首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
景电灌区几种土地利用方式土壤有机碳和养分特征研究   总被引:2,自引:0,他引:2  
对景电灌区土壤次生盐渍化的1年生枸杞地和多年生枸杞地、未盐渍化的小麦地和苜蓿地4种土地利用方式土壤有机碳和养分状况进行对比研究,结果表明:在0~60cm土层,小麦地土壤有机碳含量及其密度、全氮和速效磷含量均最高,苜蓿地均最低;土壤全氮与有机碳含量呈极显著正相关(r=0.791,P0.01);4种利用方式C/N比值均较低,多年生枸杞地C/N比值最高,1年生枸杞地最低;4种利用方式速效钾含量无显著差异;苜蓿地容重显著高于其他3种利用方式,这与其低的有机碳含量密切相关(r=0.420,P0.01)。与小麦地相比,1年生枸杞地土壤有机碳含量及其密度显著降低,全氮和速效磷含量有所降低;与1年生枸杞地相比,多年生枸杞地土壤有机碳含量及其密度有所增加,全氮含量显著降低,速效磷含量显著增加。这意味着该区耕地土壤发生次生盐渍化以后,土壤性状恶化;种植枸杞使次生盐渍化土壤性状有所改善。  相似文献   

2.
Abstract

Leaf analysis is a tool for effective fertilizer recommendations in fruit trees. To achieve this goal, a suitable leaf sampling method is a very important step. This study aimed to investigate suitable leaf position and leaf age to establish standardized leaf sampling method, which can collect representative leaf sample for leaf nutrient analysis in rose apple cultivar Tubtimjan. The experiment consisted of 3 leaf positions (1st, 2nd, and 3rd leaf position) from the growing tip and 1-8?months leaf age. The results indicated that the suitable leaf position to be the index leaves were 2nd and 3rd leaf position with 6–7?months old leaf age due to minimum variation of the leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations. Moreover, the concentrations of N, P, and K tended to decrease, whereas, Ca, Mg, Fe, Cu, Mn, and Zn concentrations tended to increase as leaf age increased.  相似文献   

3.
The objective of this work was to evaluate the C and N stocks and organic‐C fractions in soil under mixed forest stands of Scots pine (Pinus sylvestris L.) and Sessile oak (Quercus petraea [Matt.] Liebl.) of different ages in NE Germany. Treatments consisted of pure pine (age 102 y), and pine (age 90–102 y) mixed with 10‐, 35‐, 106‐, and 124‐y‐old oak trees. After sampling O layers, soils in the mineral layer were taken at two different depths (0–10 and 10–20 cm). Oak admixture did not affect total organic‐C (TOC) and N stocks considering the different layers separately. However, when the sum of TOC stocks in the organic and mineral layers was considered, TOC stocks decreased with increasing in oak age (r2 = 0.58, p < 0.10). The microbial C (CMB) was not directly correlated with increase of oak age, however, it was positively related with presence of oak species. There was an increase in the percentage of the CMB‐to‐TOC ratio with increase of oak‐tree ages. On average, light‐fraction C (CLF) comprised 68% of the soil TOC in upper layer corresponding to the highest C pool in the upper layer. CLF and heavy‐fraction C (CHF) were not directly affected by the admixture of oak trees in both layers. The CHF accounted on average for 30% and 59% of the TOC at 0–10 and 10–20 cm depths, respectively. Despite low clay contents in the studied soils, the differences in the DCB‐extractable Fe and Al affected the concentrations of the CHF and TOC in the 10–20 cm layers (p < 0.05). Admixture of oak in pine stands contributed to reduce topsoil C stocks, probably due to higher soil organic matter turnover promoted by higher quality of oak litter.  相似文献   

4.
 We investigated the soil organic C and N stocks, storage profiles and microbial biomass as influenced by different crop management systems in a tropical agricultural ecosystem. The different crop management systems significantly affected the C and N stocks and microbial biomass C and N at different soil depths. Amongst the systems evaluated, the rice-wheat system maintained a higher soil organic C content. Inclusion of legumes in the system improved the soil organic matter level and also soil microbial biomass activity, vital for the nutrient turnover and long-term productivity of the soil. Irrespective of the cropping system, approximately 58.4%, 25.7% and 15.9% of the C was distributed in 0–15, 15–30 and 30–60 cm depths, respectively. Received: 10 October 1999  相似文献   

5.
不同土壤类型和农业用地方式对土壤微生物量碳的影响   总被引:23,自引:0,他引:23  
通过野外调查与室内分析,研究了山东桓台县3种土壤类型(潮土、褐土和砂姜黑土)与农业用地方式(林地、菜地和粮田)对土壤表层(0—10.cm)微生物量碳的影响。结果表明,不同农业用地方式对微生物量碳的影响较大,3种利用方式的微生物量碳含量差异显著,依次为:粮田>菜地>林地;土壤类型不同,土壤微生物量碳含量也不相同。任何一种土壤,菜地的N、P、K含量都高于粮田和林地;有机质含量粮田>菜地>林地;pH值林地>粮田>菜地。全N、有机质与土壤微生物量碳呈极显著正相关,有效P与微生物量碳呈弱负相关,速效K、pH值和微生物量碳不相关。不同用地方式下土壤养分与微生物量碳的相关程度不同。秸秆还田和施用有机肥有利于提高土壤中微生物量碳水平,施用化肥在一定程度上能够增加微生物量碳。  相似文献   

6.
A field experiment was conducted during the two consecutive kharif seasons of 2011 and 2012 on sandy-loam lateritic soil of Indian subtropics to investigate the impact of integrated nutrient management (INM) on crop productivity, nutrient use efficiency of applied nutrients and soil fertility in restoring sustainability with hybrid rice cultivation. Application of 50% recommended dose of fertilizer (RDF) + 50% recommended dose of nitrogen (RDN) through mustard oil cake (MOC) or 75% RDF + 25% RDN through MOC + biofertilizer recorded significantly higher grain and biomass yields, greater NPK removal and higher partial factor productivity of applied nutrient (PFPN) than those of the crop having 100% RDF, 100% RDN through MOC and 25% RDF + 75% RDN through MOC, which showed very poor performance. The former treatments also improved organic carbon and available NPK contents in soil in spite of greater removal of NPK by the crop. Results of study suggested integrated use of 50% RDF + 50% RDN through MOC or 75% RDF + 25% RDN through MOC + biofertilizer for increasing hybrid rice productivity, PFPN and improving soil fertility for sustainability.  相似文献   

7.
8.
Seasonal wetland (dambo) cultivation in smallholder farming areas is important because it improves household food security. However, most farming practices, such as burning of vegetation and conventional tillage in dambo gardens, may reduce soil organic carbon (SOC) and nutrient dynamics. We evaluated the effects of simulated burning, vegetation clearing and clipping, and conventional tillage in dambo gardens on SOC, nutrient contents and biomass production over a 3-year period. The results showed that clearing and clipping of vegetation and conventional tillage reduced SOC, soil nutrient contents and biomass yields, while burning increased SOC and soil nutrient contents. For the 0–10 cm depth, conventional tillage, clearing and clipping resulted in a 37%, 34% and 18% decrease in SOC, respectively, after three seasons, burning resulted in a 25% increase in SOC, while there were no changes in the control after 3 years. For the 0–40 cm depth, the average change in SOC was 32%, 25% and 16% for conventional tillage, clearing and clipping, respectively. Locally and regionally, conventional tillage, clearing and clipping reduce SOC, nutrient contents and biomass production in dambos. Though annual burning increased SOC and nutrient contents in the short term, the long-term effects are uncertain, hence there is a need for long-term studies.  相似文献   

9.
施肥对棉花养分吸收、分配、利用和产量的影响   总被引:4,自引:4,他引:4       下载免费PDF全文
通过田间膜下滴灌栽培,研究了施肥对棉花养分吸收分配规律、肥料利用率、棉花产量和经济效益的影响。结果表明,与农民习惯施肥(FP)相比,推荐施肥(OPT)处理的养分吸收、生殖器官中分配总量和肥料利用效率有不同程度的提高,其中氮肥和磷肥肥料利用效率分别提高29.5和10.8个百分点,氮肥和磷肥农学利用效率分别提高0.4和0.7 kg·kg~(-1)。且OPT处理增产4.5%,增加农民收入774元·hm~(-2),该地区棉花产量限制因子依次为氮、磷、钾。说明平衡施肥的氮、磷、钾养分投入基本合理。  相似文献   

10.
Land use affect soil C and microbial structure, especially in tropical dry areas. The objective of this study was to evaluate the effects of the land use on physical, chemical, and microbiological attributes of soils from Brazilian semiarid. We analyzed soil physical, chemical, total carbon stocks (TCS), water-soluble carbon (WSC), microbial biomass carbon (MBC) and microbial structure of soil from forest, no irrigation maize, succession areas (Anadenanthera falcate and Tabebuia alba) and secondary shrubby vegetation. The use of soil influences C stock. The forest soil showed higher TCS and MBC. The conversion in T. alba reduced in 9% soil total bacteria. The multivariate analysis showed that TCS, MBC and FAMEs contributed to separation of natural forest and other areas in the superficial layer. This study indicates that the conversion of forest into successional areas can decrease by up to 44% TCS and 68% MBC. The present study provided alarming data concerning the impact of land use on quality of soil in a tropical dry region in Northeastern Brazil. Our results provide an alternative tool for the management of deforested dry areas that could serve as guideline for management plan to sustainability for agricultural impacted dry areas.  相似文献   

11.
Abstract

Soil organic carbon (SOC) and nutrient stocks in the soil profile (0–80 cm) in four dominant land uses [forest, upland maize and millet (Bari), irrigated rice (Khet), and grazed systems)] and 0–15 cm depth along elevation gradient 1000 to 3000 m, and aspects in the Mardi watershed were measured. Soil properties at 0–15 cm depth were also measured in undisturbed forest, forest with free grazed system, managed forest, and grassland to compare the soil quality index (SQI) of topsoils. The SOC and nutrient concentration decreased with increasing profile depth. The SOC and N contents in the 0–15 cm depth of forest soils were significantly greater than the corresponding depth in upland maize and millet, irrigated rice, and grazed systems. On the other hand, available P and K concentrations at the same depth were significantly greater in upland maize and millet compared to irrigated rice, grazed system, and forest land uses. The SOC and N stocks (0–15 cm) increased from agricultural land at the valley bottom at about 1000 m above mean sea level (a.s.l.) (24 and 3 Mg ha?1) compared to undisturbed forest (74 and 5.9 Mg ha?1) at 2600 m a.s.l, demonstrating the effects of cover and elevation. Both SOC and N stocks decreased sharply in grassland (54 and 4.5 Mg ha?1) at elevations of 2600 to 2800 m a.s.l. compared with undisturbed forest. Above 2800 m a.s.l. the cover type changed from grass to coniferous forest, and the SOC and N stocks steadily increased at the summit level (3200 m a.s.l.) to 65 and 6.9 Mg ha?1, respectively. Slope and aspect significantly affected SOC with the northwest aspect having significantly higher concentrations (46 g kg?1) than other aspects. Similarly, SOC concentration at the lowest slope position (39 g kg?1) was significantly higher than the middle or upper positions (25 and 13 g kg?1). Integrated soil quality index (SQI) values varied from 0.17 to 0.69 for different land uses, being highest for undisturbed forest and lowest for irrigated rice. The SQI demonstrated the degradation status of land uses in the following ascending order: irrigated rice?>?grazed system?>?forest with free grazing?>?upland maize and millet?>?managed forest?>?grass land?>?undisturbed forest. The irrigated rice, grazed system, upland maize and millet, and freely grazed forestlands need immediate attention to minimize further deterioration of soil quality in these land uses.  相似文献   

12.
不同模拟雨量下微集水种植对农田水肥利用效率的影响   总被引:8,自引:4,他引:4  
为了探索微集水种植的增产机理及其适宜的雨量范围,通过大田模拟降雨试验,在2006-2007年研究了作物生长期间不同降雨量下微集水种植玉米对农田水肥利用效率的影响。结果表明,在230~440 mm雨量下,微集水种植玉米可提高其籽粒产量及水肥利用效率,2006年籽粒产量、农田水分利用效率(WUE)以及氮、磷和钾养分利用效率(NUEN、NUEP和NUEK)在230 mm雨量下较对照分别提高了75.4%、73.3%、56.0%、44.4%和106.8%,340 mm雨量下分别提高了36.7%、40.2%、22.8%、18.1%和35.5%,440 mm雨量下与平作相比差异不明显;2007年籽粒产量、WUE、NUEN、NUEP和NUEK在230 mm雨量下较对照分别提高了82.8%、77.4%、64.0%、52.2%和123.9%,340 mm雨量下分别提高了43.4%、43.1%、30.4%、21.8%和41.2%;440 mm雨量下籽粒产量、WUE和NUEN分别提高了11.2%、9.5%和10.1%。由此可知,在玉米全生育期降雨量230~440 mm范围内,通过微集水种植可以增加籽粒产量,提高农田水肥利用效率,尤其在雨量较低时,提高水肥利用效率及增产效果尤为明显。  相似文献   

13.
To evaluate the effects of different irrigation and nutrient concentration strategy on growth, yield, water use efficiency (WUE), fruit quality and substrate salt accumulation, tomatoes were grown with five different levels of water (W: 50%, 75%, 100%, 125% and 150%) and nutrient concentrations (N: 0.5, 0.75, 1.0, 1.5 and 2.0 times of Hoagland strength(X)). Fruit quality index was determined by normalization of fruit quality parameters. Deficit irrigation at standard concentration of nutrients reduced yields by 17.43% and 15.52% for T7 (W75%-N1.0x) and 49.54%–51.99% for T8 (W50%-N1.0x) during spring-summer (SS) and fall-winter (FW) seasons, respectively. Contents of total soluble solids (TSS), titrable acidity (TA) and sugar acid ratio (SAR) were all increased in water-deficit treatments. T8 was found to be highest in TSS, TA and SAR except SAR in FW. Over-irrigation with excessive and standard Hoagland nutrient concentration caused non-significant reduction in yield except T6 (W125%-N1.0x) in SS. T2 (W100%-N2.0x) and T4 (W100%-N1.5x) caused more substrate salt accumulation which resulted in significant decrease in yield and WUE. Through economic analysis, over-watering along with excessive nutrients caused profit reductions. Considering water saving, yield and fruit quality through economic analysis, T7 found to be optimal strategy.  相似文献   

14.
Balanced plant nutrition is essential to achieve high yields of canola (Brassica napus L.) and get the best economic return from applied fertilizers. A field study was conducted at nine site‐years across eastern Canada to investigate the effects of nitrogen (N), sulfur (S) and boron (B) fertilization on canola nutrient uptake, nutrient balance, and their relationship to canola yields. The factorial experiment consisted of four N rates of 0 (N0), 50 (N50), 100 (N100), and 150 (N150) kg ha?1, two S rates of 0 (S0) and 20 (S20) kg ha?1, and three B treatments of 0 (B0), 2 kg ha?1 at preplant (B2.0P), and 0.5 kg B ha?1 foliar‐applied at early flowering stage (B0.5F). Each site‐year used the same experimental design and assigned treatments in a randomized complete block design with four replications. Fertilizer S application greatly improved seed yields at six out of nine site‐years, and the highest N use efficiency was in the N150+S20 treatment. Sulfur application generally increased seed S concentration, seed S removal, and plant total S uptake, while B fertilization mainly elevated straw B concentration and content, with minimal effect on seed yields. At the early flowering stage, plant tissue S ranged from 2.2 to 6.6 mg S g?1, but the N : S ratio was over or close to the critical value of 12 in the N150+S0 combination at five site‐years. On average across nine site‐years, canola reached a plateau yield of 3580 kg ha?1 when plants contained 197 kg N ha?1, 33 kg S ha?1 and 200 g B ha?1, with a seed B content of 60 g B ha?1. The critical N, S, and B values identified in this work and their potential for a posteriori nutrient diagnosis of canola should be useful to validate fertilizer requirements for canola production in eastern Canada.  相似文献   

15.
通过野外调查采样和室内氯仿熏蒸提取法分析,研究了辽宁省旱地、稻田、湿地、草地、森林、果园6种不同土地利用方式共计35个样地表层土壤(0~10 cm、10~20 cm、20~30 cm)对土壤微生物量碳(SMBC)和土壤微生物量氮(SMBN)的影响。结果表明,土地利用方式对土壤微生物量有显著影响,其中土壤微生物量碳依次为森林〉湿地〉稻田〉旱地〉果园〉草地;土壤微生物量氮则为森林〉旱地〉稻田〉果园〉湿地〉草地。土壤微生物量碳氮均表现为森林显著高于其他土地利用方式,湿地、稻田、旱地、果园高于草地。除旱地和稻田,土壤微生物量碳随土层加深含量递减;而土壤微生物量氮在6种土地利用类型中,均表现为随土层加深含量递减。相关分析表明,土壤微生物量碳、氮之间显著相关,土壤微生物量碳、氮是可以表征土壤肥力的敏感因子。  相似文献   

16.
Termite(Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration of nutrients and the biochemical activity of abandoned soil and mounds colonized by termites of the genera Macrotermes located in the Borana District, Ethiopia. To elucidate the magnitude and persistence of the termite-induced effects, we also studied an abandoned mound, previously colonized by termites of the same genera formed on the same soil. Results confirmed that termite-colonized mounds are ‘hot spots' of nutrient concentration and microbial activity in tropical soils. This is due to the termite driven litter input and decomposition. The abandoned mounds showed higher microbial biomass and activity and displayed a nutrient redistribution and a greater microbial activity than the adjacent soils. These findings allowed us to hypothesize a model of nutrient cycling in colonized soils and a partition of the relative roles of termites and soil microorganisms in nutrient location and turnover in tropical soils. These results may be also useful for the optimal management of termite-colonized soils.  相似文献   

17.
Cassava is an important subsidiary food in the tropics. In Tamil Nadu, India, microbial cultures were used to eradicate the tuberous root rot of cassava. Hence, an experiment was conducted for two consecutive years to test the effects of coinoculation of microbes on soil properties. The surface soil from the experimental site was analysed for soil available nutrients, soil enzyme activities and microbial biomass carbon. The treatment of Azospirillum with Trichoderma at the 50% recommended N:P2O5:K2O (NPK) rate (50:25:50 kg ha?1) significantly increased soil available nitrogen (142.81 kg ha?1) by 72.66% over uninoculated control. There was a significant increase in available phosphorus in soil by the inoculation of AM (arbuscular mycorrhizal) fungi with Trichoderma at the 50% recommended NPK rate (41.04 kg ha?1) compared to other treatments. The application of Pseudomonas fluorescens with Trichoderma at the 50% recommended NPK rate significantly increased available iron (19.34 µg g?1) in soil. The treatment of Azospirillum with Trichoderma increased urease enzyme activity at the recommended NPK rate (816.32 μg urea hydrolyzed g?1 soil h?1). Soil application of all cultures at the 50% recommended NPK rate significantly increased dehydrogenase activity (88.63 μg TPF g?1 soil) and β-glucosidase activity (48.82 μg PNP g?1 soil) in soil. Inoculation of Trichoderma alone at the 50% recommended NPK rate significantly increased microbial biomass carbon (3748.85 μg g?1 soil). Thus, the microbial inoculations significantly increased soil available nutrient contents, enzyme activities such as urease, dehydrogenase and β-glucosidase activity and microbial biomass carbon by reducing the amount of the required fertilizer.  相似文献   

18.
Greenhouse pot experiments using four tropical soils were conducted to measure the effect of crop residues on nitrogen mineralization/immobilization and the growth of maize plants under two soil moisture regimes (pF2.5 and pF3.5). Nitrogen-rich residues of pigeon pea [PP, Cajanus cajan (L.) Millps, C/N, 18.8] enhanced plant growth and increased the assimilation of mineral elements (N, P and K) at both moisture regimes. Less nitrogen-rich residues of haricot beans [HB, Phaseolus vulgaris (L.), C/N, 28.9] had a slightly negative effect on plant growth and the assimilation of mineral elements, and a stronger negative effect was recorded for the most N-poor plant residue, maize [M, Zea mays (L.), C/N, 33.6]. For PP, we estimated the recovery of residue-nutrients in maize plants (net increase in N, P and K assimilation due to PP incorporation) as 19% for N, 88% for P and 86% for K in the high-moisture regime (pF2.5). The equivalent values for the drought-stress regime (pF3.5) were 10, 34 and 38%, respectively. The results demonstrate the immediate enhancement of plant growth by plant residues with a low C/N ratio, even under drought-stress conditions.  相似文献   

19.
Soil organic‐carbon (SOC) stocks are expected to increase after conversion of cropland into grassland. Two adjacent cropland and grassland sites—one with a Vertisol with 23 y after conversion and one with an Arenosol 29 y after conversion—were sampled down to 60 cm depth. Concentrations of SOC and total nitrogen (Ntot) were measured before and after density fractionation in two light fractions and a mineral‐associated fraction with C adsorbed on mineral surfaces. For the soil profiles, SOC stocks and radiocarbon (14C) concentrations of mineral associated C were determined. Carbon stocks and mineral‐associated SOC concentrations were increased in the upper 10 cm of the grassland soil compared to the cropland. This corresponded to the root‐biomass distribution, with 59% and 86% of the total root biomass at 0–5 cm soil depth of the grasslands. However, at the Arenosol site, at 10–20 cm depth, C in the mineral‐associated fraction was lost 29 y after the conversion into grassland. Over all, SOC stocks were not significantly different between grassland and cropland at both sites when the whole profile was taken into account. At the Arenosol site, the impact of land‐use conversion on SOC accumulation was limited by low total clay surface area available for C stabilization. Subsoil C (30–50 cm) at cropland of the Vertisol site comprised 32% of the total SOC stocks with high 14C concentrations below the plowing horizon. We concluded that fresh C was effectively translocated into the subsoil. Thus, subsoil C has to be taken into account when land‐use change effects on SOC are assessed.  相似文献   

20.
Abstract. Physical, chemical and environmental consequences of land use change from cultivated land to desert grassland and vice-versa were monitored in the middle reaches of the Heihe River basin, which is one of the largest inland basins of arid northwest China. Levels of N and P in soils and surface waters and soil organic carbon were measured. After the first 3–5 years of cultivation the N and P contents of various former grassland soils, including mountain-meadow and plains-meadow grasslands, decreased significantly. After some 13 years of cultivation, soil nutrient content in former mountain meadow grasslands gradually stabilized, whereas those of desertified grassland, where cultivation had simply been abandoned, showed a notable decrease. Under these latter conditions, soil N and P were lost at a rate of 276 kg ha−1 and 360 kg ha−1, respectively, over the 13-year period. The transformation of grassland into cultivated land and that of cultivated land into desert grassland resulted in organic carbon emissions of 1.68 Tg C and 0.55 Tg C, respectively, over 13 years. Land use changes in the arid inland region clearly have a significant influence on the soil organic carbon pool and carbon cycle. Falls in soil N and P led to 63% and 34% mean enrichment of N and P, respectively, in downstream waters, thus posing a future environmental problem for the arid region of northwest China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号