首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探究外施吲哚乙酸(IAA)对棉铃蔗糖代谢及棉铃产量性状的调控机制,以陆地棉(Gossypium hirsutum L.)品系A201为材料,用0.1 mg·L-1 IAA溶液连续处理开花前1d至开花后2d的棉铃,以去离子水处理为对照,研究IAA处理对棉铃胚珠外表皮纤维细胞突起、蔗糖代谢及棉铃产量性状的影响.结果 表明...  相似文献   

2.
A field study was conducted in 2013 and 2014 where cotton was exposed to three N regimes: (1) the control without N application (low N); (2) 260 kg N ha?1 (medium N); (3) 520 kg N ha?1 (high N). Boll size, lint mass per boll, seed mass per boll, fiber length and strength were significantly decreased under N deprivation in the two years. The increased carbohydrate levels of LSCB (leaf subtending the cotton boll) led to decreased carbohydrate levels of fibers in the low N relative to the other N treatments. The low N embryos exhibited lower starch concentrations at 17 and 31 DPA (days post anthesis), and TNC (total nonstructural carbohydrate) concentrations at 17, 31, 45 and 52 DPA compared to medium N embryos. Starch levels in LSCB had negative associations with those in fibers at 17, 31 and 45 DPA, but positive associations with those in embryos at 24 and 45 DPA. Fibers expressed negative associations with embryos in glucose level at 24 and 38 DPA, and in TNC levels at 17 and 45 DPA. The study suggests that carbon assimilate levels in fibers and embryos could explain the difference in boll yield components and fiber quality.  相似文献   

3.
【目的】本研究旨在揭示施氮量调控不同播种期棉铃对位叶光合产物形成与运转的生理机制,以期为棉花的合理氮肥运筹提供理论依据。【方法】试验于2005和2007年在中国农业科学院棉花研究所(河南安阳,黄河流域黄淮棉区)进行,以科棉1号和美棉33B品种为材料,设置大田不同播种期(4月25日和5月25日)和不同施氮量[低氮N 0 kg/hm2(N0)、适氮N 240 kg/hm2(N240)、高氮N 480 kg/hm2(N480)]处理,研究施氮量对不同播种期棉花产量和品质及棉铃对位叶光合产物的影响。【结果】1)4月25日播种条件下,随施氮量的增加棉铃对位叶中蔗糖含量先升高后降低,淀粉含量增加;随播种期的推迟,N240、N480处理下的棉铃对位叶蔗糖和淀粉含量差异不明显,但均显著高于N0处理;花后24~45 d,棉铃对位叶中蔗糖含量与叶氮浓度呈显著正相关,且相关系数随花后天数的增加而降低;花后17~24 d,蔗糖转化量与叶氮浓度呈显著负相关,至花后31~52 d,反而呈显著正相关(P0.01)。表明棉铃对位叶中适宜叶氮浓度有利于碳水化合物的累积。2)4月25日播种条件下,N0、N480处理对棉花单株铃数、铃重和皮棉产量影响为负效应,对纤维长度和麦克隆值影响较小;晚播低温条件下,N480处理的棉花铃重、皮棉产量、纤维比强度均有所提高,麦克隆值得以优化。因此,施氮量与播种期对纤维比强度和麦克隆值的影响存在补偿效应,晚播棉花增加施氮量可减小因低温而造成的纤维比强度降低的幅度,优化麦克隆值。【结论】本试验条件下,播种期(温度)和施氮量对棉铃对位叶光合产物含量、棉花产量和品质存在互作效应,其主导因素是播种期(温度),施氮量对其有补偿效应。随播种期的推迟,施氮量N 240 kg/hm2时棉花单铃重、产量及纤维品质降低的主要原因是晚播低温使棉铃对位叶中的光合产物(蔗糖和淀粉含量)增加,抑制了光合产物向棉铃及纤维的运输。晚播低温条件下,适量追施氮肥可调节棉铃对位叶中的氮浓度并提高光合产物再利用的能力,促进棉花单铃的形成,降低棉纤维比强度的下降幅度,优化麦克隆值。  相似文献   

4.
Farmers normally practice conventional tillage ((CT), disk plowing, cultivator, rotavator, and leveling) in cotton (Gossypium hirsutum L.) with 15 cm intra-row spacing to avoid risks of poor plant stand and obtain higher yield. However, CT is costly besides it has adverse effects on soil and crop when sown after wheat. Conservation tillage [zero tillage (ZT) or reduced tillage (RT)] with suitable spacing can reduce production cost, increase cotton yield and quality, and it has favorable effects on soil properties. Field experiments were conducted to evaluate cotton response to tillage (ZT, RT, and CT) and intra-row spacing (15.0, 22.5, 30.0, 37.5 cm). Results revealed that RT produced higher bolls plant?1, boll weight, seed cotton yield, ginning out turn, fiber length and strength than ZT and CT. Mean boll weight, seed cotton yield, earliness, and fiber qualities were optimum at 22.5 cm spacing. Tillage × spacing interaction showed optimum boll weight, earliness, and fiber strength with 15.0–22.5 cm spacing under RT. CT with 22.5 cm spacing also performed better in terms of boll weight and fiber strength; however, 15.0 cm spacing resulted in earlier maturity. RT with 22.5 cm spacing is an alternative to CT for higher yield, earliness, and quality of cotton besides environmental safety.  相似文献   

5.
覆膜高密度下棉花抗旱性产量和品质指标的特征分析   总被引:2,自引:1,他引:1  
用胁迫敏感指数对覆膜高密度种植模式下的58份棉花资源进行了抗旱性分级评价,分析了抗旱性相关的产量和品质指标的特征,为棉花抗旱资源的筛选和品种选育提供依据.结果表明,其中根据胁迫敏感指数(SI)可将58份棉花资源中定义为抗、中抗和不抗.新陆早36号、山东大桃长绒、武棉2号和93外引31-21的抗旱性强;在正常灌溉条件下,...  相似文献   

6.
ABSTRACT

In order to study the mechanism of thermotolerance of cotton cultivars with different heat tolerance, the response of yield component and photosynthesis to short-term heat stress (HT; average temperature 34°C) was studied. Pot experiments were carried out in 2015 and 2016 by using cotton cultivar PHY370WR (heat tolerant cultivar) and Sumian15 (heat susceptible cultivar). Results showed that heat (34°C) treatment resulted in a significant (p < 0.05) reduction in cotton yield. Path analysis showed that the direct path coefficient (0.89) of boll weight was higher, compared with the boll number (0.46). With high-temperature stress, it was the difference of boll weight reduction contributed the majority to the difference of yield reduction between cultivars, not the difference of boll number reduction. Different decrease in photosynthesis between cultivars leads to the different decline in boll weight. Different thermotolerance between the two cultivars were as follows: the heat tolerant cultivar could maintain higher photosynthesis rate under HT, and it could recover more quickly and highly in photosynthesis than the heat susceptible cultivar. More importantly, the leaf functional period of heat tolerant cultivar was less shortened by HT than that of heat susceptible cultivar.  相似文献   

7.
Wide variations in boron (B) contents are typical of Turkish soils and plants, and most of the variation, 84% of the plant-soil B values are within the “normal.” Boron application on low B soils can make a contribution to yield in cotton and sunflower crops. Field experiments were carried out on clayey and medium-textured soils, which are Chromoxererts, Haploxererts, Xerochrepts, and Xerofluvents in Southern Turkey to study the effects of boron fertilization on irrigated cotton and rainfed sunflower growth, yield, and yield components. Four levels of boron—0, 1, 2, and 3 kg ha?1—were applied at planting and the experimental design was completely randomized block design with four replications. There was a 31% and 31.9% increase in seedcotton yield at 3 kg and 2 kg ha?1 of B, compared to the control only two out of four sites. There was an average increase of 61.4% in boll weight with 2 kg B ha?1 application compared to the control. Effect of different application rates of B was not significant for fiber length, fiber strength, and fiber length uniformity. All levels of boron produced higher head diameters over control only one out of four sites. Boron applied at the level of 3 kg ha?1 produced the highest 1000 seed weight of 47.5 g representing an 18% increase over the control. Boron applied at the level of 1 kg ha?1 produced the highest seed yield, representing a 25% increase over the control only at one out of four sites. Boron was no value as a fertilizer for sunflower under given experimental conditions even though some uptake of boron was occurred. Boron fertilization may be regarded as effective in improving cotton yields.  相似文献   

8.
Zinc (Zn) deficiency is widespread in calcareous soils. Therefore, we conducted a 2-year field experiment to investigate the impact of graded Zn levels on growth, yield, and fiber and oil quality of cotton (Gossypium hirsutum L., cv. CIM-473) grown in a calcareous Aridisol having 0.54 mg diethylenetriaminepentaacetic acid (DTPA)-extractable Zn kg?1 soil. Zinc use increased boll bearing, boll weight, seed index, and seed cotton yield (P ≤ 0.05). Maximum yield increase was 15%, with 7.5 kg Zn ha?1; however, greater Zn levels depressed yield. Leaf chlorophyll, membrane permeability, seed protein, and oil content and quality improved (P ≤ 0.05), and fiber quality remained unaffected with Zn use. Critical Zn concentration in cotton leaves was 36 mg kg?1. Positive relationships of leaf Zn concentration were observed with boll weight, protein content, total unsaturated fatty acids, and fiber characteristics. Thus, Zn fertilization of low-Zn Aridisols is suggested for improving cotton productivity and seed quality.  相似文献   

9.
ABSTRACT

Cotton is critical for phosphorus demands and very sensitive for its deficiency. However, identifying the effect of low-phosphorus tolerance on cotton growth, yield, and fiber quality by reducing phosphorus consumption. This may help to develop phosphorus-tolerant high-yielding cotton cultivars. In a two-year repeated (2015 and 2016) hydroponic experiment (using 0.01 and 1 mM KH2PO4), two cotton cultivars with phosphorus sensitivity (Lu 54; a low-phosphorus sensitive and Yuzaomian 9110; a low-phosphorus tolerant) were screened on the base of agronomic traits and physiological indices through correlation analysis, cluster analysis and principal component analysis from 16 cotton cultivars. Low phosphorus nutrition reduced the plant height, leaf number, leaf area, phosphorus accumulation and biomass in various organs of seedlings. The deficiency negatively affected the morphogenesis of seedlings, as well as yield and fiber quality. Further, these screened cultivars were tested in a pot experiment with 0, 50, 100, 150, 200 kg P2O5 ha?1 during 2016 and 2017. It was found to have a significant (P< 0.05) difference in boll number, lint yield, fiber strength, and micronaire at the harvest. Furthermore, after collectively analyzed the characteristics of Lu 54 and Yuzaomian 9110, there were six key indices that could improve the low phosphorus tolerance of cotton cultivars. These were root phosphorus accumulation, stem phosphorus accumulation percentage, leaf and total biomass of seedlings, seed cotton weight per boll and fiber length.  相似文献   

10.
海岛棉资源自然复合盐胁迫综合评价   总被引:1,自引:0,他引:1  
为筛选适合盐碱地种植的海岛棉品种,本试验以203份海岛棉进行自然复合盐胁迫筛选及评价.结果 表明,株高、始节高、果枝数、蕾铃脱落数、蕾铃脱落率及单铃籽棉产量耐盐系数呈现下降,衣分、铃数、始节数、有效铃数、有效果枝数、单铃皮棉产量、单株籽棉产量及单株皮棉产量耐盐系数略有上升.变异系数表现为单株皮棉、籽棉产量最高.相关分析...  相似文献   

11.
隔沟交替灌溉对棉花耗水、产量和品质的调控效应   总被引:6,自引:0,他引:6  
在甘肃省石羊河流域下游民勤县干旱荒漠绿洲区研究了覆膜条件下隔沟交替灌溉(AFI)和常规沟灌(CFI)对棉花耗水、产量和品质的调控效应.结果表明,现蕾期和花期,AFI处理的棉花日耗水强度小于CFI处理;铃期和吐絮期,AFI处理棉花日耗水强度大于相同灌水定额的CFI处理.相同灌水定额条件下,AFI处理有利于籽棉产量和霜前花产量的提高,灌水定额为375 m3·hm-2和480 m3·hm-2的AFI处理,籽棉产量和WUE显著高于相同灌水定额的CFI处理.相同灌水定额条件下,AFI和CFI处理的衣分无显著性差异.2005年AFI处理的平均纤维长度比CFI处理长2.6mm,灌水定额为225m3·hm-2处理两者差异显著;2006年不同灌水方式下的纤维长度无显著差异,可能与降雨情况有关.在干旱缺水地区覆膜隔沟交替灌溉是一种有效的节水灌溉模式.在棉花品质不降低的情况下,有利于产量和水分利用效率的提高.  相似文献   

12.
以耐热差异明显的海岛棉品种‘新海43号’(XH43)和‘新海49号’(XH49)为材料,于盛花期在田间搭设塑料棚进行为期3d(H3)、6d(H6)和9d(H9)的增温处理,增温结束后立即恢复自然温度,以田间不搭棚的自然温度为对照(CK),研究不同天数高温处理对海岛棉净光合速率、成铃率及不同部位果枝产量和品质的影响。结果表明:(1)高温胁迫降低了XH43和XH49的产量及产量构成因素,其中H6、H9处理均达到显著水平;高温胁迫显著降低了中部果枝的铃数、单铃重、衣分和籽棉产量,但显著增加了上部果枝铃数,促进了上部果枝产量的提高。(2)高温胁迫对XH43和XH49的纤维品质无显著影响,但导致两品种中部果枝棉铃上半部平均长度、整齐度指数和断裂比强度显著降低。而高温胁迫显著提高了上部果枝棉铃的断裂比强度,其中H6、H9处理均达到显著水平,较对照分别增加2.19%~5.12%和4.48%~7.59%。(3)高温胁迫下XH49各部位产量和品质变化幅度均大于XH43,表明高温胁迫对XH49影响更为严重。(4)花铃期短期高温胁迫,导致中部果枝棉铃大量脱落及发育受阻。在生殖生长后期,H6、H9处理后的棉株净光合速率显著高于对照,增温处理增强了棉株后期光合生产能力,进而提高了上部果枝的铃数、产量和断裂比强度。  相似文献   

13.
Growing cotton (Gossypium hirsutum L.) after wheat (Triticum aestivum L.) is an important cropping system in Pakistan. However, numerous tillage practices commonly applied for cotton production are not productive. Conservation tillage may optimize cotton yield and quality if nitrogen (N) is not a limiting factor. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrifluvents) of Dera Ismail Khan, Pakistan to study the impact of tillage techniques (zero (ZT), reduced (RT), and conventional tillage (CT)) and nitrogen, namely 0, 50, 100, 150, and 200 kg ha–1 on cotton yield and quality. Mean values for N revealed that bolls plant–1, boll weight, seed cotton yield, ginning out turn (GOT), fiber length, strength, and micronaire were highest at 150–200 kg N ha–1. Averaged over years, tillage × nitrogen revealed that RT had higher bolls plant–1, boll weight, GOT, fiber length, and strength at 150–200 kg N ha–1 compared to other tillage system. The micronaire revealed that RT had no adverse effect on fiber fineness compared to ZT/CT. RT had accumulated higher soil organic matter and total soil N compared to CT. RT with 150–200 kg N ha–1 may be a sustainable and environmentally safe strategy to enhance cotton yield and quality.  相似文献   

14.
在大田试验条件下,以鲁棉研28号为材料,设置两个施钾量(K2O 100和150 kg/hm2),采用一次性基施,1/2基施、1/2花铃期追施,研究施钾量和施钾时期对棉花(Gossyium hirsutum L.)产量及不同部位棉铃纤维品质性状的影响。结果表明:与不施钾相比,施钾显著提高了籽棉产量和皮棉产量;在施钾量为K2O 150 kg/hm2的条件下,与一次性基施相比,分期施钾极显著提高了籽棉产量和皮棉产量;采用分期施钾时(1/2基施、1/2花铃期追施),随施钾量增加,籽棉产量和皮棉产量均显著增加,单株成铃数的增加是产量提高的主要原因。结果还表明,与不施钾相比,施钾显著提高了中部及上部果枝内围果节的马克隆值,分期施用K2O 150 kg/hm2显著提高了中部果枝外围果节的纤维长度、比强度以及中部果枝内围果节的纤维成熟度;在施钾时期相同的条件下,增加施钾量对纤维长度、比强度无显著影响,在施钾量相同的条件下,与一次性基施相比,分期施钾对纤维比强度无显著影响。  相似文献   

15.
温度对成熟棉纤维超分子结构的影响   总被引:1,自引:0,他引:1  
通过不同时期开花棉铃对成熟棉纤维超分子结构影响的研究,揭示了晚开花棉铃棉纤维强力低的原因:棉铃发育中后期日最低温度较棉铃正常发育所需的最低温度低,受到低温影响的棉纤维结晶度下降。结果还表明:通过栽培措施促进棉铃发育成熟,进而提高纤维强力,并提出了分子生物学的解决途径。  相似文献   

16.
棉铃发育与气候的探讨   总被引:3,自引:0,他引:3  
综合几年对棉铃发育与气候条件的系统研究结果,初步明确了棉铃有关经济性状的具体热量指标:≥15℃活动积温值1500~1500度-日为棉铃正常吐絮的积温指标,棉铃正常吐絮不得少于1100度-日,铃期与铃期内日平均气温呈高度负相关(r=—O.9087)。15℃为棉铃能否正常吐絮的最低临界温度,单铃籽棉率与50日龄内≥18℃的天数及其积温值相关显著,35天和800度-日为单铃籽棉率的最低临界指标,平均气温低于20℃,成熟棉籽不足30%,纤维品质优劣与花期早迟及水、热、光等气候条件密切相关。安阳棉花有效开花的终止期为8月20日,要使棉花优质高产,必须以伏桃为主体,力争早秋桃,尽量减少秋桃在三桃中的比例。  相似文献   

17.
Abstract

Cotton (Gossypium hirsutum L.) is of prime importance because of its quality fiber and edible oil production. Boron (B) is among essential micronutrients for plant growth; it aids in the transfer of sugars and nutrients from leaves to fruit that are involved directly or indirectly in many plant functions. Cotton growth, yield and quality are strongly affected with boron application. A two-year study was conducted to evaluate the impact of foliar applied B (0, 2, 4, 6, 8 and 10?g of B L?1 of water) on the performance of cotton cultivars (FH-113, MNH-786 and CIM-496). The results indicated that growth, yield and quality traits of cotton were significantly influenced by different levels of foliar applied boron as well as cultivars of cotton. Among cotton cultivars, the yield and quality parameters were superior in cultivar “FH-113.” Foliar application of boron at 6?g L?1 of water improved leaf area index and leaf area duration and eventually improved the number of bolls per plant, boll retention percentage, average boll weight, lint yield, ginning out turn, fiber length and uniformity ratio of cotton. Foliar application of B at 6?g per liter of water, showed promising results by improving growth and quality parameters and is recommend to enhance the economical yield production of cotton cultivar “FH-113” with improved quality.  相似文献   

18.
Abstract

A field study has been conducted to evaluate the importance of planting dates on earliness and second crop seed cotton yield in two cotton cultivars (Gossypium hirsutum L.). The experiment was designed as a split-plot with three replications in which planting dates were the main plots and cotton cultivars were subplots. Five planting dates were established at about 15-day intervals from mid-April to mid-June (15 April, 1 May, 15 May, 1 June, and 15 June). Data collected in both years indicated that planting on 15 April increased the seed cotton yield by 15%. 1 June planting resulted in lower yield (28%), micronaire (15%) and strength (10%) compared to 1 May. Short fibre content was 35% higher for the 15 June planting than for 1 May planting. Cultivar responses differed with planting date. The existence of cultivar×planting date interaction on yield highlights the importance of selecting the right cultivar for the specified planting date. An early planting production system for cotton has the potential to increase yield and quality. Planting cotton as a second crop after cereals could also be feasible for the regions which have an expanding textile industry, although yield and quality are not as high as in crops grown at optimum planting date.  相似文献   

19.
This study investigated the effect of nitrogen (N) fertilization on leaf and boll N and carbohydrate concentrations in the development of fiber quality. A two‐year field study was conducted with two cotton (Gossypium hirsutum L.) cultivars, Kemian 1 (average fiber strength 35 cN tex–1) and NuCOTN 33B (average fiber strength 32 cN tex–1) at five (2008) and four (2009) N levels. The relationship between leaf and boll N and carbohydrate concentrations was assessed from measurements of N, carbohydrates, chlorophyll (based on SPAD readings), and free amino acids in the leaf subtending the boll, together with fiber carbohydrates and development of fiber quality. Results indicate that leaf N concentration more accurately reflected boll N status than the concentration of chlorophyll or free amino acids. Leaf sucrose and nonstructural carbohydrate had a quadratic relation with leaf N concentration (p < 1%). The optimal leaf N concentration ranged from 3.0% to 2.4%. During 24–38 d post‐anthesis (DPA), fiber sucrose was positively related to leaf sucrose and nonstructural carbohydrate (p < 5%), but was not correlated with leaf starch or total soluble carbohydrates. Fiber strength was positively correlated with fiber sucrose before 38 DPA, and it appeared to be more easily influenced by the fiber sucrose concentration than fiber length, fineness, or maturity. These results suggest that 24–38 DPA is a crucial period for fiber development which might be significantly influenced by physiological and ecological factors. In addition, sucrose or nonstructural carbohydrates in the subtending leaf could be used as a monitoring index to evaluate sucrose levels in the developing fiber, and also for predicting the final fiber strength.  相似文献   

20.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号