首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Nutrient recycling should be effective at balancing nutrient flows in Japanese animal production. This means replacing imported feed with self-produced feed. The Yakumo Experimental Farm of Kitasato University has produced commercial beef under ‘organic’ management, without the use of agricultural chemicals or imported feed, since 2005. Using a data set obtained from 220 ha of grassland and 250 head of cattle over the 5 years from 2008 to 2012, we estimated nitrogen (N) flow. During 2011 and 2012, we measured grass production, cattle production (selling out), soil parameters and atmospheric deposition (from precipitation and atmospheric ammonia concentrations). To determine N fixation by clover (white clover, Trifolium repens L.), we compared grass + clover plots with grass-only plots. Averaged over the period, N components on the 220 ha of grassland comprised 1952 Mg soil N stock, 3.2 Mg N yr?1 in living livestock, 14.3 Mg N yr?1 uptake by grass growth (including 8.6 Mg yr?1 of N fixed by clover), 15.7 Mg N yr?1 applied in composted manure, 1.7 Mg N yr?1 in imported bedding material, 2.8 Mg N yr?1 in deposition and 1.41 Mg N yr?1 in meat production. N in composted manure equaled about 0.8% of the huge soil N stock; N in grass production equaled about 0.7%, of which clover fixation supplied 60%; N deposition was not negligible; and N export by meat production was minor. These results show that on this organically managed farm, soil N stock increased gradually (by 8.6 Mg N yr?1 [220 ha]?1 = 39 kg N ha?1 yr?1 = 0.02% of the soil N stock) and N export was small. Our findings show that it is possible to balance N inputs with N outputs in a beef cattle enterprise without the need for feed or fertilizer imports.  相似文献   

2.
Abstract

The popular and widely used 15nitrogen (N)–isotope dilution method for estimating biological N fixation (BNF) of pasture and tree legumes relies largely on the ability to overcome the principal source of error due to the problem of selecting appropriate reference plants. A field experiment was conducted to evaluate the suitability of 12 non‐N2‐fixing plants (i.e., nonlegumes) as reference plants for estimating the BNF of three pasture legumes (white clover, Trifolium repens L.; lucerne, Medicago sativa; and red clover, Trifolium pratense L.) in standard ryegrass–white clover (RWC) and multispecies pastures (MSP) under dry‐land and irrigation systems, over four seasons in Canterbury, New Zealand. The 15N‐isotope dilution method involving field 15N‐microplots was used to estimate BNF. Non‐N2‐fixing plants were used either singly or in combination as reference plants to estimate the BNF of the three legumes. Results obtained showed that, on the whole, 15N‐enrichment values of legumes and nonlegumes varied significantly according to plant species, season, and irrigation. Grasses and herb species showed higher 15N‐enrichment than those of legumes. Highest 15N‐enrichment values of all plants occurred during late summer under dry‐land and irrigation conditions. Based on single or combined non‐N2‐fixing plants as reference plants, the proportion of N derived from the atmosphere (% Ndfa) values were high (50 to 90%) and differed between most reference plants in the MSP pastures, especially chicory (Cichorium intybus), probably because it is different in phenology, rooting depth, and N‐uptake patterns compared to those of legumes. The percent Ndfa values of all plants studied also varied according to plant species, season, and irrigation in the MSP pastures. Estimated daily amounts of BNF varied according to pasture type, time of plant harvest, and irrigation, similar to those shown by percent Ndfa results as expected. Irrigation increased daily BNF more than 10‐fold, probably due to increased dry‐matter yield of pasture under irrigation compared to dry‐land conditions. Seasonal and irrigation effects were more important in affecting estimates of legume BNF than those due to the appropriate matching of N2‐fixing and non‐N2‐fixing reference plants.  相似文献   

3.
Abstract

The interaction of grassland management factors such as plant species, rate of nitrogen (N) fertiliser application and stage of maturity at harvest, will determine the optimal balance of herbage yield, nutritive quality and ensilability for ruminant nutrition and/or industrial applications. This study investigated the effects of N fertiliser input and harvest date on the yield and chemical composition of five common grass species, and made comparisons with red clover. Perennial ryegrass (PRG), Italian ryegrass (IRG), tall fescue, cocksfoot, timothy and red clover were grown under two inorganic N fertiliser inputs (0 kg N ha?1 and 125 kg N ha?1; except red clover) and harvested at five dates (fortnightly from 12 May to 7 July) in the primary growth. Regression analysis of these data allowed comparison of the yield and chemical composition of each grass species at common growth stages, without the confounding effects of variation in maturity between grass species at common harvest dates. Of the grass species investigated, timothy was most productive in terms of dry matter (DM) yield and thus has the potential to provide a cheaper feed per unit DM. However, the most digestible grass species was PRG, with timothy being the lowest, and this could impact on both animal and bioenergy production potential. The most suitable grass species for ensiling was IRG (particularly when grown without fertiliser N) due to its higher water soluble carbohydrate (WSC) concentration and lower buffering capacity (BC) compared to all other grass species. In comparison to the grasses receiving inorganic N fertiliser, red clover had a numerically lower DM yield, but a higher mean DM digestibility and crude protein concentration. The lower WSC concentration and higher BC of the red clover may result in a greater preservation challenge during ensiling.  相似文献   

4.
Abstract

The contribution of biological nitrogen fixation (BNF) to the N nutrition of six annual forage legumes, subterranean clover (Trifolium subterraneum), burr medic (Medicago polymorpha), balansa clover (Trifolium michelianum), Persian clover (Trifolium resupinatum), yellow serradela (Ornithopus compressus), and pink serradela (Ornithopus sativus) was evaluated by the 15N natural abundance technique, using four grass species (Briza máxima, Bromus mollis, Hordeum berteroanum, Avena barbata) and two composite species (Leontodon leysseri and Hedipnois cretica) as reference plants. An additional objective was to determine whether alternative legume species to those in common use (T. subterraneum and M. polymorpha) in the area, could improve BNF. The field studies were conducted in two edaphic conditions, granitic (Entisol) and clay (Vertisol) soil, located in Cauquenes, VII Region, in the sub-humid Mediterranean zone of Chile. In the granitic soil the percentages of N derived from fixation were high in all species (74 to 94%); yellow serradela cv. Tauro presented the greatest N content in dry matter and N fixation, equivalent to 91 kg N ha?1. In contrast, pink serradela cv. Cádiz and subterranean clover cv. Gosse presented the lowest N fixation. In the clay soil, under periodically waterlogged conditions, balansa clover cv. Paradana and persian clover cv. Prolific had high percentage values of BNF (>95%) and fixed more N (100.2 and 82.5 kg N ha?1, respectively) than burr medic and subterranean clover cv. Gosse. The present study allowed the identification of new germplasm of high capacity of N fixation which is an additional criterion for selecting species for infertile and waterlogged soil conditions in the Mediterranean area of Chile.  相似文献   

5.
Abstract

An irrigated field trial was conducted to test the effects of white clover in three turfgrass species (perennial ryegrass, Kentucky bluegrass, and creeping bentgrass) on color, clipping yield, and botanical composition and to estimate nitrogen (N)2 fixation and N transfer from white clover to associated turfgrass species under different N‐fertilization conditions in 1999–2002.

Nitrogen fertilizers significantly increased color ratings in all observations. Grass–white clover mixtures had better color ratings than pure grass at all sampling dates and seasonal averages in unfertilized conditions. Fertilized pure grass plots yielded significantly more than control plots in all turfgrass species. Nitrogen fertilization did not affect clipping yield greatly in turfgrass–white clover mixtures. Nitrogen application significantly decreased white clover percentage in the harvested clippings in second and third year.

Nitrogen fertilization increased tissue N concentration positively in all turfgrass species grown alone. In contrast, N fertilization did not greatly affect tissue N concentration of either turfgrass species or white clover in the mixtures. Nitrogen fixation of white clover was estimated as 24.6, 30.7, and 33.8 g m?2 year?1 in perennial ryegrass, Kentucky bluegrass, and creeping bentgrass, respectively. The total estimated N2 fixation gradually decreased with increasing N fertilization. Nitrogen transfer from white clover to the associated turfgrass varied from 4.2 to 13.7% of the total N that the white clover fixed annually.  相似文献   

6.
A recycling of Phosphorus (P) from the human food chain is mandatory to secure the future P supply for food production. However, many available recycled P fertilizers from sewage sludge do not have an adequate P bioavailability and, thus, are not suitable for their application in soils with pH >5.5–6.0, unless being combined with efficient mobilization measures. The aim of the study was to test the P mobilization ability of red clover (Trifolium pratense L.) from two thermally recycled P fertilizers for a subsequently grown maize. Two sewage sludge ashes (SSA) were investigated in a pot experiment at soil pH 7.5 with red clover differing in its nitrogen (N) supply (added N fertilizer or biological N2 fixation (BNF)), followed by maize (Zea maize L.). Shoot dry matter of maize was almost doubled when N supply of previous grown clover was covered by BNF, instead of receiving added N fertilizer. Similarly, shoot P removal of maize following clover with BNF was significantly increased. It is suggested that the P mobilization is related to the BNF, and a proton release of N2 fixing clover roots led to the measured decrease in soil pH and thereby increased P availability of the tested fertilizers.  相似文献   

7.
Although retranslocation or nitrogen (N) derived from plants (NDFP) may account for more than 50% of the annual N demand in new growth of conifer seedlings, the proportional contribution of NDFP vs. current uptake or N derived from fertilizer (NDFF) in new growth of hardwood seedlings is relatively unknown. The current uptake was labeled with ammonium sulfate [(15NH4)2SO4] at the rate of 1.56 g N plant?1 and reared for 90 days in sand culture under greenhouse conditions, and NDFP vs. NDFF was quantified in new growth of half‐sib bareroot black walnut (Juglans nigra L.) seedlings. Nitrogen derived from plants accounted for 68 to 83% of the total N demand in new shoot growth of black walnut seedlings vs. NDFF (17 to 32%). Recovered applied fertilizer was 43% in soil and 9% in plants. The greater proportion of NDFP in new growth demonstrates the importance of retranslocation in meeting early N demand of transplanted black walnut seedlings.  相似文献   

8.
Abstract

Brachiaria spp. have been grown in a variety of cropping systems and are often terminated with herbicides, which may cause nitrogen (N) loss from the soil-plant system. In this study ammonia (NH3-N) loss by shoots and N balance in a soil-plant system were determined after desiccation of palisade grass (Brachiaria brizantha (Hochst. ex A. Rich) Stapf, cv. Marandu), signalgrass (Brachiaria decumbens Stapf), humidicola (Brachiaria humidicola (Rendle) Schweick) and Congo grass (Brachiaria ruziziensis Germain et Evrard). The grasses were grown in pots filled with an Oxisol in a greenhouse. Sixty days after planting, the plants were desiccated with glyphosate. Analyses were performed on plant and soil at desiccation and then at 7, 14, 21 and 28 days after desiccation in order to assess NH3-N losses by shoots and to estimate the N balance in the system. Total nitrogen (Total-N) concentration in shoots and roots of brachiarias decreased after desiccation, thereby reducing the amount of N in plants of the four brachiaria species. However, as most of the N lost by plants was released into the soil, N losses from the soil-plant system were small compared with the total N in the system: 1.2, 0.5, 0.4 and 1.4% for palisade grass, signalgrass, humidicola and Congo grass, respectively. N losses as NH3 from the soil-plant system after desiccation with glyphosate varied among brachiaria species, ranging from 0.8 to 2.0 g m?2 kg?1, and accounted for 30–80% of total loss.  相似文献   

9.
In a greenhouse experiment, tomato plants were grown in sand culture to test whether different fertilization regimes (mineral or organic fertilizers) at low (500 mg N plant–1 week–1) and high (750 mg N plant–1 week–1) nitrogen levels affected yield, nutritional quality, and taste of the fruits. In the mineral‐fertilizer treatments, nitrate‐ or ammonium‐dominated nutrient solutions were used. Organic fertilizer was supplied as fresh cut grass‐clover mulch (a total of 2.4 kg and 3.6 kg were given per plant at low and high N level, respectively) without (orgN) and with additional sulfur fertilization (orgN+S). Yields of red tomatoes from the organically fertilized plants were significantly lower (1.3–1.8 kg plant–1) than yields from plants that received mineral fertilizer (2.2–2.8 kg plant–1). At the final harvest, yields of green tomatoes in the organic treatment with extra sulfur were similar (1.1–1.2 kg plant–1) to the NO ‐dominated treatments at both nutrient levels and the NH ‐dominated treatment at high nutrient level. Organic fertilizers released nutrients more slowly than mineral fertilizers, resulting in decreased S and P concentrations in the leaves, which limited growth and yield in the orgN treatments. Analysis of tomato fruits and plants as well as taste‐test results gave no conclusive answer on the relationship between sugar or acid contents in the fruits, macronutrient content of plant leaves and fruits, and perceived taste. Sugar contents were higher in the fruits given mineral fertilizer, whereas acid contents were higher in the fruits given organic fertilizer. Preference in taste was given to the tomatoes from plants fertilized with the nitrate‐dominated nutrient solution and to those given organic fertilizer with extra sulfur. Thus, a reduction in growth, which was expected to lead to a higher concentration of compounds like sugars and acids, did not result in better taste. Overall, it can be concluded that an appropriate nutrient supply is crucial to reach high yields and good taste.  相似文献   

10.
Biogas production generates digested slurry as a by-product. It can be used as fertilizer especially after its conversion into digested liquid. A microcosm-based study was conducted in order to compare the effects of single application of digested liquid or chemical fertilizer on N2O flux and crop yield of komatsuna vegetable. Analysis revealed that digested liquid-treated soils released almost equal cumulative N2O (0.43 g?N m?2) compared to chemical fertilizer (0.39 g?N m?2). The uncropped soils treated with the digested liquid and chemical fertilizer released more N2O compared to corresponding cropped soils. The N2O emission factor and soil mineral N contents were similar for the digested liquid and chemical fertilizer-treated soils. Plant biomass in the first crop after digested liquid application was significantly higher (5.59 g plant?1) than that after applied chemical fertilizer (4.78 g plant?1); but there was no significant difference for the second crop. Nitrogen agronomic efficiency was improved by the digested liquid compared to chemical fertilizer. This study indicates that cumulative N2O flux was similar after application of the digested liquid and chemical fertilizer, while the overall yield from both croppings was increased in the digested liquid-treated soil compared to chemical fertilizer-treated soil.  相似文献   

11.
《Soil biology & biochemistry》2001,33(4-5):439-448
Correct assessment of the rhizodeposition of N in grassland is essential for the evaluation of biological N2-fixation of legumes, for the total N balance of agro-ecosystems, and for the pre-cropping value of grasslands. Using a leaf-feeding technique by which plants were 15N labelled while growing in mezotrons in the field, the rhizodeposition of N by unfertilised red clover, white clover and perennial ryegrass growing in pure stands was shown to amount to 64, 71 and 9 g N m−2, respectively, over two complete growing seasons. The corresponding values for red clover and white clover growing in mixtures with ryegrass were 89 and 32 g N m−2, respectively. The rhizodeposited N compounds, including fine roots, constituted more than 80% of the total plant-derived N in the soil, and in all cases exceeded the amount of N present in stubble. In the mixtures of red clover–ryegrass and white clover–ryegrass and the pure stands of red clover, white clover and ryegrass, respectively, the rhizodeposition constituted a 1.05, 1.52, 1.26, 2.21 and 2.77 fold increase over the total N in the shoots harvested during the two production years. In pure stands and mixtures of clover, 84 and 92%, respectively, of this N derived from biological N2 fixation. It is concluded that rhizodeposition provides a very substantial input of N to the legume-based grassland systems with great consequences for ecosystem N balance and turnover. Furthermore, the amount of atmospheric-derived N in the rhizodeposits may exceed that in the harvested shoots.  相似文献   

12.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

13.
A pot experiment was carried on ‘Manzanillo’ olives transplants included three levels of nitrogen (N) (N1=25, N2=50 and N3=75 g N plant?1 year?1) and four levels of cobalt (Co) (B1=zero, B2=10, B3=20 and B4=30 ppm Co). Generally, fertilizing with 50 g N plant?1 year?1 gave the highest significant value than those of other treatments in all vegetative growth characters. Vegetative growth was gradually increased by increasing cobalt up to 20 ppm and 30 ppm levels. Regarding the combination between nitrogen and cobalt levels in most cases, the best treatment was N2 x B3, which gave the highest values of vegetative growth characters. The combinations of nitrogen and cobalt created slightly more variable and increased effects on the macro and micronutrient contents of ‘Manzanillo’ olives transplants.  相似文献   

14.
Approximately 40% of New Zealand's land mass is fertilized grassland with entirely non‐native plants, but currently there is substantially increased interest in restoration of native plants into contemporary agricultural matrices. Native vegetation is adapted to more acid and less fertile soils and their establishment and growth may be constrained by nutrient spillover from agricultural land. We investigated plant–soil interactions of native N‐fixing and early successional non N‐fixing plants in soils with variable fertility. The effects of soil amendments of urea (100 and 300 kg N ha?1), lime (6000 kg CaCO3 ha?1), and superphosphate (470 kg ha?1) and combinations of these treatments were evaluated in a glasshouse pot trial. Plant growth, soil pH, soil mineral N, Olsen P and nodule nitrogenase activity in N‐fixing plants were measured. Urea amendments to soil were not inhibitory to the growth of native N‐fixing plants at lower N application rates; two species responded positively to combinations of N, P and lime. Phosphate enrichment enhanced nodulation in N‐fixers, but nitrogen inhibited nodulation, reduced soil pH and provided higher nitrate concentrations in soil. The contribution of mineral N to soil from the 1‐year old N‐fixing plants was small, in amounts extrapolated to be 10–14 kg ha?1 y?1. Urea, applied both alone and in conjunction with other amendments, enhanced the growth of the non N‐fixing species, which exploited mineral N more efficiently; without N, application of lime and P had little effect or was detrimental. The results showed native N‐fixing plants can be embedded in agroecology systems without significant risk of further increasing soil fertility or enhancing nitrate leaching.  相似文献   

15.
Dry matter (DM) partitioning into root, leaf, stem, shoot dry weight plant?1 response in four cool season C3-cereals viz. wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.) and oats (Avena sativa L.) was investigated at 30, 60 and 90 days after emergence (DAE) under eight nitrogen, phosphorus and potassium (NPK) sources: S1 = 20-20-20, S2 = 20-27-5, S3 = 7-22-8, S4 = 10-10-10-20S, S5 = 11-15-11, S6 = 31-11-11, S7 = 24-8-16, and S8 = 19-6-12 in pot experiment at Dryland Agriculture Institute, West Texas A&;M University, Canyon, Texas, USA during winter 2009-10. A considerable variation in DM partitioning into various plant parts was observed in the four crop species at different growth stages and NPK source. At 30 DAE, 27% of the total DM per plant (TDMPP) was partitioned into roots and 73% into shoots (19% stems + 54% leaf). Only16 % of the TDMPP was partitioned into roots and 84% into shoots (18 % stem + 66 % leaf) at 60 DAE. At 90 DAE, 29% of TDMPP was partitioned into roots and 71 % into shoots (33 % stems + 38 % leaf) at 90 DAE. Percent DM partitioning into stems ranked first (33%) at 90 DAE > at 30 DAE (19%) > at 60 DAE (18 %). With advancement in crops age, DM partitioning into various crop parts increased. The root DM plant?1 (RDMPP) increased from 11.5–722 mg plant?1; stem DM plant?1 (STDMPP) from 8.3–889.0 mg plant?1; leaf DM plant?1 (LDMPP) from 23.1–1031.0 mg plant?1; shoot DM plant?1 (SHDMPP) from 31.3–1921 mg plant?1, and TDMPP increased from 42.9–2693.0 mg plant?1 at 30 and 90 DAE, respectively. Because of the higher N contents in S7 (24:8:16) and S6 (31:11:11) reduced the DM partitioning into various plants parts as well as TDMPP at all three growth stages. The adverse effects of S6 and S7 on DM partitioning was more on oats > rye > wheat > barley. The S4 with 10:10:10 (NPK) and :20S was not toxic at 30 DAE, but at 60 and 90 DAE it became toxic that adversely affected the DM partitioning as well as TDMPP probably may be due its high sulfur (20%) content which lacking in other NPK sources. The DM partitioning to various parts of barley and wheat was more than oats and rye at different growth stages (barley > wheat > rye > oats). Since the DM portioning values were determined on the average of five plants in pot experiment under organic soil at field capacity; in case of field experiments more research is needed on various crop species/varieties under different environmental conditions particularly under moisture stress condition.  相似文献   

16.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

17.
Leaching of dissolved inorganic N (DIN) and dissolved organic N (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics in soil solution under a pure stand of white clover and white clover-ryegrass (Lolium perenne) mixed stand. The temporal white clover contribution to N leaching was analysed by 15N incorporation into DIN and DON in percolating soil solution collected at 25-cm depth following white clover 15N leaf labelling that was applied at different times during the growing season. The white clover contribution to N transport in the soil profile was investigated over 2 years by analysing 15N in DIN and DON in percolating soil solution collected at 25-, 45- and 80-cm depth following 15N leaf labelling of white clover. The results showed that clover was a source of both DIN and DON. White clover autumn deposition contributed the most to N leaching. The leaching of DIN from the white clover in pure stand exceeded that of the mixed stand and confirmed that leaching of DIN is a function of N loadings and N demand. The DON leaching was unaffected by the presence of a companion grass, suggesting that the DON leaching from our grassland derived from the lysis of soil microbial biomass living on recent white clover deposits. White clover contributed to the leaching of DIN and DON at all depths, and the fact that the contents of DI 15N and DO 15N did not change with depth indicated that surplus of DIN and DON, formed in the uppermost soil layer, was transported in the soil profile.  相似文献   

18.
Understanding carbon (C) cycling and sequestration in vegetation and soils, and their responses to nitrogen (N) deposition, is important for quantifying ecosystem responses to global climate change. Here, we describe a 2-year study of the C balance in a temperate grassland in northern China. We measured net ecosystem CO2 exchange (NEE), net ecosystem production (NEP), and C sequestration rates in treatments with N addition ranging from 0 to 25 g N m?2 year?1. High N addition significantly increased ecosystem C sequestration, whose rates ranged from 122.06 g C m?2 year?1 (control) to 259.67 g C m?2 year?1 (25 g N). Cumulative NEE during the growing season decreased significantly at high and medium N addition, with values ranging from ?95.86 g C m?2 (25 g N) to 0.15 g C m?2 (5 g N). Only the highest N rate increased significantly cumulative soil microbial respiration compared with the control in the dry 2014 growing season. High N addition significantly increased net primary production (NPP) and NEP in both years, and NEP ranged from ?5.83 to 128.32 g C m?2. The C input from litter decomposition was significant and must be quantified to accurately estimate NPP. Measuring C sequestration and NEP together may allow tracking of the effects of N addition on grassland C budgets. Overall, adding 25 or 10 g N m?2 year?1 improved the CO2 sink of the grassland ecosystem, and increased grassland C sequestration.  相似文献   

19.
Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg?1 soil) with and without glucose addition (500 mg C kg?1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3? (99 mg N kg?1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3? limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.  相似文献   

20.
Quantitative measurements of plant growth characteristics, forage production, nitrogen (N) fixation, and soil N accumulation by white clover were determined in a field experiment at the subhumid hilly region of Rawalakot, Azad Jammu and Kashmir (AJK). Three indigenous and two exotic ecotypes of white clover were used in the study. Indigenous ecotypes were collected from three different locations (i.e., Tollipir, Banjosa, and Rawalakot), whereas exotic ecotypes (NuSiral and Irrigation) were collected from New South Wales Agricultural Research and Advisory Station, Australia. Data were collected for two seasons (spring 2004–autumn 2004). Total average values for height, number of stolons, length of stolons, number of leaves, and leaf area were 13–50 cm, 9–20, 2–4 cm, 23–81, and 7–16 cm2, respectively. The morphological characteristics of exotic ecotypes were significantly higher than the indigenous ecotypes, and the percentage increase in different plant characteristics was +6% to 214%. Total herbage dry‐matter yield (DMY) in the indigenous and exotic ecotypes varied between 0.5–2.3 and 3.6–4 Mg ha?1, respectively. All the ecotypes showed substantial nodulation potential, and the number of nodules in plant roots ranged from 65 to 119, confirming the presence of indigenous Rhizobium population in the soil. The N contents of harvested herbage of white clover were 2.3–3.0% compared to 0.85% in the grass, and the estimated rates of N2 fixation were 26 kg N ha?1 in the indigenous to 79 kg N ha?1 in the exotic ecotypes. Amount of N2 fixed was strongly correlated with DMY, suggesting that crop DM can be used as an indicator of N2 fixation in white clover. Protein content of white clover was 14–19%, compared to 5% in the indigenous grass species. Total organic carbon (C) and N in control soil were 8.5 and 0.75 g kg?1, which increased significantly to 13.1 and 0.93 g kg?1 in soil under white clover. It is concluded that white clover has substantial potential for growth and establishment in the subhumid hilly regions and can be used to recuperate degraded soils because of its ability to sustain high level of pasture production and increase the N status of soil. These benefits could be of particular use for small‐scale resource‐poor farmers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号