首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Identity of quantitative trait loci (QTL) governing resistance to fusarium head blight (FHB) initial infection (type I), spread (type II), kernel infection, and deoxynivalenol (DON) accumulation was characterized in Chinese wheat line W14. Ninety‐six double‐haploid lines derived from a cross of W14 × ’Pion2684’ were evaluated for FHB resistance in two greenhouse and one field experiment. Two known major QTL were validated on chromosomes 3BS and 5AS in W14 using the composite interval mapping method. The 3BS QTL had a larger effect on resistance than the 5AS QTL in the greenhouse experiments, whereas, the 5AS QTL had a larger effect in the field experiment. These two QTL together explained 33%, 35%, and 31% of the total phenotypic variation for disease spread, kernel infection, and DON concentration in the greenhouse experiments, respectively. In the field experiment, the two QTL explained 34% and 26% of the total phenotypic variation for FHB incidence and severity, respectively. W14 has both QTL, which confer reduced initial infection, disease spread, kernel infection, and DON accumulation. Therefore, marker‐assisted selection (MAS) for both QTL should be implemented in incorporating W14 resistance into adapted backgrounds. Flanking markers Xbarc133 and Xgwm493 on 3BS and Xbarc117 and Xbarc56 on 5AS are suggested for MAS.  相似文献   

2.
During the past decade, numerous studies have been published on molecular mapping of Fusarium head blight (FHB) resistance in wheat. We summarize the relevant findings from 52 quantitative trait loci (QTL) mapping studies, nine research articles on marker-assisted selection and seven on marker-assisted germplasm evaluation. QTL for FHB resistance were found on all wheat chromosomes except chromosome 7D. Some QTL were found in several independent mapping studies indicating that such QTL are stable and therefore useful in breeding programmes. We summarize and update current knowledge on the genetics of FHB resistance in wheat resulting from QTL mapping investigations and review and suggest FHB breeding strategies based on the available information and DNA markers.  相似文献   

3.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

4.
Fusarium head blight (FHB), one of the most destructive diseases of wheat in many parts of the world, can reduce the grain quality due to mycotoxin contamination up to rejection for usage as food or feed. Objective of this study was to map quantitative trait loci (QTL) associated with FHB resistance in the winter wheat population ‘G16‐92’ (resistant)/‘Hussar’. In all, 136 recombinant inbred lines were evaluated in field trials in 2001 and 2002 after spray inoculation with a Fusarium culmorum suspension. The area under disease progress curve was calculated based on the visually scored FHB symptoms. For means across all environments two FHB resistance QTL located on chromosomes 1A, and 2BL were identified. The individual QTL explained 9.7% and 14.1% of the phenotypic variance and together 26.7% of the genetic variance. The resistance QTL on 1A coincided with a QTL for plant height in contrast to the resistance QTL on 2BL that appeared to be independently inherited from morphological characteristics like plant height and ear compactness. Therefore, especially the QTL on 2BL could be of great interest for breeding towards FHB resistance.  相似文献   

5.
6.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

7.
小麦品种扬麦16赤霉病抗扩展QTL定位及分析   总被引:1,自引:0,他引:1  
扬麦系列品种赤霉病抗性在世界范围内得到重视,但其抗性遗传机制尚不清楚。扬麦16是近年来大面积推广的抗赤霉病品种,本研究以扬麦16与中麦895杂交构建的174个双单倍体(doublehaploidlines,DH)系为材料,于2017—2019年连续3年对该群体采用单花滴注进行赤霉病抗扩展鉴定。利用660KSNP芯片构建高密度遗传图谱,共检测到6个抗性QTL,分别位于2DL、3BL、4BS、4DS、5BL和6AS染色体上。除4BS位点外,其他5个抗性等位基因均来源于扬麦16。QFhb.yaas-4DS和QFhb.yaas-6AS均在多年被检测到,可解释8.8%~15.0%的表型变异;QFhb.yaas-2DL、QFhb.yaas-3BL仅在1年被检测到,分别解释10.5%和14.7%的表型变异;QFhb.yaas-5BL和来源于中麦895的QFhb.yaas-4BS仅在1年被检测到且效应仅为6.4%和8.3%。QTL效应分析结果表明,相较于单个位点,多个抗性QTL的聚合可显著降低赤霉病严重度。扬麦16抗赤霉病QTL将为揭示扬麦品种抗性遗传机制及开发相应分子标记奠定基础。  相似文献   

8.
F. Wilde    T. Miedaner 《Plant Breeding》2006,125(1):96-98
Fusarium head blight (FHB) results in yield losses and contamination of kernels by mycotoxins, particularly deoxynivalenol (DON). For minimizing DON content in grain, indirect selection methods would increase gains from selection compared to the costly and time‐consuming DON analysis. The aim of this study was to examine whether an early selection for fewer FHB symptoms would lead to a reduced DON content in grain after inoculation with Fusarium culmorum. Starting with a double‐cross derived population of about 1,100 genotypes, 30 F1:3 genotypes were selected for FHB rating in a two‐step selection in spring wheat with the non‐adapted resistance sources CM82036 and ‘Frontana’. In winter wheat, 30 F1:2 genotypes were selected out of a double‐cross derived population of about 600 F1 plants from crosses with German resistance sources (‘Dream’, G16‐92). Selected genotypes were grouped in three categories according to their FHB rating (low, moderate and high) and analysed afterwards for grain DON content. The three groups differed in their DON content illustrating that indirect selection should already be feasible in the earliest generations. Because of the wide genotypic ranges for DON contents within one grouping, a final DON analysis for selected materials is advisable to achieve full selection gain.  相似文献   

9.
Yield and quality reductions caused by Fusarium head blight (FHB) have spurred spring wheat (Triticum aestivum L.) breeders to identify and develop new sources of host plant resistance. Four wheat synthetic hexaploids (×Aegilotriticum sp.) were developed, each having a quantitative trait locus (QTL), Qfhs.ndsu‐3AS, providing FHB resistance from Triticum turgidum L. var. dicoccoides chromosome 3A. Synthetics were produced by hybridizing a ‘Langdon’‐T. dicoccoides‐ recombinant chromosome 3A substitution line (2n = 4x = 28, AABB with two accessions of T. tauschii (2n= 2x = 14, DD). Synthetics were inoculated and evaluated for FHB resistance in two separate greenhouse seasons. One synthetic, 01NDSWG‐5, exhibited FHB severity ratings of 36% and 32% in the separate seasons, compared with ratings of 9% and 30% for ‘Alsen’, a FHB‐resistant spring cultivar, and ratings of 70% and 96% for ‘McNeal’, a susceptible spring cultivar, respectively. Synthetic × Alsen backcross‐derived lines were produced to initiate combining different sources of FHB resistance.  相似文献   

10.
W. Bourdoncle  H. W. Ohm 《Euphytica》2003,131(1):131-136
Fusarium head blight (FHB), primarily caused by Fusarium graminearum in North America, often results in significant losses in yield and grain quality of wheat (Triticum aestivum L.). Evaluation of FHB resistance is laborious and can be affected by environmental conditions. The development of DNA markers associated with FHB quantitative trait loci (QTL) and their use in breeding programs could greatly enhance selection. The objective of this study was to identify the location and effect of QTLs for FHB resistance using simple sequence repeat (SSR) markers. A population of wheat recombinant inbred lines derived from the cross ‘Huapei57-2’/‘Patterson’ was characterized for type II resistance in one field experiment and two tests under controlled conditions in the greenhouse. Bulked segregant analysis followed by QTL mapping was used to identify the major segregating QTLs. Results indicate that ‘Huapei 57-2’ may have the same resistance allele as ‘Sumai3’ at a QTL located on the short arm of chromosome 3B. Other QTLs of lower effect size were identified on the long arm of 3Band on chromosomes 3A and 5B. Our findings along with results from other studies demonstrate that the effect of the QTL on3BS is large and consistent across a wide range of genetic backgrounds and environments. Pyramiding this QTL with other FHB QTLs using marker-assisted selection should be effective in improving FHB resistance in a wheat breeding program. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
X. Shen    H. Ohm 《Plant Breeding》2006,125(5):424-429
The objective of this study was to assess the effectiveness of Fusarium head blight (FHB) resistance derived from wheatgrass Lophopyrum elongatum chromosome 7E and to determine whether this resistance can augment resistance in combination with other FHB resistance quantitative trait loci (QTL) or genes in wheat. The ‘Chinese Spring’–Lophopyrum elongatum disomic substitution line 7E(7B) was crossed to three wheat lines: ‘Ning 7840’, L3, and L4. F2 populations were evaluated for type II resistance with the single‐floret inoculation method in the greenhouse. Simple sequence repeat markers associated with Fhb1 in ‘Ning 7840’ and L4 and markers located on chromosome 7E were genotyped in each population. Marker–trait association was analysed with one‐way or two‐way analysis of variance. The research showed that, in the three populations, the average number of diseased spikelets (NDS) in plants with chromosome 7E is 1.2, 3.1 and 3.2, vs. NDS of 3.3, 7.2 and 9.1 in plants without 7E, a reduction in NDS of 2.1, 4.1 and 5.9 in the respective populations. The QTL on 7E and the Fhb1 gene augment disease resistance when combined. The effect of the QTL on 7E was greater than that on 3BS in this experiment. Data also suggest that the FHB resistance gene derived from L. elongatum is located on the long arm of 7E.  相似文献   

12.
Z. P. Yang    X. Y. Yang  D. C. Huang 《Plant Breeding》1999,118(4):289-292
The objectives of this study were to compare efficiency of evaluation for resistance to Fusarium head blight (FHB) under two inoculation methods in a recurrent selection programme. Fifty selected homozygous F5 fertile lines, from each of five cycles (C0, C1, C2, C3 and C4) of recurrent selection, and two control cultivars were evaluated in a split-plot design in 1995 and 1996 under the soil-surface inoculation with Fusarium graminearum-colonized kernels and the single-floret inoculation with ascospore suspension. Comparison of the two inoculation methods using means, ranges, coefficients of variation, heritabilities and correlations among infected spikelet rate (ISR), reaction index (RI) and disease index (DI) indicated that FHB resistance could be evaluated with similar accuracy and precision using either of the two inoculation methods. Regressions of disease scores in the soil-surface inoculation on disease scores in the single-surface inoculation were positive and highly significant, showing a strong relationship between both inoculation methods for FHB resistance. The percentage of lines with similar performance for FHB disease scores in both inoculation methods was high. The soil-surface inoculation and single-floret inoculation appear to be useful techniques for evaluating numerous individuals of segregating population and screening advanced homozygous lines for FHB resistance in a recurrent selection programme in wheat, respectively.  相似文献   

13.
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

14.
Types and components of resistance to Fusarium head blight of wheat   总被引:18,自引:2,他引:18  
Resistance of wheat to Fusarium head blight caused by Fusarium graminearum and F. culmorum was identified in natural epidemics in 1985 and 1987 as well after artificial inoculations (1983–1988 and 1984–1987). Out of 25 genotypes tested, five were identified with no significant difference in head blight scores, but differing significantly in yield after artificial inoculation, i.e. tolerance differences were detected at different resistance levels. Some genotypes that were similar in yield or head blight scores differed in seed infection severity. Genotypes with awns were more susceptible to head blight when tested under natural epidemic condition in the field; but this trait did not influence head blight severity in artificial inoculations. Dwarf genotypes were more severely infected by head blight than tall genotypes under natural conditions, but genotypes of different plant height classes were similarly susceptible after artificial inoculations. In the early generations of a breeding programme resistance measured by visual evaluation of artificial inoculation is the most important way to screen. If selection of dwarf and awned genotypes cannot be avoided, the higher susceptibility caused by awns and dwarfness under natural epidemic conditions can be decreased by a higher level of physiological resistance, as variability in physiological resistance is available. In later generations, traits like percentage of seed infection or tolerance can be identified by additionally measuring yield reduction. Stability of disease reaction appears to be connected with resistance level, the most resistant genotypes are the most stable, and the most susceptible ones tend to have more unstable reactions in different epidemic conditions.  相似文献   

15.
To identify excellent cultivars resistant to Fusarium head blight (FHB), 104 wheat cultivars were tested by single-flower inoculation using two prevalent pathogens from 2018 to 2020. Agronomic traits were also investigated. Six FHB-resistance quantitative trait loci (QTL), Fhb1, Fhb2, Fhb4, Fhb5, Fhb7 and Qfhb.crc-2D, have been assessed using previously reported DNA markers. A diagnostic marker has been used for Fhb1, and indicative markers linked to the other QTL were used. Results showed that (i) 12 (11.5%) cultivars were resistant to two pathogens in 3 years; among them, ‘Shengxuan 6’, ‘Wanhongbian 759’, ‘Yunong 903’ and ‘Yunong 901’ had good agronomic traits. (ii) Among cultivars with one resistance QTL, the severities of cultivars carrying Fhb1 and Qfhb.crc-2D were 2.2 and 2.8, respectively, whereas those of cultivars with Fhb2 or Fhb7 were 3.6. Among cultivars with two resistance QTL, the severities of cultivars with Fhb1 + Fhb4, Fhb1 + Fhb7 and Fhb4 + Fhb5 were 2.2, 3.0 and 3.6, respectively. The severity of five cultivars possessing three or four resistance QTL was below 2.5. Fhb1 and Qfhb.crc-2D showed better resistance effects than other resistance QTL.  相似文献   

16.
In order to identify chromosomes involved in resistance to Fusarium head blight, a set of 21 substitution lines of Triticum macha (resistant) chromosomes into ‘Hobbit’'sib’(susceptible) were evaluated in trials over 2 years. For the first year's trial, all plants were inoculated on the same day with a conidial suspension of F. culmorum. For the second trial, individual plants were inoculated precisely at mid anthesis of each plant over a period of 2 weeks. The disease level was assessed by visual scoring, relative ear weight and F. culmorumn‐specfic quantitative polymerase chain reaction. The results showed that T. macha chromosomes 1B, 4A and 7A conferred good overall resistance, suggesting that they carry important genes for resistance. In two additional trials, T. macha and ‘Hobbit’'sib’ were evaluated for resistance to brown foot rot. The results showed that T. macha was more susceptible than ‘Hobbit’‘sib’, indicating that stem base disease response is not correlated with head blight resistance in these cultivars.  相似文献   

17.
Twenty (1990-93) and 25 (1994-96) wheat genotypes with different degrees of resistance and origins were tested with seven and eight isolates, respectively, of Fusarium graminearum and four Fusarium culmorum isolates of diverse origin in Europe. Infection severity depended largely on the genotypes and the isolates used. Head blight values, yield response and kernel infection values revealed close but varying relationships with deoxynivalenol (DON) content. This variability is explained by the presence of tolerance mechanisms which affect the relationship between Fusarium head blight severity and yield response. Kernel infection resistance accounted for decreasing Fusarium head blight values. Genotypes were found with lower infection severity and higher DON contamination and vice versa. Evidently, the cultivar has a significant influence on DON production in the infected tissue, i.e. highly susceptible genotypes may have moderate or low accumulation of DON. However, in the most resistant genotypes showing no infection to any of the isolates or only sporadic symptom development, no or very low accumulation of DON was detected. Resistant genotypes gave a stable reaction with b-values close to zero for all traits tested. Susceptible genotypes were unstable under different epidemic conditions and their stability was different for the traits investigated. Therefore, the mean of b-values is suggested to better describe the stability of the wheat genotypes. Significant positive relationships were found between aggressiveness of the isolates and their production of DON in the infected grain. The correlation improved significantly for the nivalenol-producing isolate (F89.4 from France) when the sum of DON and nivalenol contents were considered. This indicates that the total trichothecene toxin-producing capacity of the isolates may be a decisive component of pathogenicity. Since the tests included isolates from different European countries the results provide further proof that no host specificity exists within these pathogens in Europe. This was also valid for kernel infection, yield response and DON accumulation. Therefore, the nature of resistance is horizontal. The results also support the view that there is no difference between the resistance of the host plant to F. graminearum and to F. culmorum.  相似文献   

18.
We report on the identification of FHB ( Fusarium head blight) resistance quantitative trait loci (QTL) of the donor 'G93010' (Bussard/Ning8026) in the background of elite breeding material adapted to the central European climate. With a multiple interval mapping method, two major resistance QTL were identified. Qfhs.lfl-7BS/5BL and Qfhs.lfl-6BS reduced FHB severity individually by 30% and 24%. The combination of both QTL decreased disease severity most effectively by about one half. Qfhs.lfl-6BS is most likely identical to Fhb2 , thus, the effectiveness of Fhb2 in central European breeding material has been validated. Qfhs.lfl-7BS/5BL overlapped with QTL for plant height and heading date. Nevertheless, the selection of lines combining a good FHB resistance level with an acceptable plant height was possible. As the donors of the QTL have probably not yet been utilized in European breeding material, we identified well-adapted lines of the mapping population as valuable donors for marker-assisted breeding programmes.  相似文献   

19.
Summary Fusarium head blight (FHB) is a serious disease of wheat worldwide that may cause substantial yield and quality losses. Breeding for FHB-resistant cultivars is the most cost-effective approach to control FHB. The objective of the present study was to determine the relationship of resistance between new resistant sources and Sumai 3 using five simple sequence repeat (SSR) markers closely linked to the major QTL for FHB resistance on chromosome arms 3BS and 6BS. All five SSR markers were highly polymorphic between Sumai 3 (and its derivatives) and susceptible Canadian wheat lines. Most of the Sumai 3-derived Chinese wheat accessions and three Canadian FHB-resistant lines had all the Sumai 3 SSR marker alleles on chromosome arms 3BS and 6BS. The Chinese landrace Wangshuibai and two Japanese accessions Nobeokabozu and Nyu Bai had the same banding patterns as Sumai 3 for all five SSR marker alleles, and another Chinese landrace Fangshanmai had three of the five SSR markers in common with Sumai 3, and therefore most likely carries the same QTL as Sumai 3 on 3BS and 6BS. The Brazilian cultivar Frontana had no alleles in common with Sumai 3 on either QTL, and the Chinese landrace Hongheshang had only one of the five SSR markers in common with Sumai 3, therefore likely carrying resistance genes different from Sumai 3. The Italian cultivar Funo is not the donor of either the 3BS QTL or 6BS QTL. All five SSR seem to be effective candidates for marker-assisted selection to increase the level of resistance to FHB in wheat breeding programs.  相似文献   

20.
Small-grain winter cereal crops can be infected with Fusarium head blight (FHB) leading to mycotoxin contamination and reduction in grain weight and quality. Although a number of studies have investigated the genetic variation of genotypes within each small-grain cereal, a systematic comparison of the winter crops rye, triticale, durum and bread wheat for their FHB resistance, Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) contamination across species is still missing. We have therefore evaluated twelve genotypes each of four crops widely varying in their FHB resistance under artificial infection with one DON-producing F. culmorum isolate at constant spore concentrations and additionally at crop-specific concentrations in two environments. Rye and triticale were the most resistant crops to FHB followed by bread and durum wheat at constant and crop-specific spore concentrations. On average, rye accumulated the lowest amount of DON (10.08 mg/kg) in the grains, followed by triticale (15.18 mg/kg) and bread wheat (16.59 mg/kg), while durum wheat had the highest amount (30.68 mg/kg). Genotypic variances within crops were significant (p ≤ .001) in most instances. These results underline the differing importance of breeding for FHB resistance in the different crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号