首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

2.
Many studies have shown that plants can utilize organic N in the form of amino acids. However, it is unclear whether the glycine‐uptake capability responds differently to various farm management systems, and whether the interaction of farm management type with soil glycine concentrations affects the glycine uptake by plants. A pot experiment was conducted in which pak choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee) was grown in soil from organic and conventional agricultural systems for 15 d prior to labeling with 2‐13C, 15N‐glycine in a range of Gly concentrations (0, 0.005, 0.05, 0.5, 5, and 15 μg N g?1 dry soil). The glycine uptake rate increased with increasing applied N concentrations, whereas the glycine recovery increased initially and then decreased. Regardless of glycine concentration, the glycine uptake rates of whole plants were moderate, but not significantly higher in organic than in conventional soil. The plant glycine recovery in organic soil was significantly higher than in conventional soil. Therefore, we suggest that pak choi glycine uptake differs under organic and conventional management systems. More research efforts should focus on the nutritional function of organic N in organic systems.  相似文献   

3.
This study evaluated the petiole uptake of nitrogen, phosphorus, potassium, and sulfur (N, P, K, and S) by the potato from two seed meals, mint compost, and five commercially available organic fertilizers under an irrigated certified organic production system. Available soil nitrate (NO3-N) and ammonium (NH4-N) from each amendment averaged 115 kg N ha?1 at application and 25 kg N ha?1 30 d after planting through harvest, with minor differences between fertilizers. Petiole N declined from an average of 25,000 mg N kg?1, 4 wk after emergence to 3,000 mg N kg?1 prior to harvest. Petiole P and K concentrations were maintained above 4,000 mg P kg?1, 10,000 mg K kg?1, and 2,000 mg S kg?1 tissue, respectively, throughout the growing season in all treatments. Tuber yields were not different between fertilized treatments averaging 53 Mg ha?1. This study provides organic potato growers baseline information on the performance of a diverse array of organic fertilizers and amendments.  相似文献   

4.
In this paper, the uptake kinetics of various nitrogens (nitrate (NO3?), ammonium (NH4+), urea, amino acid) by Chinese kale (Brassica oleracea L. var. Bailey) were studied under hydroponic condition. The results indicated that the uptake kinetics of organic and inorganic nitrogen (N) by Chinese kale conform to the Michaelis–Menten equation, and the maximum uptake rate (Vmax) and affinity index (1/Km) showed nitrate (NO3N) > ammonium (NH4+-N) > urea-N > Gly-N, with significant differences between treatments (p < 0.05). Adding different types of N to NO3? nutrient solution had little impact on its affinity, but significantly decreased the NO3? Vmax, which showed NO3N > NO3? + NH4+ > NO3? + urea > NO3? + Gly. Chinese kale preferred inorganic N to organic N, with NO3? preceding NH4+. Adding organic and NH4+ N to nutrient solution reduced the NO3? uptake capacity by the plant.  相似文献   

5.
It is well known that plants are capable of taking up intact amino acids. However, how the nitrogen (N) rates and N forms affect amino acid uptake and amino acid nutritional contribution for plant are still uncertain. Effects of the different proportions of nitrate (NO3?), ammonium (NH4+) and 15N-labeled glycine on pakchoi seedlings glycine uptake were investigated for 21 days hydroponics under the aseptic media. Our results showed that plant biomass and glycine uptake was positively related to glycine rate. NO3? and NH4+, the two antagonistic N forms, both significantly inhibited plant glycine uptake. Their interactions with glycine were also negatively related to glycine uptake and glycine nutritional contribution. Glycine nutritional contribution in the treatments with high glycine rate (13.4%–35.8%) was significantly higher than that with low glycine rate (2.2%–13.2%). The high nutritional contribution indicated amino acids can serve as an important N source for plant growth under the high organic and low inorganic N input ecosystem.  相似文献   

6.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

7.
A 56-day aerobic incubation experiment was performed with 15-nitrogen (N) tracer techniques after application of wheat straw to investigate nitrate-N (NO3-N) immobilization in a typical intensively managed calcareous Fluvaquent soil. The dynamics of concentration and isotopic abundance of soil N pools and nitrous oxide (N2O) emission were determined. As the amount of straw increased, the concentration and isotopic abundance of total soil organic N and newly formed labeled particulate organic matter (POM-N) increased while NO3-N decreased. When 15NO3-N was applied combined with a large amount of straw at 5000 mg carbon (C) kg?1 only 1.1 ± 0.4 mg kg?1 NO3-N remained on day 56. The soil microbial biomass N (SMBN) concentration and newly formed labeled SMBN increased significantly (P < 0.05) with increasing amount of straw. Total N2O-N emissions were at levels of only micrograms kg?1 soil. The results indicate that application of straw can promote the immobilization of excessive nitrate with little emission of N2O.  相似文献   

8.
Direct uptake and rapid decrease of organic nitrogen by Wollemia nobilis   总被引:1,自引:0,他引:1  
Organic nitrogen (N) can be directly taken up by many plants, particularly under low-temperature and N-limited conditions. The natural environment of Wollemia nobilis, shady conditions and shallow, acidic soils with high organic matter, led to the hypothesis that organic N might be a potential N source, although this species is living in a subtropical area. A pot experiment was carried out to investigate whether W. nobilis seedlings have the capability to take up intact organic N and whether the uptake of organic N contributes significantly to N acquisition for W. nobilis. Three 15N-labeled N forms, ammonium (NH4-N), nitrate (NO3-N), or glycine, were injected into soils separately, and the tissues of plants were then harvested 6 and 48 h after injection. Our results demonstrated that W. nobilis, a subtropical species, has the capability to take up intact glycine as indicated by the enrichment of 13C and 15N in fine roots at a nearly 1:1 ratio. The uptake rate of glycine-N was faster than that of inorganic N, but which was only restricted in the short term (6 h). The absorbed glycine-N reduced quickly (in 48 h), indicating that organic N uptake did not contribute greatly to N acquisition for W. nobilis.  相似文献   

9.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

10.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

11.
Our understanding of leaf litter carbon (C) and nitrogen (N) cycling and its effects on N management of deciduous permanent crops is limited. In a 30-day laboratory incubation, we compared soil respiration and changes in mineral N [ammonium (NH4+-N) + nitrate (NO3-N)], microbial biomass nitrogen (MBN), total organic carbon (TOC) and total non-extractable organic nitrogen (TON) between a control soil at 15N natural abundance (δ15N = 1.08‰) without leaf litter and a treatment with the same soil, but with almond (Prunus dulcis (Mill.) D.A. Webb) leaf litter that was also enriched in 15N (δ15N = 213‰). Furthermore, a two-end member isotope mixing model was used to identify the source of N in mineral N, MBN and TON pools as either soil or leaf litter. Over 30 d, control and treatment TOC pools decreased while the TON pool increased for the treatment and decreased for the control. Greater soil respiration and significantly lower (p < 0.05) mineral N from 3 to 15 d and significantly greater MBN from 10 to 30 d were observed for the treatment compared to the control. After 30 d, soil-sourced mineral N was significantly greater for the treatment compared to the control. Combined mineral N and MBN pools derived from leaf litter followed a positive linear trend (R2 = 0.75) at a rate of 1.39 μg N g?1 soil day?1. These results suggest early-stage decomposition of leaf litter leads to N immobilization followed by greater N mineralization during later stages of decomposition. Direct observations of leaf litter C and N cycling assists with quantifying soil N retention and availability in orchard N budgets.  相似文献   

12.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

13.
Reductive dissolution of soil manganese (Mn) oxides increases potential toxicity of Mn2+ to plants. In order to examine the effect of nitrogen forms on reduction of Mn oxides in rhizosphere soil, a rhizobox experiment was employed to investigate the reduction of Mn oxides due to the growth of soybean and maize in an Oxisol with various contents of NO3-N and NH4+-N and a total N of 200 mg kg?1. The results showed that exchangeable Mn2+ in rhizosphere soil was 9.6–32.7 mg kg?1 higher than that in bulk soil after cultivation of soybean and maize for 80 days, which suggested that plant root exudates increased reduction of soil Mn oxides. Application of ammonium-N promoted reduction of Mn oxides in rhizosphere soil compared to application of nitrate and nitrate together with ammonium. Soybean cultivation led to a higher reduction in soil Mn oxides than maize cultivation. Application of single ammonium enhanced Mn uptake by the plants and led to more Mn accumulating in plant leaves, especially for soybean. Therefore, application of ammonium-based fertilizer can promote reduction of soil Mn oxides, while application of nitrate-based fertilizer can inhibit reduction of soil Mn oxides and thus reduce Mn2+ toxicity to plants.  相似文献   

14.
In an ongoing field experiment, organic and conventional farming (control) were compared for onion bulb yield, biochemical quality, soil organic carbon (SOC), and microbial activity after the sixth cropping cycle. The treatments used for organic production were farmyard manure (FYM, 20,000 kg ha?1), poultry manure (PM, 10,000 kg ha?1), vermicompost (VC, 10,000 kg ha?1), neem cake (NC, 5000 kg ha?1), and a combination of FYM (5000 kg ha?1), PM (2500 kg ha?1), VC (2500 kg ha?1), and NC (1250 kg ha?1); all treatments were compared with the control. Organic treatments produced 24.6–43.6% lower yield consistently for 6 years than the control treatment. No significant difference was observed between PM, FYM, and VC treatments for the bulb yield. Bulb analysis during the sixth year indicated that plants that received FYM, PM, or VC had higher levels of total phenol, total flavonoid, ascorbic acid, and quercetin-3-glucoside than the control plants. All the five organically treated sets had significantly higher values of SOC, microbial population, fungal-to-bacterial ratio, and dehydrogenase activity than the control and the initial values in each treated set. The results indicate that FYM, PM, or VC application enhances biochemical quality and organic farming is more sustainable than conventional farming.  相似文献   

15.
The response of lettuce to production system, organic and phosphate fertilizers and root mycorrhization, was evaluated in two pot trials with factorial treatment combination of: (i) soil type (from organic and from conventional production systems) and organic fertilizer (0, 2 and 4 t ha?1) in the first trial; and (ii) mycorrhizal inoculation (mycorrhized and non-mycorrhized plants) and Gafsa phosphate (0, 100 and 200 kg P2O5 ha?1) in the second. Lettuce growth decreased with increasing rates of the organic fertilizer because of its very high electrical conductivity (50.1 dS m?1) and lack of maturation. However, the fertilizer harmful effects were minimized in the soil from organic production. The application of Gafsa phosphate significantly increased lettuce yield and nutrient uptake. However, for the highest rate of phosphate, mycorrhized lettuce yield decreased compared to non-mycorrhized lettuce, suggesting that high soil available P may have harmful effects on the activity of mycorrhizal fungi.  相似文献   

16.
The uptake of N by ryegrass grown in pot culture on a range of soils differing widely in content of nonexchangeable NH4-N (topsoils: 117 to 354 mg kg?1 soil; subsoils: 117 to 270 mg kg?1 soil) was measured to indicate whether the amounts of NH4-N released from clay minerals were correlated with soil NH4-N. After two cuts soil analysis revealed that the amounts of mobilized nonexchangeable NH4-N were between 3.5 and 25.2 mg kg?1 from topsoils and between 0 and 8.2 mg kg?1 from subsoils. There was no correlation between soil nonexchangeable NH4-N content and release. The NH4-N extracted with 1 N HCl and the actual N uptake of the plants correlated highly significant. Assuming that the whole of the NH4-N released was taken up by ryegrass, NH4-N accounted for 11.2 to 75.0% of total N uptake from topsoils and 0 to 37.3% from subsoils. The release of nonexchangeable NH4-N was increased by the application of nitrate.  相似文献   

17.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

18.
We constructed a new rice growth model, SIMRIWk, and discuss the impact of climate change on the growth and production of rice plants in relation to soil nitrogen (N) kinetics. We developed a model simulating N availability for rice plants associated with soil N kinetics and rice plant N uptake and combined it with the existing rice growth model SIMRIW to construct SIMRIWk. The model parameters were determined from rice plant growth and soil N experimental data obtained over 25 years under four soil management regimes. SIMRIWk successfully simulated the annual changes and upward trend observed during the 25 years in all treatments. The relationship between measured yields and SIMRIWk calculations in all treatments over the 25 years formed one aggregation defined by the regression equation y = 1.00x and showed a significant correlation (r2 = 0.894). According to SIMRIWk, increasing temperature in the cold season increases the formation of easily decomposable organic N produced under dry conditions and N mineralization during the next warm season, suggesting that rice growth is influenced by both warm-season and cold-season temperatures. We forecast rice yield and soil N kinetics from 2016 to 2100 using SIMRIWk and climate change predictions based on the IPCC’s climate change scenario RCP8.5. Atmospheric warming, a rise in CO2 partial pressure, and increased soil N mineralization caused by soil warming will increase rice plant growth, but the decreased radiation absorbed owing to the shortened growing season and high-temperature sterility will prevent any significant change in yield. Furthermore, the acceleration of soil organic N decomposition will decrease soil organic N concentrations. Understanding the influences of climate change on soil organic matter kinetics is absolutely critical for predicting the future soil production capacity.  相似文献   

19.
Application of crop residues and its biochar produced through slow pyrolysis can potentially increase carbon (C) sequestration in agricultural production systems. The impact of crop residue and its biochar addition on greenhouse gas emission rates and the associated changes of soil gross N transformation rates in agricultural soils are poorly understood. We evaluated the effect of wheat straw and its biochar applied to a Black Chernozemic soil planted to barley, two growing seasons or 15 months (at the full-bloom stage of barley in the second growing season) after their field application, on CO2 and N2O emission rates, soil inorganic N and soil gross N transformation rates in a laboratory incubation experiment. Gross N transformation rates were studied using the 15N isotope pool dilution method. The field experiment included four treatments: control, addition of wheat straw (30 t ha?1), addition of biochar pyrolyzed from wheat straw (20 t ha?1), and addition of wheat straw plus its biochar (30 t ha?1 wheat straw + 20 t ha?1 biochar). Fifteen months after their application, wheat straw and its biochar addition increased soil total organic C concentrations (p?=?0.039 and <0.001, respectively) but did not affect soil dissolved organic C, total N and NH4 +-N concentrations, and soil pH. Biochar addition increased soil NO3 ?-N concentrations (p?=?0.004). Soil CO2 and N2O emission rates were increased by 40 (p?p?=?0.03), respectively, after wheat straw addition, but were not affected by biochar application. Straw and its biochar addition did not affect gross and net N mineralization rates or net nitrification rates. However, biochar addition doubled gross nitrification rates relative to the control (p?2 and N2O emissions and enhance soil C sequestration. However, the implications of the increased soil gross nitrification rate and NO3 ?-N in the biochar addition treatment for long-term NO3 ?-N dynamics and N2O emissions need to be further studied.  相似文献   

20.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号