentrations of p-hydroxybenzoic and vanillic acids exuded by wheat seedlings were normally distributed in the 58 accessions. The level of each phenolic acid in root exudates did not correlate well to that previously observed in wheat. In comparison with weakly allelopathic accessions, strongly allelopathic accessions exuded larger quantities of allelochemicals into the growth medium. The chemical basis for wheat seedling allelopathy is an area for further investigation.  相似文献   

12.
Wheat (Triticum aestivum L.) has been found to possess allelopathic potential and studies have been conduced to apply wheat allelopathy for biological weed control. 2,4-Dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) is a common product found in wheat, corn, and rye exudates and it can be released to the environment by that way. In this report, the stability of DIBOA is studied in two soils from crop lands of wheat cv. Astron and cv. Ritmo. These varieties were selected by their concentrations of DIBOA and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) from aerial parts and by the bioactivities of their aqueous extracts in the growth of wheat coleoptile sections. The degradation rate of DIBOA in these soils was measured in laboratory tests during 90 h by high-pressure liquid chromatography methods. These analyses demonstrate that DIBOA was transformed primarily into 2-benzoxazolinone (BOA). This transformation was similar in both soil types with an average half-life of 43 h. The degradation studies for BOA show its biotransformation to 2-aminophenoxazin-3-one (APO) with a half-life of 2.5 days. Therefore, BOA is an intermediate product in the biotransformation from DIBOA to APO in these wheat crop soils and is consistent with previous findings. APO was not degraded after three months in soil, suggesting that its degradation rate in soil is very slow.  相似文献   

13.
Growing cereals (especially rye), which are incorporated into the soil to increase soil fertility or organic matter content, is a common practice in crop rotation. The additional sanitizing effect of this incorporation has often been appreciated and is said to be due to leaching of benzoxazinones and subsequent formation of benzoxazolinones. In this study wheat (Stakado) and rye (Hacada) sprouts were incorporated into soil in amounts that simulated agricultural practice. By extraction and subsequent LC-MS analysis the disappearance and appearance of benzoxazinones, benzoxazolinones, and phenoxazinones in soil were followed. In the wheat experiments 6-methoxybenzoxazolin-2-one (MBOA) was detected as the main compound. 2-Hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) were detected as well. No phenoxazinones were detected. For the rye experiment the picture was more complex. In the first 2 days of incubation MBOA and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) were detected as the main allelochemicals along with HBOA, HMBOA, and benzoxazolin-2-one (BOA), in decreasing order. Later in the incubation period some 2-amino-3H-phenoxazin-3-one (APO) was detected and the amount of HBOA increased considerably and decreased again. The profiling of the benzoxazinone metabolites and their derivates in soil was dynamic and time-dependent. The highest concentrations of most of the compounds were seen at day 1 after incorporation. A maximum concentration was reached at day 4 for a few of the compounds. This study is the first of its kind that shows the dynamic pattern of biologically active benzoxazinone derivates in soil after incorporation of wheat and rye sprouts. Methods for organic synthesis of HBOA and HMBOA were developed as part of the study.  相似文献   

14.
Benzoxazinones 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA) have been considered key compounds for understanding allelopathic phenomena in Gramineae crop plants such as corn (Zea mays L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.). The degradation processes in the environment observed for these compounds, in which soil microbes are directly involved, could affect potential allelopathic activity of these plants. We present in this work a complete structure-activity relationships study based on the phytotoxic effects observed for DIMBOA, DIBOA, and their main degradation products, in addition to several synthetic analogues of them. Their effects were evaluated on standard target species (STS), which include Triticum aestivum L. (wheat) and Allium cepa L. (onion) as monocots and Lepidium sativum L. (cress), Lactuca sativa L. (lettuce), and Lycopersicon esculentum Will. (tomato) as dicots. This permitted us to elucidate their ecological role and to propose new herbicide models based on their structures. The best phytotoxicity results were shown by the degradation chemical 2-aminophenoxazin-3-one (APO) and several 2-deoxy derivatives of natural benzoxazinones, including 4-acetoxy-(2H)-1,4-benzoxazin-3(4H)-one (ABOA), 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), and 4-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIMBOA). They showed high inhibitory activity over almost all species growth. The fact that APO is a degradation product from DIBOA with high phytotoxicity and stability makes it possible to assign an important ecological role regarding plant defense mechanisms. 2-Deoxy derivatives of natural benzoxazinones display a wide range of activities that allow proposing them as new leads for natural herbicide models with a 1,4-benzoxazine skeleton.  相似文献   

15.
Despite increasing knowledge of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA) as allelochemicals involved in the defense of wheat against pests, relatively little is known about their levels in the rhizosphere and interactions with the soil microbial community. This study quantified DIMBOA and MBOA in the wheat rhizosphere and analyzed the soil microbial community structure. MBOA rather than DIMBAO was found in the wheat rhizosphere, and its concentration varied with cultivars, plant densities, and growth conditions. Wheat could detect the presence of competing weeds and respond by increased MBOA in the rhizosphere. There was a linear positive relationship between the MBOA level in the wheat rhizosphere and soil fungi/bacteria. When DIMBOA was applied to soil, yielding MBOA increased soil fungi. There were different phospholipid fatty acid (PLFA) patterns in soil incubated with DIMBOA and MBOA. These results suggested that DIMBOA and MBOA could affect the soil microbial community structure to their advantage through the change in fungi populations.  相似文献   

16.
Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.  相似文献   

17.
Lolium perenne is a major forage and turf grass, which is often naturally infected with a "wild-type" strain (E(WT)) of the fungal endophyte Neotyphodium lolii , establishing a symbiotic relationship. In this study, the impacts of different strains wild type E(WT), AR1 (E(AR1)) and AR37 (E(AR37)), of N. lolii on the phenolic profile, phenolic content, and antioxidant capacity of L. perenne were examined. Samples could be ranked according to their phenol content as follows: E(AR1) > E(AR37) ≥ E(-) > E(WT). Radical-scavenging assays showed the same relative ranking of extracts. Flavonoid glycosides and hydroxycinnamic acids were the most abundant polyphenols in L. perenne extracts. Chlorogenic acid and its derivatives were the major compounds responsible for the antioxidant activity. Infection with N. lolii significantly influenced L. perenne phenolic content and antioxidant activity. In conclusion, changes in phenolic composition were merely quantitative. Endophyte infection can have zero, positive, or negative effect on phenol content depending on the endophyte strain.  相似文献   

18.
Sulfate conjugation by phenolsulfotransferases (PSTs) is an important process in the detoxification of xenobiotics and endogenous compounds. There are two forms of PSTs for the sulfation of small phenols (PST-P) and monoamines (PST-M). Phenolic acids are known to increase the activities of PST-P and PST-M. The purpose of this study is to investigate the synergistic effect of the combinations of phenolic acids on human PSTs activities. The combinations of p-hydroxybenzoic acid, gentisic acid, ferulic acid, gallic acid, and coumaric acid in a random order for their effects on PSTs activities were evaluated at concentrations of 2.5, 5.0, and 7.5 microM. The PST-M activity was significantly increased when gentisic acid was combined with each of the other phenolic acids. When p-hydroxybenzoic acid was combined with each of the other phenolic acids, a synergistic effect with respect to the promotion of PST-P activity was obtained. A potential synergistic effect for the PST-P activity was also found in the following combination: p-hydroxybenzoic acid + gallic acid + gentisic acid, p-hydroxybenzoic acid + gallic acid + m-coumaric acid, p-hydroxybenzoic acid + o-coumaric acid + p-coumaric acid, p-hydroxybenzoic acid + o-coumaric acid + m-coumaric acid, gallic acid + gentisic acid + p-coumaric acid, and gallic acid + o-coumaric acid + m-coumaric acid. Therefore, the activities of both forms of PSTs can be promoted by all of these combinations of phenolic acids. These results provide a better understanding regarding the effect of phenolic acids on human PSTs activities, as well as more information on the intake of antioxidant phenolic acids for human health.  相似文献   

19.
The capacity of a leonardite humic acid (LHA), a soil humic acid (SHA), and a soil fulvic acid (SFA) in modulating the allelopathic potential of caffeic acid (CA), ferulic acid (FA), and salicylic acid (SA) on seedlings of lettuce (Lactuca sativa L.) and tomato (Lycopersicon esculentum Mill.) was investigated. Lettuce showed a sensitivity greater than that of tomato to CA, FA, and SA phytotoxicity, which was significantly reduced or even suppressed in the presence of SHA or SFA, especially at the highest dose, but not LHA. In general, SFA was slightly more active than SHA, and the efficiency of the action depended on their concentration, the plant species and the organ examined, and the allelochemical. The daily measured residual concentration of CA and FA decreased drastically and that of SA slightly in the presence of germinating seeds of lettuce, which were thus able to absorb and/or enhance the degradation of CA and FA. The adsorption capacity of SHA for the three allelochemicals was small and decreased in the order FA > CA > SA, thus suggesting that adsorption could be a relevant mechanism, but not the only one, involved in the "antiallelopathic" action.  相似文献   

20.
The root mediated allelopathic interference of Eclipta alba infested soil on growth, physiological parameters and antioxidant enzyme activity was conducted on Arachis hypogaea L. and vigna radiata L. It was found that rhizosphere soil significantly reduced the germination percentage, seedling growth and dry biomass depending upon the species sensitivity. The germination inhibition was correlated with membrane deterioration as proved by a strong electrolyte leakage, increase in malondialdehyde (MDA) and H2O2 content. The physiological parameters like chlorophyll content, photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), and transpiration (E) also showed significant reduction in E. alba infested soil and non-significant increase in leaf temperature (Lt) of two test species. The test seedlings have circumvented the allelochemicals stress, by both significant decrease and non-significant increase in the antioxidant activities in E. alba infested soil in contrast to control soil. Rhizosphere soil contained significantly higher amount of water-soluble phenolics as the putative allelochemicals, which were vanillic acid, benzoic acid, ferulic acid, and p-coumaric acid. The study concluded that rhizosphere soil exerts an allelopathic influence on peanut and mung bean by releasing water soluble phenolic acids as putative allelochemicals in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号