首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT

The purpose of the work was to determine the effect of the post-harvest residue biomass of field pea, spring rye and their mixtures on mineral nitrogen content in the soil profile after the forecrop harvest, as well as the yield and quantity of nitrogen accumulated in winter triticale grain. An experiment was conducted to examine the following two factors: (I) forecrop – mixtures: field pea – pure stand 100%, spring rye – pure stand 100%, field pea 75%?+?spring rye 25%, field pea 50%?+?spring rye 50%, field pea 25%?+?spring rye 75%; (II) forecrop harvest date: field pea flowering stage, field pea green pod stage. The results revealed that the lowest mineral nitrogen content in after harvesting spring rye in the flat green pod phase in the soil layer 0–30?cm and 30–60?cm respectively 2.36 and 1.41?mg?kg?1 soil. Also, mineral nitrogen content was low in the 0–30 and 30–60?cm soil layers following field pea/spring rye mixtures, in particular the mixture containing 25?+?75% of the respective components. Winter triticale cultivation after field pea/spring rye mixtures harvested at the stage of field pea flat green pod contributes to high grain yield.  相似文献   

2.
Abstract

An experiment was conducted in 2004–2007 at the University of Podlasie Zawady Experimental Station (52°06′N, 22°50′E), Siedlce, Poland, to examine the effect of either post-harvest residues or residues and straw of spring triticale (Triticale), field pea (Pisum sativum L.) and their mixtures containing the following proportions of both components: 75+25, 50+50, 25+75% on the subsequent crop of winter wheat (Triticum aestivum L.). A field experiment was designed as split-blocks with three replicates. Residue mass, straw mass as well as N, P, K, Ca and Mg amounts were determined in the residues and straw. The residue amount of spring triticale was the greatest. N, Ca and Mg amounts in the residues of spring triticale/field pea mixtures were similar or higher whereas P and K amounts were similar or lower compared with spring triticale residues. Spring triticale straw contained less N, P, Ca and Mg than the straw of either field pea or spring triticale/field pea mixtures. Grain yield, yield components, N content and N uptake in the grain of winter wheat following field pea and spring triticale/field pea mixtures were significantly higher compared with winter wheat following spring triticale. Increasing proportions of field pea in mixtures with spring triticale cultivated as previous crops significantly increased winter wheat grain yields as well as N content and uptake. The residues of the previous crops combined with the straw significantly increased winter wheat grain yield, number of ears per m2, number of grains in an ear, thousand-grain weight and N content and uptake. The highest winter wheat grain yield and N uptake were determined following an application of residues and straw of field pea and 25+75% spring triticale/field pea mixture. The grain of winter wheat after field pea had the greatest N content.  相似文献   

3.
ABSTRACT

Climate change brings increasing attention to winter sowing of traditionally spring sown crops. Crop stand height, soil coverage, grain yield and yield components of six winter pea varieties and one spring pea variety were compared in eastern Austrian growing conditions in 2014 and 2015. Crop stands of winter pea were taller up to the end of May before they declined and crop stands of spring pea were taller from early June on. Winter pea covered the soil at least partly over winter and showed faster soil coverage in spring. At the end of May, just some weeks before harvest, spring pea attained equal soil coverage. Grain yield of winter pea was almost double that of spring pea due to higher pod density whereas spring pea produced more grains pod?1 than four out of six winter pea varieties and a higher thousand grain weight than all winter pea varieties. Consequently, grain density was higher for winter pea while the single pod yield was higher for spring pea. Growing winter peas in Central Europe might be a good strategy for increasing grain legume productivity and thereby European feed protein production.  相似文献   

4.
Intercropping is of increasing interest in temperate-arable farming systems. The influence of nitrogen (N) fertilization and sowing ratio on concentrations and uptake of calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P) by oat and pea was assessed in three substitutive intercrops on a fertile soil in eastern Austria. N decreased Ca in oat grain and increased P in pea grain as well as Ca and Mg in oat residue and Mg and P in pea residue. Intercropping did not affect nutrient concentrations of oat grain, whereas a lower pea share in intercrops increased P in pea grain. In residue, Ca, K and Mg concentrations were higher in oat and Ca and K partly lower in pea with a lower share of each crop. The oat-dominated intercrops could partly achieve a slightly higher total grain nutrient yield than pure stands at no or low N; however, these benefits diminished with a higher pea share and N input. In comparison to pure stands, higher residue nutrient yields were obtained by intercropping in all sowing ratios and fertilization levels. Consequently, oat–pea intercropping can be a strategy for increasing the macronutrient yield of grain and especially of residue for ruminant feeding.  相似文献   

5.
Abstract

This study investigated effects of iron (Fe) and nitrogen (N) foliar application on Fe and zinc (Zn) content in chickpea grain, grain yield, and protein content. Application of FeSO4 at 0.5% at flowering?+?pod formation stages resulted in the highest Fe (73.50 and 75.34?mg Fe kg?1 grain in first and second year) and Zn (35.08 and 34.21?mg Zn kg?1 grain) content in grain followed by the application of FeSO4 at 0.5% at flowering stage alone (68.27 and 69.97?mg Fe kg?1 grain and 32.44 and 32.27?mg Zn kg?1 grain) and control (54.63 and 55.69?mg Fe kg?1 grain and 29.48 and 29.07?mg Zn kg?1 grain). Urea spray at 2% at flowering as well as at flowering?+?pod formation stages also improved the Zn and Fe content in the grain. Combined use of Fe and urea improved the grain Fe and Zn content over sole application of Fe.  相似文献   

6.
The objective of this study was to determine how to establish high and stable yields of winter rye under the impact of highly varying seeding densities and delayed sowing date. A field trial with three winter rye cultivars (two population cultivars and one F1 hybrid) was conducted on a sandy site over a period of three years. The results showed that seeding density, cultivar choice, and annual weather conditions are important factors impacting the yield variability of winter rye. Higher seeding densities led to higher and slightly more stable yields of winter rye. Moreover, a cultivar-adapted seeding date seemed to exploit yield potential advantageously. Interestingly, all three cultivars showed better yield stability with a two-week delay in seeding date. This study suggests that cultivar choice and management practices such as modulation of seeding date and seeding density play an important role in improving the grain yield and yield stability of winter rye.  相似文献   

7.
降水量和积温变化对天津冬小麦产量的影响   总被引:6,自引:0,他引:6  
利用天津1960-2008年冬小麦单产资料,采用统计方法分析了影响冬小麦产量变化的主要气象因子及其变化趋势。结果表明:3个时段(全生育期、拔节-灌浆期、播种前)的降水量以及越冬前正积温是影响天津冬小麦产量的两种主要气象因子。趋势分析表明,49a中天津地区3个时段的降水量呈先减少后增加的变化趋势,越冬前正积温呈直线增加趋势;根据分别建立的冬小麦气象产量与影响时段降水量、越冬前正积温的回归方程,计算得出全生育期降水量达到122mm、拔节-灌浆期降水量达到41mm、播种前降水量达到36mm和越冬前正积温达到511~627℃.d是天津冬小麦气象产量为正值的水分和温度临界指标;据此标准,49a中,3个时段降水亏缺概率为22%~80%,但由于灌溉能力的提高,降水对产量的影响作用减小;冬小麦越冬前遭遇低温的概率为10%~50%,遭遇高温的概率为8%,并随年代增加呈上升的趋势,积温对产量的影响作用逐渐增强。  相似文献   

8.
Intercropping cereal crops with perennial legumes for forage has been demonstrated as a means to improve nutritive value compared to cereal crops alone. Our objective was to determine whether sowing winter rye (Secale cereale L.) or winter triticale (x Triticosecale Wittmack) into living Caucasian clover (Trifolium ambiguum M. Bieb.) improves yield or nutritive value compared to monoculture cereal crop forage in northern Europe. The experiments were conducted near Moche?ek and Fal?cin, Poland. In autumn 2010 and 2011, winter rye was sown into existing Caucasian clover or in monoculture at Moche?ek, and winter triticale was sown into Caucasian clover or in monoculture at Fal?cin, with monoculture clover as a third crop treatment at both locations. The following spring, first harvest of forage from the three crop treatments was taken at two maturities: when monoculture cereals reached heading (BBCH 51) or grain milk stage (BBCH 71), and two additional harvests were taken from mixture plots and monoculture clover before autumn. First harvest forage yields of mixtures were similar to monoculture cereal at Fal?cin, less than monoculture cereal at Moche?ek, and greater than monoculture clover at both locations. Full season forage yields of mixtures were greater than both monoculture cereal and clover crops at both locations. The proportion of clover in mixtures was 20–31% in the first harvest, resulting in slightly lower neutral detergent fiber concentrations than in monoculture cereal crop at Fal?cin, but no improvement in nutritive value at Moche?ek. By spring 2012, most Caucasian clover had died from Sclerotinia trifoliorum infection at both locations, so forage was not harvested in the second year of the experiment. Although total season forage yields were greater for mixtures than for either monoculture cereal or Caucasian clover, this system cannot be recommended for northern Europe because of failure for Caucasian clover to persist.  相似文献   

9.
燕麦花生间作系统作物氮素累积与转移规律   总被引:5,自引:2,他引:3  
【目的】 研究燕麦‖花生间作系统中燕麦和花生的地上部干物质和氮素积累、花生根瘤固氮酶活性、固氮量及花生向燕麦的氮素转移量,明确间作花生固氮特性及花生向燕麦的氮素转移规律,进一步探索间作体系下氮素的循环机理。 【方法】 本研究在大田不施用氮肥的试验条件下,通过采用随机区组试验设计的方法,设置不同种植模式 (燕麦单作、花生单作、燕麦‖花生间作),采用传统挖根法和15N同位素标记法探索燕麦与花生的干物质积累量和氮素积累量,花生根瘤的生物固氮效率以及花生体内氮素向燕麦的转移规律。 【结果】 与单作燕麦相比,燕麦‖花生间作体系下,燕麦的地上部干物质量和氮素积累量均显著增加 (P < 0.05)。随着生育时期的推移,燕麦的地上部干物质量和氮素积累量在单作和间作模式下均呈现逐渐增加的趋势,成熟期达到最大值。成熟期,间作燕麦地上部干物质积累量比单作两年平均增加了40.6%,地上部氮素积累量平均增加了49.0%。间作花生的地上部干物质积累量与单作相比呈下降趋势,生育前期差异不显著,到成熟期,间作花生的干物质积累量两年平均比单作下降了20.6% ( P < 0.05)。开花结荚期间作花生的根瘤数和根瘤重比单作两年分别降低了21.3%和16.8%,单位质量的固氮酶活性平均降低了26.2% ( P < 0.05)。2011年和2012年,虽然在生理成熟期间作花生的固氮效率与单作相比分别提高了10.3%和37.1%,但花生生物固氮量分别降低了52.3%和26.3% ( P < 0.05)。2012年间作花生向燕麦的氮素转移率达到21.4%,转移氮量为15.3 mg/株。 【结论】 燕麦‖花生间作显著降低了开花结荚期花生单位质量的根瘤固氮酶活性,但提高了成熟期花生的固氮效率,促进了花生固氮能力的发挥,且在燕麦和花生共生期内,花生体内氮素可以转移到燕麦,从而增加了燕麦对氮素的吸收利用,实现地上与地下的相互调节和促进作用,因而,燕麦‖花生间作是东北农区农田生态系统优化氮素管理的重要途径之一。   相似文献   

10.
In grain legumes, the N requirements of growing seeds are generally greater than biological nitrogen fixation (BNF) and soil N uptake during seed filling, so that the N previously accumulated in the vegetative tissues needs to be redistributed in order to provide N to the seeds. Chickpea, field bean, pea, and white lupin were harvested at flowering and maturity to compare the relative contribution of BNF, soil N uptake, and N remobilisation to seed N. From flowering to maturity, shoot dry weight increased in all crops by approximately 50%, root did not appreciably change, and nodule decreased by 18%. The amount of plant N increased in all crops, however in field bean (17?g?m?2) it was about twice that in chickpea, pea, and lupin. The increase was entirely due to seeds, whose N content at maturity was 26?g?m?2 in field bean and 16?g?m?2 in chickpea, pea, and lupin. The seed N content at maturity was higher than total N accumulation during grain filling in all crops, and endogenous N previously accumulated in vegetative parts was remobilised to fulfil the N demand of filling seeds. Nitrogen remobilisation ranged from 7?g?m?2 in chickpea to 9?g?m?2 in field bean, and was crucial in providing N to the seeds of chickpea, pea, and lupin (half of seed N content) but it was less important in field bean (one-third). All the vegetative organs of the plants underwent N remobilisation: shoots contributed to the N supply of seeds from 58% to 85%, roots from 11% to 37%, and nodules less than 8%. Improving grain legume yield requires either reduced N remobilisation or enhanced N supply, thus, a useful strategy is to select cultivars with high post-anthesis N2 fixation or add mineral N at flowering.  相似文献   

11.
为探索陇东旱塬冬小麦高产高效绿色栽培新模式,以冬小麦品种陇鉴111为指示品种,采用裂区设计,以宽幅沟播和平作条播为主区,优化施肥和不施氮肥为副区,研究了宽幅沟播对陇东旱塬冬小麦产量、氮肥及水分利用效率的影响。结果表明,宽幅沟播显著影响旱地冬小麦籽粒穗粒数、千粒重、穗粒重等产量构成因子,较传统平作条播平均增产10.3%~24.3%,且以推荐优化施肥(N 150 kg/hm2、P2O5 180 kg/hm2)增产效果明显。与传统平作条播相比,可促进冬小麦植株氮素养分吸收,氮肥偏生产力和氮肥农学效率分别显著增加6.81、4.30 kg/kg,氮肥利用率明显提高了9.6百分点,水分利用效率提高了9.5%~19.6宜种植模式,以推荐优化施肥N 150 kg/hm2、P2O5 180 kg/hm2效果明显。  相似文献   

12.
The tillage system, which joins soil tillage, fertilisation, and seed sowing in one pass of a machine, is rarely used in cereal cultivation. This research aimed to study whether strip-till and conventional tillage (post-harvest ripping and mixing of stubble, ploughing, pre-sowing fertilisation, and seedbed preparation) differ in plant density, yield components, and grain yield of winter barley cultivated on Cambisol in a region with low rainfall, the annual average is about 500?mm. To reach this aim, a two-year, large-plot experiment was conducted in a production field. The soil within the field was spatially variable in texture, moisture, and chemical and biological properties, CV 2.3% do 29.6%. Strip-till had lower within-field spatial variability of winter barley grain yield than conventional tillage. The standard deviation was 0.36?t?ha?1, 0.67?t?ha?1 in the first year and 0.12?t?ha?1, 0.30?t?ha?1 in the second year, respectively. During the period of limited rainfall, strip-till had greater uniformity of plants after emergence; after the winter with low air temperature and a low amount of snow, it had greater plant density. Thus, strip-till can reduce variability of plants and their yield within a field, especially in adverse environmental conditions.  相似文献   

13.
Planting cover crops after corn‐silage harvest could have a critical role in the recovery of residual N and N from fall‐applied manure, which would otherwise be lost to the environment. Experiments were conducted at the University of Massachusetts Research Farm during the 2004–2006 growing seasons. Treatments consisted of oat and winter rye cover crops, and no cover crop, and four cover‐crop dates of planting. The earliest planting dates of oat and winter rye produced the maximum biomass yield and resulted in the highest nitrate accumulation in both cover‐crop species. The average nitrate accumulation for the 3 years in winter rye and oat at the earliest time of planting was 60 and 48 kg ha–1, respectively. In 2004 where the residual N level was high, winter rye accumulated 119 kg nitrate ha–1. While initially soil N levels were relatively high in early September they were almost zero at all sampling depths in all plots with and without cover crops later in the fall before the ground was frozen. However, in plots with cover crops, nitrate was accumulated in the cover‐crop tissue, whereas in plots with no cover crop the nitrate was lost to the environment mainly through leaching. The seeding date of cover crops influenced the contribution of N available to the subsequent crop. Corn plants with no added fertilizer, yielded 41% and 34% more silage when planted after oat and rye, respectively, compared with the no–cover crop treatment. Corn‐silage yield decreased linearly when planting of cover crops was delayed from early September to early or mid‐October. Corn‐ear yield was influenced more than silage by the species of cover crop and planting date. Similar to corn silage, ear yield was higher when corn was planted after oat. This could be attributed in part to the winter‐kill of oat, giving it more time to decompose in the soil and subsequent greater release of N, while the rapidly increasing C : N ratio of rye can lessen availability to corn plants. Early plantings of cover crops increased corn‐ear yield up to 59% compared with corn‐ear yield planted after no cover crop.  相似文献   

14.
ABSTRACT

Cover crops improve the recovery and recycling of nitrogen and impart weed suppression in crop production. A two-year study with six weekly plantings of cover crops including non-winterkilled species (hairy vetch, Vicia villosa L.; winter rye Secale cereale L.) and winterkilled species (oat, Avena sativa L.; forage radish, Raphanus sativus L.) were assessed for effects on growth of forage rape (Brassica napus L.) and weed suppression. Early planting of cover crops gave the highest biomass and highest nitrogen accumulation. Delaying planting from early-September to mid-October suppressed cover-crop biomass by about 40%. Forage radish produced more biomass in the fall than other cover crops but was winter killed. Spring biomass was highest with rye or vetch. All cover crops suppressed weeds, but suppression was greatest under rye or hairy vetch. Hairy vetch accumulated the largest nitrogen content. Forage rape plants yielded more biomass after a cover crop than after no-cover crop.  相似文献   

15.
典型高温年分期播种冬小麦生育及产量性状差异性分析   总被引:1,自引:0,他引:1  
在2016/2017年度自然高温年景下进行冬小麦分期播种实验,以适期晚播以来冬小麦多年平均播期(10月10日)为对照,设早播10d(E10)、迟播10d(L10)、迟播20d(L20)处理。通过方差分析、卡方检验、最小显著性差异和Logistic方程模拟等方法,对分期播种冬小麦发育期、生长量及产量因素等进行差异性分析,探究冬小麦在全球气候变暖背景下的适播期及其生长发育和产量性状变化规律。结果表明:不同播期处理的冬小麦冬前各发育期差异较大,越冬后随着气温升高,各播期冬小麦发育进程趋于一致;随着播期推迟,冬前积温递减趋势明显,冬小麦株高、绿叶面积和植株密度等生长要素均呈明显降低或减小趋势,冬小麦结实小穗数和不孕小穗数亦呈极显著减少趋势,各播期穗粒数则差异不显著;不同播期冬小麦千粒重差异极显著,其中早播10d处理极显著低于对照,迟播冬小麦处理与对照差异不显著;对照处理冬小麦产量最高;不同播期处理冬小麦灌浆过程均符合Logistic生长规律,对照籽粒渐增期持续时间长于其它处理,利于冬小麦增加籽粒“库容”,籽粒快增期灌浆速率快,利于提高粒重;随着播期的推迟,灌浆速率和持续时间的变化无明显规律,对照处理冬小麦灌浆过程相对稳定。  相似文献   

16.
In the Static Nutrient Deficiency Trial Thyrow (weak silty sand) 3 trial blocks were selected: without fertilizer, NPK?+?lime and NPK?+?lime?+?manure. They differ in nutrient content and graduate themselves considerably in the content of organic soil substance. In the field plots there are micro plots with the nitrogen stages 60, 120 and 160?kg ha??1, as the 15N marked ammoniumsulfat becomes incorporated. The nitrogen fertilizer of the first input only migrated 0?–?10?cm deep into the layer of the ground. Next to the plant N-intake it is defeated considerably by an apparent nitrogen immobilisation in the soil. The second nitrogen input is directly received by the plant and is affected by a nitrogen establishment; as it is a mineral nitrogen, also in the upper crumb lay, hard to prove. Against that the soil-born nitrogen is distributed above the depth, here until 60?cm, and becomes increasingly assimilated in the second vegetation half by rye. The yield increase during the vegetation, corn and straw yield for the harvest time follows the soil quality (trial blocks) as well as the actual fertilizer use. The nitrogen from the fertilizer pool corresponds a polynom 2, degrees, while the nitrogen in the soil is subjected in the nitrogen intake of a linear function. For the harvest the nitrogen uptake (grain and straw) form both, soil and fertilizer-N, in the variant NPK?+?lime?+?manure is the biggest.  相似文献   

17.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

18.
In seeking effective methods to prevent soil degradation, conservation tillage plays an important protective role. Apart from significantly reducing production costs, cover crops contributes to beneficial changes in the soil environment. A three-year field experiment included three cover crops (winter rye, winter oilseed rape, and white mustard) subjected to mulching or desiccation and to the action of a herbicide at three rates (100%, 75%, and 50%). The study evaluated soil moisture and the content of organic matter, phosphorus, potassium, and magnesium in two soil layers (0–15?cm and 15–30?cm). Cover cropping had a positive effect on soil organic matter content. More organic matter (by 4.7%) was recorded in the topsoil layer (0–15?cm). Among the cover crops most favorable effect on the content of organic matter in the soil had white mustard (an increase of 14.2%) compared to the control. Moreover, rye and white mustard mulch increased the soil content of phosphorus and magnesium, while oilseed rape mulch increased the potassium content. At the critical growth stages (the flowering/pod set) of soybean (Glycine max (L.) Merril), soil moisture was dependent on mulching treatment and soil layers.  相似文献   

19.
Abstract

Imbalanced and indiscriminate use of chemical fertilizers has been adversely influencing the quality of soil, environment, biodiversity and nutrient status in soil. Conjoint application of bio-inoculants (BI) with organic or inorganic sources of nutrients tweaks nutrient synchrony in soil and improves plant nutrition. With this backdrop an experiment was conducted at Indian Agricultural Research Institute, New Delhi during 2016–2018. The objectives were to identify the suitable combinations of BI-mediated nutrient sources for higher productivity and profitability in pigeon pea–wheat cropping system (PWCS). The nine pigeon pea treatments; four sole applications viz., recommended dose of fertilizers (RDF), vermicompost (VC), farm yard manure (FYM), leaf compost (LC) and four conjoint applications viz., RDF?+?BI, VC?+?BI, FYM?+?BI and LC?+?BI and one control were replicated thrice under randomized block design (RBD). However, in succeeding wheat, each of the treatments applied to pigeon pea was further allocated to two levels (50% and 100%) in factorial RBD. Findings exhibit that FYM?+?BI could result into higher equivalent-system grain productivity (10.4 and 10.8?t?ha?1 during 1st and 2nd year, respectively) of PWCS. However, profitability parameters of PWCS were higher with the RDF?+?BI. Uptake of nutrients (NPK) was significantly higher with FYM?+?BI in pigeon pea and RDF?+?BI in wheat. Nutrient harvest index (NHI) did not vary significantly in both the crops. Conclusively, bio-inoculation is more productive and beneficial in general, while, over the various combinations, recommendation of FYM?+?BI combination could be more productive and sustainable.  相似文献   

20.
ABSTRACT

Low productivity and energy use efficiency (EUE) of rice farming are the major concerns for agricultural sustainability in the Eastern Himalayan region of India. A field experiment on rice (Oryza sativa L.)-pea (Pisum sativum L) system was conducted for three consecutive years during 2012–15 in lowland ecosystem to assess the direct and residual impact of tillage and residue management (RM) practises on productivity and sustainability. Significantly higher grain yield of rice was achieved under no-till (NT) than minimum tillage (MT) and conventional tillage (CT). Among RM practises, 50% NPK + green leaf manure, 50% NPK + weed biomass and 50% NPK + in-situ residue retention recorded significantly higher mean grain yields than application of 50% NPK and 100% NPK without residues. Residual effect of MT in preceding rice gave significantly higher green pod yield of succeeding pea than NT and CT. The system EUE was significantly higher under MT (rice)-NT (pea) compared to those of NT-NT and CT-NT systems. The sustainable yield index of rice and pea was maximum under MT-NT followed by NT-NT. Thus, NT/MT with suitable RM practises is a pertinent strategy for sustainable productivity of rice-pea system in the Eastern Himalayas and in similar adjoining regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号