首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Using various plant materials, we identified two conceptual pools of plant litter, decomposable plant material (DPM) and resistant plant material (RPM), in the Rothamsted Carbon Model (RothC) by comparing the default proportions of DPM and RPM in the RothC and proportions in plant material fractions as determined by two-step acid hydrolysis with H2SO4. We collected 37 plant samples from 15 species at six sites on arable land, grassland, or forest in Japan. Carbon in the plant materials was divided into three pools by acid hydrolysis: (a) Labile Pool I (LP I), obtained by hydrolysis with 5 N H2SO4 at 105 °C for 30 min; (b) Labile Pool II (LP II), obtained by hydrolysis with 26 N H2SO4 at room temperature overnight, and then with 2 N H2SO4 at 105 °C for 3 h; and (c) Recalcitrant Pool (RP), the unhydrolyzed residue. The average proportion of LP I in crops and grasses was 59%, which was the same as the proportion of DPM defined in the RothC as the default value for crops and grasses. The remaining 41% (23% LP II+18% RP) was consequently the same as the RPM proportion defined in the RothC. Similarly, the average proportion of LP I in all tree leaves (19%) was very close to the proportion of DPM in the RothC (20%) for trees. These results indicate that DPM in the RothC can be identified as LP I from the acid hydrolysis analysis and RPM as LP II+RP. We conclude that, at least theoretically, the use of an independent DPM:RPM ratio, as determined by acid hydrolysis analysis for each plant material, should enable more reliable modeling of SOM dynamics than the use of default DPM:RPM values provided by the model, even though the practical advantages of this method require further evaluation.  相似文献   

2.
Multi-compartment soil carbon (C) simulation models such as RothC are widely used for predicting changes in C stocks of arable soils. However, rigorous routines for establishing entry pools that account for the diversity of exogenous organic matter (EOM) applied to croplands are still lacking. We obtained data on changes in soil C stocks after repeated applications of EOM from four long-term experiments (LTEs): Askov K2 (Denmark, 31 yrs), Qualiagro (France, 11 yrs), SERAIL (France, 14 yrs) and Ultuna (Sweden, 52 yrs). The adjustment of the partition coefficients of total organic C in EOM (EOM-TOC) into the labile, resistant and humified entry pools of RothC (fDPM, fRPM, fHUM, respectively) provided a successful fit to the accumulation of EOM-derived C in the LTE soils. Equations estimating the EOM partition coefficients in the RothC model were based on an indicator (IROC) of the EOM-TOC potentially retained in soil. IROC was derived from the C found in the soluble, lignin + cutin-like and cellulose-like Van Soest fractions and the proportion of EOM-TOC mineralized during 3 days of incubation. Using the EOM partition coefficients derived from these laboratory analyses resulted in RothC simulations with only slightly larger errors than simulations based on partition coefficients fitted from LTE soil data, except for EOMs that caused very large accumulations of C in soil (e.g. peat) possibly due to factors not accounted for in the RothC model, such as change in soil pH. The proposed partitioning of EOM-TOC allows the potential soil C storage after EOM applications to be predicted regardless of field location and specific composition of EOMs.  相似文献   

3.
Understanding the response of soil organic carbon (SOC) to environmental and management factors is necessary for estimating the potential of soils to sequester atmospheric carbon. Changes over time in the amount and distribution of SOC fractions with different turnover rates can be estimated by means of soil SOC models such as RothC, which typically consider two to five SOC pools. Ideally, these pools should correspond to measurable SOC fractions. The aim of this study was to test the relationship between SOC pools used in RothC and fractions separated through a fractionation procedure. A total of 123 topsoil samples from agricultural sites (arable land, grassland and alpine pasture) across Switzerland were used. A combination of physical and chemical methods resulted in two sensitive (particulate organic matter and dissolved organic carbon), two slow (carbon associated to clay and silt or stabilized in aggregates) and one passive (oxidation-resistant carbon) SOM fractions. These fractions were compared with the estimated equilibrium model pools when the corresponding soils were modelled with RothC. Analysis revealed strong correlations between SOC in measured fractions and modelled pools. Spearman's rank correlation coefficients varied between 0.82 for decomposable plant materials (DPM), 0.76 for resistant plant materials (RPM), 0.99 for humified organic matter (HUM) and biomass (BIO), and 0.73 for inert organic matter (IOM). The results show that the proposed fractionation procedure can be used with minor adaptations to identify measurable SOC fractions, which can be used to initialize and evaluate RothC for a wide range of site conditions.  相似文献   

4.
Fourty‐one soil samples from the “Eternal Rye” long‐term experiment in Halle, Germany, were used to test the usefulness of near‐infrared spectroscopy (NIRS) to differentiate between C derived from C3 and C4 plants by using the isotopic signature (δ13C) and to predict the pools considered in the Rothamsted Carbon (RothC) model, i.e., decomposable plant material, resistant plant material, microbial biomass, humified organic matter, and inert organic matter. All samples were scanned in the visible‐light and near‐infrared region (400–2500 nm). Cross‐validation equations were developed using the whole spectrum (first to third derivative) and a modified partial least‐square regression method. δ13C values and all pools of the RothC model were successfully predicted by NIRS as reflected by RSC values (ratio between standard deviation of the laboratory results and standard error of cross‐validation) ranging from 3.2 to 3.4. Correlations analysis indicated that organic C can be excluded as basis for the successful predictions by NIRS in most cases, i.e., 11 out of 16.  相似文献   

5.
Change in temperature sensitivity of soil organic carbon (SOC) decomposition with change in soil qualities (i.e. decomposability or lability) is one of the most important issues to be evaluated for projection of future CO2 emissions from soils. We inversely estimated the temperature sensitivity of SOC decomposition rate by applying a hybrid of the Metropolis-Hasting algorithm and the particle filter method to the extended Rothamsted carbon model (RothC), together with long-term (9 years) experimental data on SOC obtained at five sites in Japanese upland soils. Contrary to the prediction of the Arrhenius kinetics theory, we found no significant differences in temperature sensitivity among soils with different qualities (represented as soil compartments in the RothC model). We also confirmed that there was a positive correlation between the relative temperature sensitivity of the humus compartment and future total CO2 emissions. The RothC model with default parameterization tended to overestimate future total CO2 emissions relative to the calibrated model, and the degree of overestimation was larger than that of underestimation.  相似文献   

6.
We tested the Rothamsted Carbon Model (RothC) against three long‐term (27–28 years) experimental sites on Thai upland soils in order to see how this widely used ‘temperate’ soil carbon turnover model performed in a typical farming region in the tropics. We were able to verify – over a much longer period than had been examined in previous studies – that RothC performs well in a tropical region in plots used for continuous cropping experiments of maize and cassava without organic matter application. However, the model overestimated soil organic carbon (SOC) in some plots to which large amounts of organic matter (rice straw or cassava stalks) were applied. This overestimate could not be attributed to errors in estimating either the amount of C input to the soil or the ratio of decomposable plant materials to resistant plant materials entering the soil. Among many factors affecting SOC dynamics (e.g. weather conditions, soil characteristics, etc.), which are different in tropical regions from temperate regions, we conclude that the activity of soil fauna might be a major factor which makes the performance of RothC worse where much organic matter was applied. We suggest that care should be taken when applying RothC to tropical soils with large amounts of added organic matter.  相似文献   

7.
Soil organic carbon (SOC) modelling is a useful approach to assess the impact of nutrient management on carbon sequestration. RothC was parameterized and evaluated with two long‐term experiments comparing different fertilizer treatments in north (Zhengzhou) and northeast (Gongzhuling) China. Four nutrient application treatments were used: no fertilizer (Control), mineral nitrogen–phosphorus–potassium fertilizers (NPK), NPK mineral fertilizer plus manure (NPKM), and NPK mineral fertilizer plus straw return (NPKS). The comparison between simulated and observed data showed that the model can adequately simulate SOC contents in the Control, NPK and NPKM treatments but overestimated in the NPKS treatment at both sites. By changing the value of decomposable plant material:resistant plant material (DPM:RPM) ratio from the default value to 3.35 for the NPKS treatment at the Zhengzhou site, dynamics of simulated SOC agreed with measured values. A pseudo‐parameter, straw retention factor was introduced to adjust the amount of straw incorporated into soils. Using the inverse simulation method and the modified value of the ratio, the best‐fitted value was 0.24 for the NPKS treatment at the Gongzhuling site. This result indicated that retaining straw on the soil surface makes less contribution to carbon sequestration than if it is incorporated. With this modification for straw, the model produced reasonable predictions for the two sites. The model was run for another 30 years with the modified parameter values and current average climatic conditions for different fertilizer treatments at both sites. The results suggested that the NPK application plus the addition of manure or straw would be better management practices for carbon sequestration.  相似文献   

8.
Organic amendments are important to sustain soil organic matter (SOM) and soil functions in agricultural soils. Information about the contribution of organic amendments to SOM can be derived from incubation experiments. In this study, data from 72 incubated organic amendments including plant residues, digestates and manure were analysed. The incubation data was compiled from three experimental setups with varying incubation times, soils and incubation temperatures, in which CO2 release was measured continuously. The analysis of the incubation data was performed with an approach relying on conceptual parts of C-TOOL, CCB, Century, ICBM, RothC and Yasso which are all well-approved first-order carbon models that differ in structure and abstraction level. All models are an approximation of reality, whereby each model differs in understanding of the processes involved in soil carbon dynamics. To accumulate the advantages from each model a model ensemble was performed for each substrate. With the ability of each carbon model to compute the distribution of carbon into specific SOM pools a new approach for evaluating organic amendments in terms of humus building efficiency is presented that, depends on the weighted model fit of each ensemble member. Depending on the organic substrate added to the soil, the time course of CO2 release in the incubation studies was predicted with different accuracy by the individual model concepts. Averaging the output of the individual models leads to more robust prediction of SOM dynamics. The EHUM value is easy to interpret and the results are in accordance with the literature.  相似文献   

9.
Agricultural soils play a very important role in regulating the carbon dioxide (CO2) content of the atmosphere, and can behave either as carbon sources or sinks. We have simulated the dynamics of carbon in the soil under different land uses and soil-management systems in a Mediterranean olive grove with the Rothamsted carbon (RothC) model. To this end we chose patches of native vegetation (NV) and two different olive grove soils (chromic calcisols and calcic vertisols) under different soil-management systems: conventional tillage (T), and mulching with shredded olive-pruning debris and residues from olive-fruit cleaning (PD + CR). We measured the clay content, bulk density, soil organic carbon (SOC) and total nitrogen (N) in each patch. The SOC and N values decreased by more than 30% as a result of a change in soil use from NV to T olive grove. After adding PD + CR these values rose once more, even to levels above NV. The RothC model performed well for covered soils (NV and PD + CR) but overestimated the SOC values after the soil use was changed from NV to T olive grove, probably due to high carbon losses caused by erosion, common to T soils in the Mediterranean basin. As a result of mulching the soil with only pruning debris, CO2 emitted to the atmosphere was reduced by >55% for both soils. Associated with this decrease in the emission rate, RothC estimated a potential carbon sequestration of 0.5 and 0.6 t C/ha/yr for chromic calcisols and calcic vertisols, respectively. The reuse of organic debris generated in the olive grove, such as pruning debris and residues from olive-fruit cleaning, is an efficient way of improving soil properties, diminishing CO2 emissions and increasing the soil’s capacity to store carbon.  相似文献   

10.
Abstract. Many former estimates of regional scale C sequestration potential have made use of linear regressions based on long-term experimental data, whilst some have used dynamic soil organic matter (SOM) models linked to spatial databases. Few studies have compared the two methods. We present a case study in which the potential of different land management practices to sequester carbon in soil in arable land is estimated by different methods. Two dynamic SOM models were chosen for this study, RothC (a soil process model) and CENTURY (a whole ecosystem model with a SOM module). RothC and CENTURY are the two most widely used and validated SOM models worldwide. A Geographic Information System (GIS) containing soil, land use and climate layers, was assembled for a case study in central Hungary. GIS interfaces were developed for the RothC and CENTURY models, thus linking them to the spatial datasets at the regional level. This allowed a comparison of estimates of the C sequestration potential of different land management practices obtained using the two models and using regression based approaches. Although estimates obtained by the different approaches were of the same order of magnitude, differences were observed. Some of the land management scenarios studied here showed sufficient C mitigation potential to meet Hungarian CO2 reduction commitments. For example, afforestation of 12% current arable land could sequester 0.042–0.092 Tg yr–1 in the soil alone, or 0.285–0.588 Tg C yr–1 in both soil and biomass; 1990 level CO2 emissions for the study area were 4.7 Tg C with a corresponding reduction commitment of 0.282 Tg C. It is not, however, suggested that this is the only, or the most favourable way, in which to meet the commitments.  相似文献   

11.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

12.
Abstract. Predictive, regional use of soil organic matter (SOM) models requires evaluation of the performance of models with datasets from long‐term experiments relevant to the scenarios of interest to the regional scale study, and relevant to the climate of the study region. Datasets from six long‐term experiments were used to evaluate the performance of RothC and CENTURY, two of the most widely used and tested SOM models. Three types of model run were completed for each site: (1) CENTURY model alone; (2) RothC model run to fit measured SOC values, by iteratively adjusting C inputs to soil; and (3) RothC model run using C inputs derived from CENTURY runs. In general, the performance of both models was good across all datasets. The runs using RothC (iteratively changing C inputs to fit measured SOC values) tended to have the best fit to model data, since this method involved direct fitting to observed data. Carbon inputs estimated by RothC were, in general, lower than those estimated by CENTURY, since SOC in CENTURY tends to turn over faster than SOC in RothC. The runs using RothC with CENTURY C inputs tended to have the poorest fit of all, since CENTURY predicted greater C inputs than were required by RothC to maintain the same SOC content. A plausible model fit to measured SOC data may be obtained with widely differing C input values, due to differences in predicted decomposition rates between models. It remains unclear which, if either, modelling approach most closely represents reality since both C inputs to soil and decomposition rates for bulk SOM are difficult to determine experimentally. Further progress in SOM modelling can only be the result of research leading to better process understanding, both of net C inputs to soil and of SOM decomposition rates. The use of default methods for estimating initial SOC pools in RothC and CENTURY may not always be appropriate and may require adjustment for specific sites. The simulations presented here also suggest details of SOC dynamics not shown by available measured data, especially trends between sampling intervals, and this emphasizes the importance of archived soil samples in long‐term experiments.  相似文献   

13.
Low temperatures and high soil moisture restrict cycling of organic matter in arctic soils, but also substrate quality, i.e. labile carbon (C) availability, exerts control on microbial activity. Plant exudation of labile C may facilitate microbial growth and enhance microbial immobilization of nitrogen (N). Here, we studied 15N label incorporation into microbes, plants and soil N pools after both long-term (12 years) climate manipulation and nutrient addition, plant clipping and a pulse-addition of labile C to the soil, in order to gain information on interactions among soil N and C pools, microorganisms and plants. There were few effects of long-term warming and fertilization on soil and plant pools. However, fertilization increased soil and plant N pools and increased pool dilution of the added 15N label. In all treatments, microbes immobilized a major part of the added 15N shortly after label addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N availability, both in the presence of plants and with the combined treatment of plant clipping and addition of sugar, suggest that the plant control of soil N pools was not solely due to plant uptake of soil N, but also partially caused by plants feeding labile C to the soil microbes, which enhanced their immobilization power. Hence, the cycling of N in subarctic heath tundra is strongly influenced by alternating release and immobilization by microorganisms, which on the other hand seems to be less affected by long-term warming than by addition or removal of sources of labile C.  相似文献   

14.
 The capability of the NCSOIL computer model to simulate the effects of residue fractions on mineralisation-immobilisation turnover was evaluated. Heterogeneous organic substrates were represented in the model by three Van Soest pools, decomposing at different rates. Dried and ground wheat straw, sunflower stalks, wheat stubble and sheep manure (5.22 g kg–1 soil) were respectively added to a Chromic Calcixerert and aerobically incubated for 224 days at 22±2  °C and 75% field capacity. The CO2 evolution rates peaked shortly after the C amendments were added, with the highest rate in the sunflower- stalk-amended soils. The addition of organic substrates induced rapid N immobilisation. Net mineralisation was detected earliest in the sunflower-stalk treatment (day 14), while soils with the other amendments showed no net N mineralisation until day 52. The NCSOIL model was calibrated for this soil with CO2 and inorganic N data from the control soil, yielding a χ2 value of 0.011. The overestimation by the model of the C mineralisation data in the case of C-amended soils clearly showed that the concept of three Van Soest pools, decomposing independently at a specific rate constant, is not valid. A retardation factor, that was related to the lignin content of the decomposing material, was introduced into the model. After its introduction the model satisfactorily simulated the C mineralisation rates. However, for all plant residues, N mineralisation was underestimated towards the end of the incubation period. In the case of the soil amended with sheep manure, there was a large discrepancy between simulated and experimental N mineralisation-immobilisation kinetics, suggesting a different allocation of N in animal manure to N-containing fractions compared to that of plant residues. The results indicated that a N fractionation procedure for organic residues should be tested and incorporated into the model. Received: 9 January 1998  相似文献   

15.

Background, aim, and scope  

Land-use change can significantly influence carbon (C) storage and fluxes in terrestrial ecosystems. Soil–plant systems can act as sinks or sources of atmospheric CO2 depending on formation and decomposition rates of soil organic matter. Therefore, changes in tropical soil C pools could have significant impacts on the global C cycle. This study aims to evaluate the impacts of long-term sugarcane cultivation on soil aggregation and organic matter, and to quantify temporal dynamics of soil organic matter in cultivated sugarcane plantation soils previously under a tropical natural secondary forest.  相似文献   

16.
The Kyoto Protocol explicitly allows the storage of carbon (C) in ecosystems resulting from afforestation to be offset against a nation's carbon emissions and paves the way for carbon storage in soils to be eligible as carbon offsets in the future. More information is required about how afforestation affects carbon storage, especially in the soil. We report a study in which soil carbon storage in first‐rotation Mediterranean Pinus radiata plantations, established on former cereal fields and vineyards, was measured and modelled. Measurements were made on plantations of several ages, as well as repeat measurements at the same site after 5 years. We tested the ability of two widely used soil organic matter models (RothC and Century) to predict carbon sequestration in Mediterranean forest soils. Increases in the top 5 cm of soil of about 10 g C m?2 year?1 were observed after afforestation of former vineyards, but nitrogen (N) either remained the same or decreased slightly. During afforestation, most organic matter accumulated in the ectorganic layers at a rate of 19 g C m?2 year?1 in former vineyards and 41 g C m?2 year?1 in former cereal fields. The RothC and Century models were sensitive to previous land use and estimated a carbon sequestration potential over 20 years of 950 and 700 g C m?2, respectively. The accurate simulation of the dynamics of soil organic matter by RothC, together with measured above‐ground inputs, allowed us to calculate below‐ground inputs during afforestation. The Century model simulated total C and N, including the ectorganic horizons, well. Simulations showed a depletion of N in the below‐ground fractions during afforestation, with N limitation in the former vineyard but not on former cereal land. The approach demonstrates the potential of models to enhance our understanding of the processes leading to carbon sequestration in soils.  相似文献   

17.
Exudates are part of the total rhizodeposition released by plant roots to soil and are considered as a substantial input of soil organic matter. Exact quantitative data concerning the contribution of exudates to soil C pools are still missing. This study was conducted to reveal effects of 13C‐labeled exudate (artificial mixture) which was regularly applied to upper soil material from two agricultural soils. The contribution of exudate C to water‐extractable organic C (WEOC), microbial biomass C (MBC), and CO2‐C evolution was investigated during a 74 d incubation. The WEOC, MBC, and CO2‐C concentrations and the respective δ13C values were determined regularly. In both soils, significant incorporation of artificial‐exudate‐derived C was observed in the WEOC and MBC pool and in CO2‐C. Up to approx. 50% of the exudate‐C amounts added were recovered in the order WEOC << MBC < CO2‐C in both soils at the end of the incubation. Newly built microbial biomass consisted mainly of exudates, which substituted soil‐derived C. Correspondingly, the CO2‐C evolved from exudate‐treated soils relative to the controls was dominated by exudate C, showing a preferential mineralization of this substrate. Our results suggest that the remaining 50% of the exudate C added became stabilized in non‐water‐extractable organic fractions. This assumption was supported by the determination of the total organic C in the soils on the second‐last sampling towards the end of the incubation. In the exudate‐treated soils, significantly more soil‐derived C compared to the controls was found in the WEOC on almost all samplings and in the MBC on the first sampling. This material might have derived from exchange processes between the added exudate and the soil matrix. This study showed that easily available substrates can be stabilized in soil at least in the short term.  相似文献   

18.
Grassland management aimed at enhancing carbon (C) in soil is an important tool in mitigation of rising atmospheric CO2, yet little is known of how grassland soil C changes with livestock stocking rate (SR). We relate soil organic and inorganic C mass (t ha−1 to 60 cm depth) with cattle stocking over periods of 7–27 year for 32 paddocks distributed across nine community pastures in the mixed-grass prairie of Saskatchewan, Canada. Initial analysis comparing Akaike information criterion models showed that cattle SR explained a greater proportion of variance in soil C, particularly soil organic C, than rainfall. Soil organic C mass increased with cattle SR (R2 = .293; = .001), even when the latter was normalized to account for differences in vegetation composition and growing conditions among pastures. Normalized SR varied from 0.49 to 2.30 times recommended levels, over which SOC increased from 24.7 to 57.4 t ha−1. Increases in soil organic C under greater stocking coincided with increased abundance of introduced vegetation, particularly the rhizomatous grass Poa pratensis. Inorganic soil C accounted for 34.6% of total soil C, being particularly large below 30 cm soil depth, but did not vary with stocking rate. These findings indicate that both organic and inorganic C are important pools of C in northern temperate grassland soils, with soil organic C positively associated with long-term cattle SR. Further studies are recommended to understand more fully the mechanisms regulating grazing impacts on soil C mass in northern temperate grasslands.  相似文献   

19.
Elevated atmospheric carbon dioxide (CO2) levels generally stimulate carbon (C) uptake by plants, but the fate of this additional C largely remains unknown. This uncertainty is due in part to the difficulty in detecting small changes in soil carbon pools. We conducted a series of long-term (170-330 days) laboratory incubation experiments to examine changes in soil organic matter pool sizes and turnover rates in soil collected from an open-top chamber (OTC) elevated CO2 study in Colorado shortgrass steppe. We measured concentration and isotopic composition of respired CO2 and applied a two-pool exponential decay model to estimate pool sizes and turnover rates of active and slow C pools. The active and slow C pools of surface soils (5-10 cm depth) were increased by elevated CO2, but turnover rates of these pools were not consistently altered. These findings indicate a potential for C accumulation in near-surface soil C pools under elevated CO2. Stable isotopes provided evidence that elevated CO2 did not alter the decomposition rate of new C inputs. Temporal variations in measured δ13C of respired CO2 during incubation probably resulted mainly from the decomposition of changing mixtures of fresh residue and older organic matter. Lignin decomposition may have contributed to declining δ13C values late in the experiments. Isotopic dynamics during decomposition should be taken into account when interpreting δ13C measurements of soil respiration. Our study provides new understanding of soil C dynamics under elevated CO2 through the use of stable C isotope measurements during microbial organic matter mineralization.  相似文献   

20.
We evaluated the suitability of the Rothamsted Carbon (RothC) model for long-term experiments on Japanese non-volcanic upland soils using 6 long-term experimental data sets: 2 Brown Lowland Soils, 2 Yellow Soils, 1 Gray Lowland Soil, and 1 Brown Forest Soil. The predicted changes in the content of soil carbon with time were very close to the observed values in almost all the treatments at all the 6 sites. These 6 sites were distributed from North to South across Japan and included a variety of climatic conditions, soil textures, and land management practices. We therefore concluded that the RothC model adequately simulated changes in the soil carbon content with time in Japanese non-volcanic upland soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号