首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
The bean fly (Ophiomya spp) is the most important yield limiting insect pest of common bean in Africa. The insect pest can cause complete crop loss affecting bean production and productivity under epidemic conditions. Effective control of bean fly is essential for sustainable bean production Africa. The overall progress, opportunities and challenges of the bean fly control strategies. The biology and ecology of bean fly and the economic importance of the insect pest is presented as well as the existing controlling strategies, with an emphasis on the breeding on breeding strategies used, research progress achieved challenges and opportunities. In conclusion, significant research progress have been made in breeding for bean fly resistance evident by identification of breeding lines, understanding resistance mechanism and development of breeding strategies. However, there is a need for further research to validate the available information and also explore new breeding methods such molecular breeding which has not been explored at present. Such studies will accelerate breeding for bean fly resistance.  相似文献   

2.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   

3.
ABSTRACT

Bacteria were isolated from the root nodules using common bean as a trap host. Growth and morphological characteristics of the bacterial isolates were described on yeast extract mannitol mineral salts agar and broth media. The results showed that over 67% of the isolates produced extracellular polysaccharide with an entire margin and convex elevation. The others differentiated into cream yellow, cream white and milky white colouration with colony area ranging from 0.8 to 26?mm2. The population levels of bacteria nodulating common bean varied in soils and were not affected by the cropping system. However, selected soil parameters greatly influenced the occurrence and distribution of these bacteria. The isolation of indigenous bacteria in all the soils with different cropping systems is an indication that the soils are favourable for nitrogen fixation. Based on the differences in cultural characteristics of the isolates, our data demonstrate the presence of high diversity of bacteria associated with bean nodules.  相似文献   

4.
The genetic diversity of 10 commercial cultivars of common beans, developed in Northern Argentina was analyzed based on RAPD markers. Sixteen primers were assayed and among them only 4 showed polymorphisms. A similarity matrix was generated by applying three different association coefficients, Simple Matching, Jaccard and Dice. By the UPGMA method dendrograms were generated and also the principal coordinate analysis was performed. The similarity values found were higher than 40% suggesting that genetic diversity is low. Both cluster analysis and principal coordinates analysis associated commercial cultivars either to the Andean or the Mesoamerican gene pool.  相似文献   

5.
 The effects of inoculation with Azospirillum brasilense Cd on root morphology and growth of common bean (Phaseolus vulgaris L.) were studied under different growth systems and water regimes. The root systems were evaluated by image analysis. In a PVC-tube growth system, inoculation with A. brasilense at 107 colony forming units (CFU) ml–1 increased root length, root projection area, specific root length (m g–1) and specific root area (cm2 g–1), as compared with non-inoculated controls, resulting in root systems with longer and thinner roots. Water stress induced similar root responses to those observed after inoculation with A. brasilense. No increase in plant biomass was observed in inoculated plants, suggesting that under the tested growth conditions, a relatively larger amount of resources is required for the maintenance of the thinner roots. In water-stressed potted plants, the effect of A. brasilense on tap root length was inoculum-concentration dependent. At 107 CFU ml–1 this effect was significant as compared to non-inoculated controls. In a pouch system without water stress, inoculation with A. brasilense at a concentration of 105–107 CFU ml–1 2 days after germination resulted initially (2 days after inoculation) in an increase in root length (95%) and root fresh weight (66%), but reduced root diameter (20%), compared to controls. At this early stage of growth the distribution of root length among the different root diameter classes changed: the thinner-root classes had the largest proportion of longer roots. Received: 3 January 2000  相似文献   

6.
The genetic variation and relationships among 31 accessions of Phaseolus vulgaris L., and two representatives of Vigna unguiculata L., were evaluated by AFLP analysis. A total of 263 DNA fragments across all materials were scored using nine primer combinations, averaging 32 per primer. More than 95% of the amplification products showed polymorphism, indicating high variation at the DNA level among these accessions. Pair-wise genetic similarity (Jaccard's coefficient) ranged from 0.553 to 0.840, with a mean of 0.765. Twenty-three accessions (70%) clustered into three groups. A majority of the commercial cultivars (91%) clustered within a single group, whereas the landraces were distributed along all the variation. An apparent correlation with phaseolin types was detected. Results of this study suggest that Brazilian landraces truly represent the overall genetic variability of Phaseolus vulgaris, confirming the multiple origins of these materials, and their potential as a source of variation for breeding programs.  相似文献   

7.
Summary The common bean (Phaseolus vulgaris L.) is generally regarded as a poor N2 fixer. This study assessed the sources of N (fertilizer, soil, and fixed N), N partitioning and mobilization, and soil N balance under field conditions in an indeterminate-type climbing bean (P. vulgaris L. cv. Cipro) at the vegetative, early pod-filling, and physiological maturity stages, using the A-value approach. This involved the application of 10 and 100 kg N ha-1 of 15N-labelled ammonium sulphate to the climbing bean and a reference crop, maize (Zea mays L.). At the late pod-filling stage (75 days after planting) the climbing bean had accumulated 119 kg N ha-1, 84% being derived from fixation, 16% from soil, and only 0.2% from the 15N fertilizer. N2 fixation was generally high at all stages of plant growth, but the maximum fixation (74% of the total N2 fixed) occurred during the interval between early (55 days after planting) and late podfilling. The N2 fixed between 55 and 75 days after planting bas a major source (88%) of the N demand of the developing pod, and only about 11% was contributed from the soil. There was essentially no mobilization of N from the shoots or roots for pod development. The cultivation of common bean cultivars that maintain a high N2-fixing capacity especially during pod filling, satisfying almost all the N needs of the developing pod and thus requiring little or no mobilization of N from the shoots for pod development, may lead to a net positive soil N balance.  相似文献   

8.
A common bean genomic library was constructed using the ‘IAC-UNA’ variety enriched for (CT) and (GT) for microsatellite motifs. From 1,209 sequenced clones, 714 showed microsatellites distributed over 471 simple and 243 compound motifs. GA/CT and GT/CA were the most frequent motifs found among these sequences. A total of 123 microsatellites has been characterized. Out of these, 87 were polymorphic (73.7%), 33 monomorphic (26.8%), and 3 (2.4%) did not amplify at all. In a sample of 20 common bean materials selected from the Agronomic Institute Germplasm Bank, the number of alleles per locus varied 2–9, with an average of 2.82. The polymorphic information content (PIC) of each marker varied from 0.05 to 0.83, with a 0.45 average value. Cluster and principal coordinate analysis of the microsatellite data were consistent with the original assignment of the germplasm accessions into the Andean and Mesoamerican gene pools of common bean. Low polymorphism levels detected could be associated with the domestication process. These microsatellites could be a valuable resource for the bean community because of their use as new markers for genetic studies. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

9.
Several studies suggest that the Fabaceae‐Rhizobium symbiosis is particularly sensitive to iron (Fe) deficiency with respect to NO3‐dependent plants. The aim of this study, which is part of a screening program for common bean tolerance to Fe deficiency, was to study genotypical differences in Fe requirement and Fe use‐efficiency of common bean cultivars depending on symbiotic nitrogen fixation (SNF). Results show that ARA14 produces more whole plant dry matter and particularly more nodule biomass than Coco blanc. ARA14 is characterized by a high capacity of nitrogen fixation and a better Fe use‐efficiency for the growth and the function of the nodules.  相似文献   

10.
Common bean (Phaseolus vulgaris L.) was introduced in Europe from both Mesoamerican and Andean centres of origin. In this study, a collection including 544 accessions from all European regions showed that the Andean phaseolin types ‘T’ (45.6%) and ‘C’ (30.7%) prevailed over the Mesoamerican ones ‘S’ (23.7%), and accessions with cuboid seed shape (34.9%), maroon coat darker colour seed (44.3%), uniform seed colour (69.6%) were the most frequent. European accessions with phaseolin ‘S’ showed a significantly larger average seed size compared to those from America in the same phaseolin class while those presenting ‘T’ and ‘C’ phaseolin did not. This suggests that, during crop expansion in Europe, sampling or selection favoured the large-seeded races within the Mesoamerican ‘S’ gene pool or, possibly, introgression from Andean germplasm did occur. A core collection was developed using sampling approaches based on the information available in the genebank databases and on phaseolin patterns. Four sampling strategies were used: simple random sampling, and three random-stratified samplings, by logarithm of frequency of accessions by country, by European region, and by phaseolin pattern, respectively. Two sampling strategies resulted in core collections significantly different for phaseolin electrophoretic patterns from the whole collection. Stratification by phaseolin patterns increased the frequency of ‘S’ types (‘C’ type = 33%, ‘T’ type = 5.7% and ‘S’ type = 31.3%). The core collections were validated using seven seed characters, and no significant difference was observed in all strategies. This first developed European bean core collection will help to assess the contribution of the two American gene pools to the European germplasm and their relative importance for breeding purposes.  相似文献   

11.
Common bean (Phaseolus vulgaris) is native to the Americas, and Rhizobium etli is the dominant microsymbiont in both the Mesoamerican and the Andean centers of genetic diversification. Wild common beans are not found in Brazil, although the legume has been cropped in the country throughout time and all but one of the rhizobial species that nodulate it (Rhizobium gallicum) have been broadly detected in Brazilian soils. However, the majority of the effective rhizobial strains isolated so far from field-grown plants belong to R. tropici. This study describes the analysis of symbiotic and non-symbiotic genes of 15 effective R. tropici strains, isolated from four geographically distant regions in Brazil. With RFLP-PCR of the 16S and 23S rRNA genes and sequence analysis of 16S rRNA, two clusters were observed, one related to R. tropici type A and another to type B strains. Diversity in ribosomal genes was high, indicating that type A strains might represent a new species. High intraspecies diversity was also observed in the rep-PCR analysis with BOX, ERIC and REP primers. However, in the RFLP-PCR analysis of nifH and nodC genes, all R. tropici showed unique combinations of profiles, which might reflect an evolutionary strategy to maximize N2 fixation.  相似文献   

12.
A total of 242 accessions of common wheat (Triticum aestivum L.) released in China since the 1940s were evaluated with AFLP (amplified fragment length polymorphism) technique. Genetic diversity was analyzed using five pairs of polymorphic primer combinations with 245 polymorphic bands. The highest genetic diversity was found in the accessions of the 1950s, and in the next place was that in the 1940s. The genetic diversity began to descend in the 1960s, and fell to the lowest in the 1970s. After that, the genetic diversity came back to some extent in the 1980s, however, it became much lower in the 1990s compared with that in the 1940–1950s. Landraces and introduced accessions from foreign countries showed greater genetic diversity in comparison to improved varieties. In addition, greater genetic diversity was observed in winter wheat. It was emphasized that great attention should be paid on further exploration of genetic diversity in wheat breeding program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号