首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of different lipases to incorporate omega3 fatty acids, namely, eicosapentaenoic acid (EPA, C20:5n-3), docosapentaenoic acid (DPA, C22:5n-3), and docosahexaenoic acid (DHA, C22:6n-3), into a high-laurate canola oil, known as Laurical 35, was studied. Lipases from Mucor miehei (Lipozyme-IM), Pseudomonas sp. (PS-30), and Candida rugosa (AY-30) catalyzed optimum incorporation of EPA, DPA, and DHA into Laurical 35, respectively. Other lipases used were Candida anatrctica (Novozyme-435) and Aspergillus niger (AP-12). Response surface methodology (RSM) was used to obtain a maximum incorporation of EPA, DPA, and DHA into high-laurate canola oil. The process variables studied were the amount of enzyme (2-6%), reaction temperature (35-55 degrees C), and incubation time (12-36 h). The amount of water added and mole ratio of substrates (oil to n-3 fatty acids) were kept at 2% and 1:3, respectively. The maximum incorporation of EPA (62.2%) into Laurical 35 was predicted at 4.36% of enzyme load and 43.2 degrees C over 23.9 h. Under optimum conditions (5.41% enzyme; 38.7 degrees C; 33.5 h), the incorporation of DPA into high-laurate canola oil was 50.8%. The corresponding maximum incorporation of DHA (34.1%) into Laurical 35 was obtained using 5.25% enzyme, at 43.7 degrees C, over 44.7 h. Thus, the number of double bonds and the chain length of fatty acids had a marked effect on the incorporation omega3 fatty acids into Laurical 35. EPA and DHA were mainly esterified to the sn-1,3 positions of the modified oils, whereas DPA was randomly distributed over the three positions of the triacylglycerol molecules. Meanwhile, lauric acid remained esterified mainly to the sn-1 and sn-3 positions of the modified oils. Enzymatically modified Laurical 35 with EPA, DPA, or DHA had higher conjugated diene (CD) and thiobarbituric acid reactive substance (TBARS) values than their unmodified counterpart. Thus, enzymatically modified oils were more susceptible to oxidation than their unmodified counterparts, when both CD and TBARS values were considered.  相似文献   

2.
Lipase-catalyzed modification of rice bran oil to incorporate capric acid   总被引:4,自引:0,他引:4  
Capric acid (C10:0) was incorporated into rice bran oil with an immobilized lipase from Rhizomucor miehei as the biocatalyst. Effects of incubation time, substrate mole ratio, enzyme load, and water addition on mole percent incorporation of C10:0 were studied. Transesterification was performed in an organic solvent, hexane, and under solvent-free condition. Pancreatic lipase-catalyzed sn-2 positional analysis and tocopherol analysis were performed before and after enzymatic modification. Products were analyzed by gas-liquid chromatography (GLC) for fatty acid composition. After 24 h of incubation in hexane, there was an average of 26.5 +/- 1.8 mol % incorporation of C10:0 into rice bran oil. The solvent-free reaction produced an average of 24.5 +/- 3.7 mol % capric acid. In general, as the enzyme load, substrate mole ratio, and incubation time increased, the mole percent of capric acid incorporation also increased. Time course reaction indicated C10:0 incorporation increased up to 27.0 mol % at 72 h, for the reaction in hexane, and up to 29.6 mol % at 12 h, for the solvent-free reaction. The highest C10:0 incorporations (53.1 and 43.2 mol %) for the mole ratio experiment occurred at a mole ratio of 1:8 for solvent and solvent-free reactions, respectively. The highest C10:0 incorporation (27.9 mol %) for the reaction in hexane occurred at 10% enzyme load, and the highest incorporation (34.4 mol %) for the solvent-free reaction occurred at 20% enzyme load. Incorporation of C10:0 into rice bran oil declined with the addition of increasing amounts of water after reaching 30.3 mol % at 2% water addition in hexane, and in the solvent-free reaction after reaching 35.9 mol %.  相似文献   

3.
Human milk fat (HMF) analogue containing docosahexaenoic acid (DHA) and arachidonic acid (ARA) at sn-1,3 positions and palmitic acid (PA) at sn-2 position was produced. Novozym 435 lipase was used to produce palmitic acid-enriched hazelnut oil (EHO). EHO was then used to produce the final structured lipid (SL) through interesterification reactions using Lipozyme RM IM. Reaction variables for 3 h reactions were temperature, substrate mole ratio, and ARASCO/DHASCO (A:D) ratio. After statistical analysis of DHA, ARA, total PA, and PA content at sn-2 position, a large-scale production was performed at 60 °C, 3:2 A:D ratio, and 1:0.1 substrate mole ratio. For the SL, those results were determined as 57.3 ± 0.4%, 2.7 ± 0.0%, 2.4 ± 0.1%, and 66.1 ± 2.2%, respectively. Tocopherol contents were 84, 19, 85, and 23 μg/g oil for α-, β-, γ-, and δ-tocopherol. Melting range of SL was narrower than that of EHO. Oxidative stability index (OSI) value of SL (0.80 h) was similar to that of EHO (0.88 h). This SL can be used in infant formulas to provide the benefits of ARA and DHA.  相似文献   

4.
Algal oils, namely, arachidonic acid single-cell oil (ARASCO), docosahexaenoic acid single-cell oil (DHASCO), and a single-cell oil rich in both docosahexaenoic acid and docosapentaenoic acid (OMEGA-GOLD oil), were evaluated for their oxidative stability, as such and after stripping of their minor components, in the dark at 60 degrees C and under fluorescent light at 27 degrees C. Several analytical methods were used to assess the oxidative stability of these oils. Oil extracts were also investigated for their scavenging of 1,1-diphenyl-2-picrylhydrazyl radical by a spectrophotometric method and by measuring their total phenolic contents. The results indicated that minor oil constituents play a major role in their oxidative stability in the dark as well as under fluorescent light. The stability of the oils was dictated by their fatty acid composition, total tocopherols, and the type of pigment present. DHASCO contained a significant level of natural radical scavengers and phenolic compounds that contributed to its higher stability compared to the ARASCO and OMEGA-GOLD oils. Thus, the importance of minor components in the stability of the oils examined was demonstrated.  相似文献   

5.
Enzymatic acidolysis of borage oil (BO) or evening primrose oil (EPO) with eicosapentaenoic acid (20:5n-3; EPA) was studied. Of the six lipases that were tested in the initial screening, nonspecific lipase PS-30 from Pseudomonas sp. resulted in the highest incorporation of EPA into both oils. This enzyme was further studied for the influence of enzyme load, temperature, time, type of organic solvent, and mole ratio of substrates. The products from the acidolysis reaction were analyzed by gas chromatography (GC). The highest incorporation of EPA in both oils occurred at 45-55 degrees C and at 150-250 enzyme activity units. One unit of lipase activity was defined as nanomoles of fatty acids (oleic acid equivalents) produced per minute per gram of enzyme. Time course studies indicated that EPA incorporation was increased up to 26.8 and 25.2% (after 24 h) in BO and EPO, respectively. Among the solvents examined, n-hexane served best for the acidolysis of EPA with both oils. The effect of the mole ratio of oil to EPA was studied from 1:1 to 1:3. As the mole ratio of EPA increased, the incorporation increased from 25.2-26.8 to 37.4-39.9% (after 24 h). The highest EPA incorporations of 39.9 and 37.4% in BO and EPO, respectively, occurred at the stoichiometric mole ratio of 1:3 for oil to EPA.  相似文献   

6.
Structured lipid (SL) was prepared from roasted sesame oil and caprylic acid (CA) by Rhizomucor miehei lipase-catalyzed acidolysis in a bench-scale continuous packed bed reactor. Total incorporation and acyl migration of CA in the SL were 42.5 and 3.1 mol %, respectively, and the half-life of the lipase was 19.2 days. The SL displayed different physical and chemical properties, less saturated dark brown color, lower viscosity, lower melting and crystallization temperature ranges, higher melting and crystallization enthalpies, higher smoke point, higher saponification value, and lower iodine value, in comparison to those of unmodified sesame oil. The oxidative stability of purified SL was lower than that of sesame oil. There were no differences in the contents of unsaponifiables including tocopherols and phytosterols. However, total sesame lignans content was decreased in SL due to the loss of sesamol when compared to sesame oil. Most of the 70 volatiles present in roasted sesame oil were removed from SL during short-path distillation of SL. These results indicate that the characteristics of SL are different from those of original sesame oil in several aspects except for the contents of tocopherols and phytosterols.  相似文献   

7.
Structured lipids (SLs) from stearidonic acid (SDA) soybean oil pre-enriched with palmitic acid (PA) at the sn-2 position with Novozym 435 (NSL) or Lipozyme TL IM (LSL) from previous research were further enriched with γ-linolenic acid (GLA) or docosahexaenoic acid (DHA). Small-scale acidolysis reactions with Lipozyme TL IM were performed to determine the optimal reaction conditions as 1:1 substrate mole ratio of NSL or LSL to free DHA at 65 °C for 24 h and a 1:0.5 substrate mole ratio of NSL or LSL to free GLA at 65 °C for 12 h. Optimized SL products were scaled up in a 1 L stir-batch reactor, and the resulting SLs of NSL:DHA (NDHA), LSL:DHA (LDHA), NSL:GLA (NGLA), and LSL:GLA (LGLA) were chemically and physically characterized. The SLs contained >54% PA at the sn-2 position with GLA >8% for the GLA SLs and DHA >10% for the DHA SLs. The oxidative stabilities of the SLs were increased by the addition of 200 ppm TBHQ, with NGLA being more stable due to higher tocopherol content than the other SLs. The melting and crystallization profiles did not differ between the DHA SLs or the GLA SLs. The triacylglycerol (TAG) species were similar for the GLA SLs but differed between the DHA SLs, with tripalmitin being the major TAG species in all SLs.  相似文献   

8.
Stearidonic acid (SDA, C18:4n-3) enriched soybean oil may be added to the diet to increase intake of omega-3 fatty acids (FAs). Human milk fat has ≥60% of palmitic acid (PA), by weight, esterified at the sn-2 position to improve absorption of fat and calcium in infants. Enzymatic interesterification of SDA soybean oil and tripalmitin produced structured lipids (SLs) enriched with PA at the sn-2 position of the triacylglycerol. Reactions were catalyzed by Novozym 435 or Lipozyme TL IM under various conditions of time, temperature, and substrate mole ratio. Response surface methodology was used to design the experiments. Model optimization conditions were predicted to be 1:2 substrate mole ratio at 50 °C for 18 h with 10% (by weight) Lipozyme TL IM resulting in 6.82 ± 1.87% total SDA and 67.19 ± 9.59% PA at sn-2; 1:2 substrate mole ratio at 50 °C for 15.6 h resulting in 8.01 ± 2.41% total SDA and 64.43 ± 13.69% PA at sn-2 with 10% (by weight) Novozym 435 as the biocatalyst. The SLs may be useful as human milk fat analogues for infant formula formulation with health benefits of the omega-3 FAs.  相似文献   

9.
Stearidonic acid soybean oil (SDASO) is a plant source of n-3 polyunsaturated fatty acids (n-3 PUFAs). Solvent-free enzymatic interesterification was used to produce structured lipids (SLs) in a 1 L stir-batch reactor with a 1:2 substrate mole ratio of SDASO to tripalmitin, at 65 °C for 18 h. Two SLs were synthesized using immobilized lipases, Novozym 435 and Lipozyme TL IM. Free fatty acids (FFAs) were removed by short-path distillation. SLs were characterized by analyzing FFA and FA (total and positional) contents, iodine and saponification values, melting and crystallization profiles, tocopherols, and oxidative stability. The SLs contained 8.15 and 8.38% total stearidonic acid and 60.84 and 60.63% palmitic acid at the sn-2 position for Novozym 435 SL and Lipozyme TL IM SL, respectively. The SLs were less oxidatively stable than SDASO due to a decrease in tocopherol content after purification of the SLs. The saponification values of the SLs were slightly higher than that of the SDASO. The melting profiles of the SLs were similar, but crystallization profiles differed. The triacylglycerol (TAG) molecular species of the SLs were similar to each other, with tripalmitin being the major TAG. SDASO's major TAG species comprised stearidonic and oleic acids or stearidonic, α-linolenic, and γ-linolenic acids.  相似文献   

10.
Structured lipids (SLs) containing palmitic, oleic, stearic, and linoleic acids, resembling human milk fat (HMF), were synthesized by enzymatic acidolysis reactions between tripalmitin, hazelnut oil fatty acids, and stearic acid. Commercially immobilized sn-1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as the biocatalyst for the enzymatic acidolysis reactions. The effects of substrate molar ratio, reaction temperature, and reaction time on the incorporation of stearic and oleic acids were investigated. The acidolysis reactions were performed by incubating 1:1.5:0.5, 1:3:0.75, 1:6:1, 1:9:1.25, and 1:12:1.5 substrate molar ratios of tripalmitin/hazelnut oil fatty acids/stearic acid in 3 mL of n-hexane at 55, 60, and 65 degrees C using 10% (total weight of substrates) of Lipozyme RM IM for 3, 6, 12, and 24 h. The fatty acid composition of reaction products was analyzed by gas-liquid chromatography (GLC). The fatty acids at the sn-2 position were identified after pancreatic lipase hydrolysis and GLC analysis. The results showed that the highest C18:1 incorporation (47.1%) and highest C18:1/C16:0 ratio were obtained at 65 degrees C and 24 h of incubation with the highest substrate molar ratio of 1:12:1.5. The highest incorporation of stearic acid was achieved at a 1:3:0.75 substrate molar ratio at 60 degrees C and 24 h. For both oleic and stearic acids, the incorporation level increased with reaction time. The SLs produced in this study have potential use in infant formulas.  相似文献   

11.
In an effort to investigate the effect of positional distribution on oxidative stability of menhaden and seal blubber oils, Novozyme 435 was used as a random biocatalyst. Positional distribution of fatty acids was determined using gas chromatography. As some of the α-tocopherol was lost during randomization, its content was adjusted to the level prior to the process to eliminate this effect on oxidative stability of oils tested. Conjugated dienes (CD) and thiobarbituric acid reactive substances (TBARS) were used as indicators of oxidative stability. The results showed that the polyunsaturated fatty acids were distributed predominantly at terminal positions in randomized menhaden oil, whereas they were distributed more evenly among all positions in enzymatically randomized seal blubber oil, compared to their unrandomized counterparts. Results of CD and TBARS values indicated that randomized menhaden oil was more stable than the original oil, whereas randomized seal blubber oil was more vulnerable to oxidation compared to its counterpart. Changes of oxidative stability after randomization were mainly due to positional redistribution of fatty acids, especially those of the polyunsaturated types.  相似文献   

12.
Structured lipid (SL) was synthesized from extravirgin olive oil (EVOO) and conjugated linoleic acid (CLA) via a lipase-catalyzed reaction. CLA provides a variety of health benefits, but it is not consumed in free fatty acid form. The synthesized SL olive oil contained 42.5 mol % CLA isomers, and the major isomers were cis-9,trans-11-CLA (16.9 mol %) and trans-10,cis-12-CLA (24.2 mol %). The antioxidant activity determined by the radical scavenging capacity with the 2,2-diphenyl-1-picrylhydrazyl radical was lower in SL olive oil than in EVOO. The oxidative stability was also lower in SL olive oil since it had a higher peroxide value, rho-anisidine value, and 2-thiobarbituric acid reactive substances values during 20 days of storage at 60 degrees C. This observation could be due to the reduction in the natural phenolic compounds (97%) and tocopherols (56%), and the incorporated CLA with two conjugated double bonds in the SL olive oil. The oxidative stability of SL olive oil was increased by added rosemary extracts at concentrations of 100, 200, and 300 ppm. The present study suggests that the SL olive oil may be a suitable way to incorporate or deliver CLA into human diets. However, the addition of a proper antioxidant would be required for improving its oxidative stability.  相似文献   

13.
Lipase-catalyzed acidolysis of borage (Borago officinalis L.) and evening primrose (Oenothera biennisL.) oils with long-chain omega3 polyunsaturated fatty acids (PUFA), namely, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, was carried out in hexane, and the products were analyzed using gas chromatography. The most effective lipase for incorporation of omega3 PUFA into these oils was Pseudomonas sp. as compared to lipases from Mucor miehei and Candida antarctica. Response surface methodology was used to obtain a maximum yield of EPA+DHA incorporation while using the minimum amount of enzyme possible. The process variables studied were the amount of enzyme (150-350 units), reaction temperature (30-60 degrees C), and reaction time (6-30 h). All experiments were carried out according to a face-centered cube design. Under optimum conditions, incorporation of EPA+DHA was 35.5% in borage oil and 33. 6% in evening primrose oil. The modified borage and evening primrose oils containing gamma-linolenic acid, EPA, and DHA were successfully produced and may have potential health benefits.  相似文献   

14.
The effects of carnosic acid (CA) of different concentrations (0.05, 0.1, and 0.2 mg/g) and two common antioxidants (butylated hydroxytoluene and α-tocopherol) on oxidative stability in pine nut oil at different accelerated conditions (heating and ultraviolet radiation) were compared. The investigation focused on the increase in peroxide and conjugated diene values, as well as free fatty acid and thiobarbituric acid-reactive substances. The changes in trans fatty acid and aldehyde compound contents were investigated by Fourier transform infrared spectroscopy, while the changes in pinolenic acid content were monitored by gas chromatography-mass spectrometry. The results show that CA was more effective in restraining pine nut oil oxidation under heating, UV-A and UV-B radiation, in which a dose-response relationship was observed. The antioxidant activity of CA was stronger than that of α-tocopherol and butylated hydroxytoluene. Pine nut oil supplemented with 0.2 mg/g CA exhibited favorable antioxidant effects and is preferable for effectively avoiding oxidation.  相似文献   

15.
The neutral lipid of desilked eri silkworm pupae (Samia cynthia ricini) grown on two different host plants, castor (Ricinus communis Linn.) and tapioca (Manihot utilizsima Phol.) leaves, was extracted with hexane. The oil content in pupae was estimated to be in the range of 18-20% (dry basis). The pupal oil was found to be enriched with alpha-linolenic acid (ALA) with palmitic acid as the second major fatty acid. The level of ALA in the oil of silkworm pupae was found to be significantly higher (P < 0.001) when grown on tapioca (58.3%) as compared to those grown on castor (42.9%). Other chemical parameters such as percent free fatty acid, peroxide value, phosphorus content, percent unsaponifiable matter, and composition of sterols were also determined in both of the oils and compared. Reversed-phase high-performance liquid chromatography analysis of triacylglycerol molecular species showed that the pupal oil is rich in molecular species with equivalent carbon numbers (ECN) C36, C40, C42, C44, and C48. There was a significantly higher level (P < 0.001) of trilinolenin (C36) in the oil of tapioca-based silkworm as compared to castor-based silkworm pupae. Regiospecific analysis of the oil showed a higher level of ALA at the sn-2 position of silkworm pupae grown on tapioca (60.2%) as compared to those grown on castor (47.3%) oil. Thus, the presence of a large amount of ALA and their predominance at the sn-2 position make the eri pupal oil highly nutritious, provided that the oxidative stability is ensured.  相似文献   

16.
The fatty acid (FA) and dimethylacetal profiles of the sn-1 and sn-2 positions of different phospholipid (PL) classes from skeletal muscle of rats as affected by dietary FA profiles were studied. Rats were fed either a control diet, an olive oil-enriched diet, or a sunflower oil-enriched diet. The FA composition of both positions of the studied PL classes was affected by diet to different extents. The FA composition of the sn-2 position of phosphatidylserine was the most influenced by diet, while phosphatidylinositol was less affected by dietary modification. The FA profile of phosphatidylcholine reflected consumed FA better than any other studied PL. Thus, olive oil rats showed higher oleic acid (C18:1 n-9) contents in both positions of phosphatidylcholine, and sunflower oil rats had higher proportions of arachidonic acid (C20:4 n-6) in the sn-1 position of this PL class. Dimethylacetals were scarcely affected by diet, and only the dimethylacetal composition of phosphatidylethanolamine showed significant modifications.  相似文献   

17.
Human milk fat substitutes (HMFSs) were synthesized by lipozyme RM IM-catalyzed acidolysis of chemically interesterified palm stearin (mp = 58 °C) with mixed FAs from rapeseed oil, sunflower oil, palm kernel oil, stearic acid, and myristic acid in a solvent-free system. Response surface methodology (RSM) was used to model and optimize the reactions, and the factors chosen were reaction time, temperature, substrate molar ratio, and enzyme load. The optimal conditions generated from the models were as follows: reaction time, 3.4 h; temperature, 57 °C; substrate molar ratio, 14.6 mol/mol; and enzyme load, 10.7 wt % (by the weight of total substrates). Under these conditions, the contents of palmitic acid (PA) and PA at sn-2 position (sn-2 PA) were 29.7 and 62.8%, respectively, and other observed FAs were all within the range of FAs of HMF. The product was evaluated by the cited model, and a high score (85.8) was obtained, which indicated a high degree of similarity of the product to HMF.  相似文献   

18.
Structured lipids (SLs) containing palmitic and oleic acids were synthesized by transesterification of tripalmitin with either oleic acid or methyl oleate as acyl donor. This SL with palmitic acid at the sn-2 position and oleic acid at sn-1,3 positions is similar in structure to human milk fat triacylglycerol. LIP1, an isoform of Candida rugosa lipase (CRL), was used as biocatalyst. The effects of reaction temperature, substrate molar ratio, and time on incorporation of oleic acid were investigated. Reaction time and temperature were set at 6, 12, and 24 h, and 35, 45, and 55 degrees C, respectively. Substrate molar ratio was varied from 1:1 to 1:4. The highest incorporation of oleic acid (37.7%) was at 45 degrees C with methyl oleate as acyl donor. Oleic acid resulted in slightly lesser (26.3%) incorporation. Generally, higher percentage incorporation of oleic acid was observed with methyl oleate (transesterification) than with oleic acid (acidolysis). In both cases percentage incorporation increased with reaction time. Incorporation decreased with increase in temperature above 45 degrees C. Initially, oleic acid incorporation increased with increase in substrate molar ratio up to 1:3. LIP1 was also compared with Lipozyme RM IM as biocatalysts. The tested reaction parameters were selected on the basis of maximum incorporation of C18:1 obtained during optimization of LIP1 reaction conditions. Reaction temperature was maintained at 45, 55, and 65 degrees C. Lipozyme RM IM gave highest oleic acid incorporation (49.4%) at 65 degrees C with methyl oleate as acyl donor. Statistically significant (P < 0.05) differences were observed for both enzymes. SL prepared using Lipozyme RM IM may be more suitable for possible use in human milk fat substitutes.  相似文献   

19.
Lipase-catalyzed acidolysis in hexane to produce structured lipids (SLs) from sesame oil and caprylic acid was optimized by considering both total incorporation (Y1) and acyl migration (Y2). Response surface methodology was applied to model Y1 and Y2, respectively, with three reaction parameters: temperature (X1), reaction time (X2), and substrate molar ratio (X3). Well-fitting models for Y1 and Y2 were established after regression analysis with backward elimination and verified by a chi2 test. All factors investigated positively affected Y1. For Y2, X1 showed the greatest positive effect. However, there was no effect of X3. We predicted the levels of Y2 and acyl incorporation into sn-1,3 positions (Y3) based on Y1. The results showed that over the range of ca. 55 mol % of Y1, Y3 started to decrease, and Y2 increased rapidly, suggesting that Y1 should be kept below ca. 55 mol % to prevent decrease in quality and yield of targeted SLs.  相似文献   

20.
Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candida rugosa lipase isoform 1 (LIP1) and two acyl donors, stearic acid and ethyl stearate, on the incorporation. Lipozyme RM IM and ethyl stearate gave the best result. Gram quantities of SLs were synthesized using lipozyme RM IM, and the products were compared to SL made by chemical catalysis and fat from commercial margarines. After short-path distillation, the products were characterized by GC and RPHPLC-MS to obtain fatty acid and triacylglycerol profiles, 13C NMR spectrometry for regiospecific analysis, X-ray diffraction for crystal forms, and DSC for melting profile. Stearic acid was incorporated into canola oil, mainly at the sn-1,3 positions, for the lipase reaction, and no new trans fatty acids formed. Most SL products did not have adequate solid fat content or beta' crystal forms for tub margarine, although these may be suitable for light margarine formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号