首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Many vegetable growers in Japan practice a unique waterlogged cultivation method with ample nitrogen (N) supply and microbial supplements, reporting vigorous plant growth, no soilborne diseases, and high yields. We simulated waterlogged soil conditions in greenhouse experiments to examine effects of soil pH and redox potential (Eh) as well as microbial influence on the growth of tomato seedlings. Soil pasteurization enhanced seedling growth whether the acidic, volcanic soil was waterlogged or well-drained. Among various antimicrobials, only soil treatment with polymyxin B improved shoot growth in nonpasteurized soil. The seedlings grew best in pasteurized acidic, waterlogged soil fertilized with ample potassium nitrate (KNO3), which maintained soil Eh above zero. In nonpasteurized soil, growth was severely stunted by raising soil pH progressively to 8.5 while Eh dropped to –194?mV. The results suggested that heat-sensitive Gram-negative soil bacteria and low soil Eh were key factors limiting the growth potential of tomato plants in waterlogged soils.  相似文献   

2.
蔡祖聪 《土壤学报》2003,40(2):239-245
用15N分别标记尿素和KNO3,研究了淹水条件下 ,黄泥土和红壤性水稻土的无机氮转化过程及尿素和KNO3对氮素转化过程的影响。结果表明 ,淹水条件下 ,土壤中存在15NH 4 的成对硝化和反硝化过程。红壤性水稻土15NH 4 硝化只检测到15NO- 2 ,但有反硝化产物15N2 生成 ,因此 ,很可能存在着好气反硝化过程。15NO- 3浓度的下降符合一级反应方程 ,黄泥土的速率常数几乎是红壤性水稻土的 1 0倍。反硝化过程和DNRA过程共同参与15NO- 3的还原。加入尿素提高土壤pH ,增加黄泥土DNRA过程对反硝化过程的基质竞争能力 ,但反硝化过程仍占绝对优势。加入尿素或KNO3改变土壤pH是导致对无机氮转化影响有所不同的主要原因 ,浓度的作用较为次要。  相似文献   

3.
Fertilization with nitrogen (N) or phosphorus (P) can improve plant growth in saline soils. This study was undertaken to determine wheat (Triticum aestivum L; cv Krichauff) response to the combined application of N and P fertilizers in the sandy loam under saline conditions. Salinity was induced using sodium (Na+) and calcium (Ca2+) salts to achieve four levels of electrical conductivity in the extract of the saturated soil paste (ECe), 2.2, 6.7, 9.2 and 11.8?dS?m?1, while maintaining a low sodium adsorption ratio (SAR; ≤1). Nitrogen was applied as Ca(NO3)2?·?4H2O at 50 (N50), 100 (N100) and 200 (N200)?mg?N?kg?1 soil. Phosphorus was applied at 0 (P0), 30 (P30) and 60 (P60)?mg?kg?1?soil in the form of KH2PO4. Results showed that increasing soil salinity had no effect on shoot N or P concentrations, but increased shoot Na+ and chlorine ion (Cl?) concentrations and reduced dry weights of shoot and root in all treatments of N and P. At each salinity and P level, increasing application of N reduced dry weight of shoot. At each salinity and N level P fertilization increased dry weights of shoot and root and shoot P concentration. Addition of greater than N50 contributed to the soil salinity limiting plant growth, but increasing P addition up to 60?mg?P?kg?1 soil reduced Cl? absorption and enhanced the plant salt tolerance and thus plant growth. The positive effect of the combined addition of N and P on wheat growth in the saline sandy loam is noticeable, but only to a certain level of soil salinity beyond which salinity effect is dominant.  相似文献   

4.
In this work, selective chemical sensors of phosphorus (PO4 3?) installed in PVC probes and their associated instrumentation were evaluated in soil solution phosphorous monitoring. The evaluation was carried out with the addition of a 0.1 mol L?1 P‐PO4 3? solution in the soil, followed by data acquisition supplied by the probes; by collecting soil samples in the region where the probes were installed; and by phosphorus determination through conventional laboratory techniques. The phosphorus amounts were determined by spectrophotometry after the following extraction methodologies: Mehlich 1, Mehlich 3, and ionic exchange resin. The results, compared with the potentials registered by the probes, express the best correlation with the results obtained with the resin method. The results indicate good response of the sensors and the potential applicability of these probes to assist in the monitoring of soil nutrients, helping to establish rational processes in the use of fertilizers in crops.  相似文献   

5.
为研究秸秆生物炭输入对冻融期黑土表层无机氮磷垂直迁移的影响,采用室内模拟冻融循环试验,设置冻融与不冻融、冻融循环次数和生物炭施加量3个影响因素,分析冻融作用下不同秸秆生物炭输入量土壤表层无机氮磷垂直迁移特征。结果表明:(1)冻融与不冻融、冻融循环次数及生物炭施加量对黑土表层NO3-—N、NH4+—N和PO43-—P垂直迁移液总体积、迁移液总浓度及迁移总量均有极显著影响。(2)淋溶时间随冻融作用增强而缩短,随生物炭施加量增加而延长。所有处理迁移液总体积均随生物炭输入量的增加呈降低趋势。未冻融组迁移液总体积随培养期增加呈现缓慢下降趋势,冻融组处理迁移液总体积在第5次冻融循环试验出现急剧增加,而后趋于平稳。(3)分析冻融作用下秸秆生物炭施入对无机氮磷垂直迁移累积影响,同一控制时间内生物炭对冻融组无机氮磷垂直迁移量的抑制作用大于不冻融组,且随生物炭施入量增加对无机氮磷垂直迁移的抑制作用增强。由于土壤物理性质的改变,冻融组NO3-—N、NH4+—N和PO43-—P累积迁移量均在第5次冻融循环左右发生急剧变化。综上可知,生物炭在冻融期可以有效的固持养分,研究结果可为寒冷地区解冻期面源污染防治提供一定的理论支持。  相似文献   

6.
The development of shrub willow as a bioenergy feedstock contributes to renewable energy portfolios in many countries with temperate climates and marginal croplands. As willow is developed commercially in the US Northeast, there is a need to better understand its impact on water quality and greenhouse gas (GHG) emissions compared to alternative land uses (e.g., corn, hay). We measured the impact of cultivated willow of various ages (2 and 5 years) and management strategies (fertilized vs. unfertilized) compared to corn and hay on water table depth, soil water NO3 ? and PO4 3? concentrations, and N2O, CH4, and CO2 fluxes at the soil-atmosphere interface during a drier than normal year in heavy clay soils with marginal agricultural value in upstate New York, USA. Soil water concentrations resulted in higher PO4 3? in willow and higher NO3 ? in corn and hay, although willow is unlikely to negatively impact water quality with respect to phosphorus due to shorter periods of hydrologic connectivity in willow and hay than in corn. Gas fluxes varied spatially and temporally with hot moments of CH4 and N2O in corn and hay and seasonally variable CO2 in willow. While CH4 did not vary between fields, N2O was higher in corn and hay, and CO2 in willow, resulting in no net difference between CO2 equivalent (CH4, CO2, and N2O) emissions between fields. Converting marginal cropland on clay soils from corn or hay to willow left overall GHG emissions unaffected, slightly increased PO4 3?, and decreased NO3 ? concentrations in soil water.  相似文献   

7.
Corn requires high nitrogen (N) fertilizer use, but no soil N test for fertilizer N requirement is yet available in Quebec. Objectives of this research were (1) to determine the effects of soil nitrate (NO3 ?)-N, soil ammonium (NH4 +)-N, and N fertilizer rates on corn yields and (2) to determine soil sampling times and depths most highly correlated with yields and fertilizer N response under Quebec conditions. Soil samples were taken from 0- to 30-cm and 30- to 60-cm depths at seeding and postseeding (when corn height reached 20 cm) to determine soil NH4 + and NO3 ? in 44 continuous corn sites fertilized with four rates of N in two replications using a quick test (N-Trak) and a laboratory method. The N-Trak method overestimated soil NO3 ?-N in comparison with the laboratory method. Greater coefficients of determination were observed for soil NO3 ?-N analyses at postseeding compared with seeding.  相似文献   

8.
The effects of the application of KNO3 and NH4Cl (100 kg N ha?1) on N2O release and CH4 uptake by a well-aerated topsoil (porosity: 55%, water-filled pore space: 67% of the total pore space) were studied in a laboratory incubation experiment over 50 days using a soil microcosm system with an automated registration of N2O and CH4 fluxes. The total N2O-N losses over 50 days were low for all treatments and amounted to 0.9 mg m?2 for the control, 1.2 mg m?2 for the soil columns fertilized with KNO3, and 7.3 mg m?2 for the soil columns fertilized with NH4Cl. The slightly elevated N2O release after the application Of NH4Cl was associated with the nitrification of NH4+ added. Only ?0.06% of the fertilized NH4?N was lost as N2O. This nitrogen fertilization reduced the CH4 uptake of the soil columns by 43% (NH4Cl) and 21% (KNO3), respectively.  相似文献   

9.
日光温室土壤剖面矿质态氮的含量、累积及其分布特性   总被引:11,自引:0,他引:11  
测定了西安郊区和杨凌地区日光温室栽培番茄生长期间及收获后土壤剖面矿质态氮(铵态氮及硝态氮)的含量,分析了不同形态氮素在土壤剖面的累积及分布情况。结果表明,随着番茄的生长,土壤剖面硝态氮含量逐渐降低,降低的幅度因土壤层次不同而异;土壤剖面铵态氮以3月份含量最高,11月份与5月份相近。番茄收获后土壤剖面残留矿质氮以硝态氮为主,约占土壤剖面矿质氮的比例为80%~90%;残留的铵态氮在土壤剖面的分布相对较为一致。蔬菜生长期间及收获时日光温室土壤剖面硝态氮累积量均表现出在土壤表层相对累积现象,且温室土壤剖面硝态氮的残留量仍高于露地及高产农田。为减少硝态氮淋失带来的环境问题,除合理施用氮肥外,如何减少日光温室蔬菜作物收获后残留硝态氮的淋溶是值得进一步研究的问题。  相似文献   

10.
为揭示不同施肥时机(全过程、前1/2和后1/2入渗水量施肥)下土壤水氮运移转化规律,以砂壤土和黏壤土质地的一维垂直肥液(尿素)入渗试验为基础,重点分析不同施肥时机下土壤水氮分布与再分布过程中的运移转化规律,并量化比较其对土壤中氮素含量的影响。结果表明,施肥时机对土壤累积入渗量和湿润体中水分分布影响微小,但对不同形态氮素运移转化影响显著;砂壤土和黏壤土入渗结束时刻,全过程和后1/2入渗水量施肥时,其尿素态氮、铵态氮(NH4+—N)和硝态氮(NO3-—N)含量均随土层深度增大而减小;前1/2入渗水量施肥时,尿素态氮和NO3-—N含量在湿润体边缘累积,NH4+—N呈先增大后减小趋势,且主要分布在5—25 cm土层;再分布阶段,全过程和后1/2入渗水量施肥时,砂壤土和黏壤土中尿素态氮分别在再分布3天和5天时基本水解完成,同时NH4+—N含量达到峰值,NO3-—N含量再分布10天内未出现下降趋势;前1/2入渗水量施肥时,尿素态氮再分布10天时基本水解完成,NH4+—N含量再分布5~10天达到峰值,NO3-—N含量则呈先增加后减小趋势;后1/2入渗水量和全过程施肥条件下,砂壤土和黏壤土再分布10天时0—40 cm土层中NH4+—N和NO3-—N含量均大于前1/2入渗水量施肥,说明其氮素潜在利用效率高,故推荐畦(沟)灌合理施肥时机为后1/2入渗水量或全过程施肥。研究结果可为农田畦(沟)灌施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

11.
We investigated the interacting effects of inorganic nitrogen and the main inorganic phosphorus form in dairy manure (dicalcium phosphate, CaHPO4) on growth, nutrient uptake, and rhizosphere pH of young maize plants. In a pot experiment, three levels of CaHPO4 (0, 167, and 500 mg P pot?1) were combined with nitrogen (637 mg N pot?1) applied at five NH4‐N : NO3‐N ratios (0 : 100, 25 : 75, 50 : 50, 75 : 25, and 100 : 0) and a nitrification inhibitor in a concentrated layer of a typical acid sandy soil from Denmark. 15N‐labeled NH4‐N was applied to differentiate the role of nitrification and to partition nitrogen uptake derived from NH4‐N. Among treatments including nitrogen, shoot biomass, rooting and phosphorus uptake were significantly higher at the five‐leaf stage when CaHPO4 was applied with NH4‐N : NO3‐N ratios of 50 : 50 and 75 : 25. In these treatments, rhizosphere pH dropped significantly in direct proportion with NH4‐N uptake. The fertilizers in the concentrated layer had a root‐inhibiting effect in treatments without phosphorus supply and in treatments with pure NO3‐N or NH4‐N supply. Increased nitrogen uptake as NH4‐N instead of NO3‐N reduced rhizosphere pH and enhanced acquisition of applied CaHPO4 by young maize plants, which may have positive implications for the enhanced utilization of manure phosphorus.  相似文献   

12.
为解决区域土壤质地类型针对性氮肥施用问题,在轻壤土和黏壤土上分别设置不施氮肥,氮肥基追比3∶7,4∶6,5∶5,6∶4和7∶3处理,研究小麦产量、水氮利用效率以及土壤含水量、贮水量、NH_4~+-N、NO_3~--N动态变化规律。结果表明:轻壤质土壤氮肥基追比4∶6的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 265.3 kg/hm~2,27.6 kg/(hm~2·mm),34.4 kg/kg。黏壤质土壤氮肥基追比5∶5的处理小麦产量、水分利用效率、氮肥生产效率最高分别为8 363.2 kg/hm~2,28.3 kg/(hm~2·mm),34.8 kg/kg。小麦不同生育期各土层含水量垂直分布变化较大,轻壤质土壤含水量在9.3%~26.2%,而黏壤质为9.7%~27.6%;小麦全生育期内土壤贮水量呈先升高后降低趋势,黏壤质土壤贮水量高于轻壤质。氮素追施量越多土壤表层NH_4~+-N与NO_3~--N含量越高,且随土层加深土壤NH_4~+-N与NO_3~--N含量降低,受降水影响轻壤质土壤NH_4~+-N与NO_3~--N更易于向土层深处淋溶,成熟期黏壤质各土层的NH_4~+-N和NO_3~--N含量均多于轻壤质。说明黏壤质土壤保水保氮肥能力强于轻壤质,氮肥基追比可以适当增加。  相似文献   

13.
Abstract

This study was conducted to investigate the effect of N fertilization on the soil CH4 flux during the growing season of onion in a structured clay soil with stagnant water at depths of 70–80 cm and with a peat-mixed subsoil. The following 4 treatments were analyzed over a period of two years: T1) fertilized, onion growing, T2) fertilized, bare field, T3) unfertilized, onion growing, and T4) unfertilized, bare field. In the fertilized T1 and T2 treatments, fertilizers (mixture of 3 : 1 NH4NO3 : (NH4)2SO4) at rates of 322 kg N ha?1 in 1999 and 242 kg N ha?1 in 2000 were applied as basal fertilizers before onion was transplanted. CH4 fluxes among the treatments ranged from ?0.06 to 0.12 mg CH4-C m?2 h?1 in 1999, and from ?0.03 to 0.01 mg CH4-C m?2 h?1 in 2000, which were high after heavy rain in summer. Cumulative CH4 flux from May to November in the fertilized T1 and T2 treatments was 59 mg CH4-C m?2 for both treatments in 1999, and 3.2 and ?0.9 mg CH4-C m?2 in 2000, respectively. On the other hand, in the unfertilized T3 and T4 treatments, the cumulative CH4 flux was 0.2 and ?9.2 mg CH4-C m?2 in 1999, and ?26 and ?20 mg CH4-C m?2 in 2000, respectively. Although the cumulative CH4 flux in each treatment was higher in 1999 than in 2000, the fertilized treatments in both years showed a significantly higher cumulative CH4 flux than the unfertilized treatments. This might be ascribed to the higher level of nitrification in the fertilized treatments, because a high nitrate concentration was observed in the fertilized treatments in the onion growing season. The results also revealed that onion growing did not exert a significant influence on the CH4 flux. The precipitation from May to November was 642 mm in 1999 and 1,008 mm in 2000, and the CH4 emission increased when the precipitation was low. In addition, the CH4 concentration in the soil profile increased with the increase of the depth in summer as the soil was dry. These findings indicated that CH4 diffusion from the soil to the atmosphere was inhibited by rainwater.  相似文献   

14.
电析土壤微粒悬浮液的维恩(Wien)效应及其影响因子   总被引:5,自引:0,他引:5  
The electrical conductivity of suspensions and their supernatants from the electrodialyzed clay fractions of latosol, yellow-brown soil and black soil equilibrated with nitrate solutions were determined at different field strengths using a short high-voltage pulse apparatus to demonstrate the Wien effect in soil suspensions and to investigate factors affecting it. It was found that Wien effect was much stronger in suspensions with a clay content of 30 g kg-1 from the soils equilibrated with a 1 × 10-4 KNO3 solution than in their supernatants.The threshold field strength (TFS), at which the relative conductivity is equal to 1.05, i.e., the Wien effect begins to be obvious, of the yellow-brown soil suspensions (clay content of 30 g kg-1) equilibrated with different nitrate solutions of a concentration of 1 × 10-4/z mol L-1 , where z is the valence, varied with the type of nitrates, being lowest for NaNO3 (47 kV cm-1) and highest for Ca(NO3)2 (98 kV cm-1). At high field strengths (larger than 130 kV cm-1), the relative conductivities of yellow-brown soil suspensions containing different nitrates diminished in the order: NaNO3 > KNO3 > Mg(NO3)2 > Zn(NO3)2 > Ca(NO3)2. The rates and intensities of the Wien effect in the suspensions of the three soils equilibrated with 5 × 10-5 molL-1 Ca(NO3)2 solution were in the order of the yellow-brown soil > the latosol > the black soil. The results for the yellow-brown soil suspensions (clay concentration of 30 g kg-1) equilibrated with KNO3 solutions of various concentrations clearly demonstrated that the more dilute the solution, the lower the TFS, and the larger the relative conductivity of the suspensions at high field strengths. The results for yellow-brown soil suspensions with different clay concentrations indicated that as the clay concentration increased, the low field electrical conductivity, EC0, also increased, but the TFS decreased, and the Wien effect increased.  相似文献   

15.
Combined nitrogen inhibits nodule development and nitrogen fixation in Rhizobium -legume symbioses. Isolates of R. leguminosarum which had been shown to vary in symbiotic effectiveness in the presence of NN4NO3 were used as inoculum for peas grown with NH4NO3 KNO3 or NH4Cl and harvested between 14 and 24 days after planting. Plants grown in 2mm NH4NO3 showed inhibition of nodule development and function 17 days after seeding but there were no significant differences (SDs) between isolates of high and low effectiveness. In the presence of 5 mM NH4NO3 nodule development and C2H2 reduction were severely inhibited from 14 days onwards. Plants inoculated with isolates of high effectiveness had more tap-root nodules, higher C2H2 reduction rates and higher leghemoglobin content than those inoculated with isolates of low effectiveness. In plants grown with 5 mm KNO3 or 5 mm NN4Cl, NO3 had the major inhibitory effect on nodulation and nodule development, but NH4+ began to show inhibitory effects on nodule development after 17 days. There were no SDs between isolates of low and high effectiveness at these concentrations of NO3 and NH4+. Differences in symbiotic response of R. leguminosarum to combined nitrogen are small and appear during nodule development rather than at nodule initiation.  相似文献   

16.
Zeolite minerals improve the efficiency of nutrient use by plants by helping to regulate the release of nitrogen and nitrate accumulation in tissues. The main objectives of this research were to evaluate effects of the addition of zeolite enriched with potassium nitrate (KNO3) on the nitrate (NO3-N) and potassium (K) levels of lettuce shoot. Treatments arranged in a completely randomized block design with three replications comprised two types of the natural zeolite: concentrated zeolite, zeolite + KNO3, and a control grown in substrate fertilized with a nutrient solution without zeolite supply. Four levels of enriched zeolite were tested (20, 40, 80, and 160 g per pot). Nitrogen, K, and NO3-N data were evaluated and response equations were fitted. The results indicated that zeolite enriched with KNO3 released the macronutrients N and K to lettuce plants. The concentrations of total N, total K, and NO3-N increased with zeolite levels, and there was a positive correlation between total N and NO3-N forms. To keep levels of NO3-N? in shoots within the safe limit for human consumption, based upon the regression equation for NO3-N the recommended dose of KNO3-enriched zeolite should be up to 78 g per plant.  相似文献   

17.
The long-term fertilization results in accumulation of phosphorus especially in the top layer of the soils. Inundation of agricultural lands leads to a switch to anaerobic soil condition, causing reduction of iron and leaching of phosphate simultaneously. From the ecological and environmental perspective, high nutrients flux especially phosphorus will increase the possibility of eutrophication in aquatic system. The fern Azolla had a good potential to adsorb phosphorus, it also has distinctive nitrogen-fixing capacity. We conducted a 10-week aquarium experiment to investigate the phosphorus release capacity from two agricultural soils in the Netherlands with different Fe and P concentrations but comparable Fe/P ratios. Besides, the research questions rose to whether Azolla could use the mobilized phosphate released from the soils for growth. We also tried to find an effective indicator to estimate the actually phosphate mobilization from sediment to water layer. Results showed that the soils with high Fe and P concentrations had higher phosphate release rate compared with the soil with low Fe and P concentrations. Pore water Fe: PO43? ratios were valid to identify P release to surface water, when the Fe: PO43? ratios less than 8 mol mol?1 substantial phosphorus mobilization occurred. The conclusions showed that the actual mobilization of phosphate is more important than the phosphorus retained in the sediments for the internal PO43? fluxes. From 10-week experimental results, we found that Azolla can reuse the phosphate retained in soils thus removed the mobilized phosphate in a moderately low surface water nutrient loading.  相似文献   

18.
Influences of phosphorus and nitrogen on uranium and arsenic accumulation in Lemna gibba L. were investigated in the laboratory hydroponic cultures and in the field pot experiments. The initial uranium and arsenic concentrations in solutions for the hydroponic cultures were 1000 μ g l?1 each, while in situ trials used tailing water containing 198.7 ± 20.0 μ g U l?1 and 75.0 ± 0.4 μ g As l?1 at a former uranium mine in eastern Germany. A test of three PO4 3? concentrations (0.01, 13.6 and 40.0 mg l?1) in the hydroponic cultures, highest uranium accumulated in L. gibba under the culture with highest PO4 3?. Significant differences in uranium accumulation were between 0.01 mg l?1 and 13.6 mg l?1 PO4 3? cultures only (ANOVA p = 0.05). In the field, addition of 40.0 mg l?1 PO4 3? increased the bioaccumulation of uranium significantly. Contrary, high PO4 3? concentrations suppressed the bioaccumulation of arsenic in both the laboratory and the field. The bioaccumulation of both uranium and arsenic increased slightly with the increase of NH4 + concentration. However, high NH4 + concentrations reduced the yield in the control experiments. The concentration of uranium rose temporarily to 856.0 ± 294.0 μ g l?1, while the concentration of arsenic sunk slightly and temporarily immediately after amending the tailing waters with 40 mg l?1 PO4 3?. The speciation of uranium in the tailing water was modelled with geochemical code PhreeqC, which predicted that uranyl carbonate species dominated before addition of phosphates, but after increasing the PO4 3? concentrations, uranyl phosphates species became dominant. Addition of NH4 + to the tailing water had negligible influence on free available uranium and arsenic concentrations. Thus, manipulations to enhance uranium and arsenic attenuation by L. gibba has limitation when the amendments interact with other elements including the contaminants in the milieu, and when the target contaminants have antagonistic behaviour in the tailing water.  相似文献   

19.
磷胁迫条件下油菜、肥田萝卜对难溶性磷的活化与利用   总被引:1,自引:2,他引:1  
通过砂培试验研究了北方食用油菜和南方绿肥作物肥田萝卜两种植物在缺磷胁迫条件下对难溶性磷酸盐Ca3(PO4)2和AlPO4的活化利用情况。试验结果表明,在仅供应一种难浴性磷酸盐时,油菜和肥田萝卜对磷酸铝和磷酸三钙都有较大程度的活化与利用。在施用AlPO4时肥田萝卜地上部吸磷量达到供应等磷量水溶性磷酸盐时的90%;在施用Ca2(PO4)2时油菜地上部吸磷量达到供应等磷量水溶性磷酸盐时的49%。植物干物重的测定结果说明,在缺磷时,难溶性的Ca3(PO4)2及AlPO4对油菜和肥田萝卜均有促进生长的作用。但是,油菜与肥田萝卜对Ca3(PO4)2和AlPO4的活化利用程度却存在着一定差异。表现为油菜对Ca3(PO4)2的利用能力强,而肥田萝卜对AlPO4的利用能力强。  相似文献   

20.
We performed a series of experiments in controlled conditions to assess the potential of hardwood‐derived biochar either as a source or as a removing additive of macronutrients [nitrate‐nitrogen (NO3‐N), ammonium‐N (NH4‐N), potassium (K), phosphorus (P), and magnesium (Mg)] in solution. In addition, a 3‐year field trial was carried out in a commercial nectarine orchard to evaluate the effect of increasing soil‐applied biochar rates on tree nutritional status, yield, fruit quality, soil pH, soil NO3‐N, and NH4‐N concentration and soil water content. In controlled conditions, the concentrations of K, P, Mg, and NH4‐N in solution were significantly increased and positively correlated with biochar rates. Biochar was ineffective in removing NO3‐N, K, P, and Mg from enriched solutions, while at the rate of 40 g L?1 biochar removed almost 52% of the initial NH4‐N concentration. In a mature, irrigated, fertilized, commercial nectarine orchard (Big Top/GF677) on a sandy‐loam soil in the Italian Po Valley, soil‐applied biochar at the rates of 5, 15, and 30 t ha?1 were effective in reducing the leached amount of NH4‐N in the top 0.25 m soil layer over 13 months, as estimated by ion exchange resin lysimeters. Nevertheless, independent of the rate, biochar did not affect soil pH, soil N mineral availability, soil moisture, tree nutritional status, yield, and fruit quality. We conclude that, unless an evident constraint is identified, in non‐limiting conditions (e.g., water availability and soil fertility), potential benefits from biochar application in commercial orchards are hidden or negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号