首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternative N fertiliser management strategies are needed to increase N-use efficiency in wetland rice (Oryza sativa L.). In the wet season of 1993–1994, field experiments were conducted to evaluate the band placement of urea solution in comparison with broadcast prilled urea, neem-coated urea, or point-placement of urea supergranules. Both grain yield and N-use efficiency were higher with band placement of urea solution (50 or 100 kg N ha-1) compared to a conventional split application of prilled urea at 100 kg N ha-1. The total 15N recovery was 58.7 and 51.7% with band placement of urea solution at 50 and 100 kg N ha-1, respectively, compared with 47.8% for neem-coated urea and 28.5% for a conventional split application of prilled urea. Current address: Training Division, KVK, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Pin 641 003  相似文献   

2.
Summary The efficiency of N use in flooded rice is usually low, chiefly due to gaseous losses. Emission of CH4, a gas implicated in global warming, can also be substantial in flooded rice. In a greenhouse study, the nitrification inhibitor encapsulated calcium carbide (a slow-release source of acetylene) was added with 75, 150, and 225 mg of 75 atom % 15N urea-N to flooded pots containing 18-day-old rice (Oryza sativa L.) plants. Urea treatments without calcium carbide were included as controls. After the application of encapsulated calcium carbide, 3.6 g N2, 12.4 g N2O-N, and 3.6 mg CH4 were emitted per pot in 30 days. Without calcium carbide, 3.0 mg N2, 22.8 g N2O-N, and 39.0 mg CH4 per pot were emitted during the same period. The rate of N added had a positive effect on N2 and N2O emissions, but the effect on CH4 emissions varied with time. Carbon dioxide emissions were lower with encapsulated calcium carbide than without. The use of encapsulated calcium carbide appears effective in eliminating N2 losses, and in minimizing emissions of the greenhouse gases N2O and CH4 in flooded rice.  相似文献   

3.
Summary We evaluated the effect of different methods of application on the efficiency of urea broadcast at a rate of 100 kg N ha-1 onto lowland rice (Oryza sativa L. var. SPR 60) in a field experiment conducted on a Phimai soil (Fluvic Tropaquepts) during the dry season of 1989. Analysis of the floodwater on the first day after the fertilizer application showed a high initial concentration of urea-N. Addition of the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT), broadcast with the urea into the floodwater, caused an apparent reduction in the rate of urea disappearance and a subsequent accumulation of NH3–N in the floodwater; this ureas inhibitor also suppressed the rise in floodwater pH, with a resultant reduction in the partial pressure of ammonia (pNH3) compared with the unamended urea application. The use of nBTPT did not decrease the N loss from broadcast urea not did it increase the grain yield. Among the different methods of applying broadcast urea that we tested, the broadcast application of granular urea onto drained soil shortly after removing floodwater followed by flooding 2 days later appeared to be a good N management practice, offering considerable potential for improving the efficiency of urea applied to lowland rice crops.  相似文献   

4.
Summary The relative importance of ammonia volatilization and denitrification as loss processes following the application of urea to flooded rice by the traditional method was assessed at four sites with different characteristics in the Philippines. The effect of reducing ammonia loss on denitrification and total N loss was also studied. The total N loss was determined by a 15N-balance method and ammonia volatilization was assessed by a bulk aerodynamic method following the application of urea to small plots (4.8×5.2 m). As run-off was prevented and leaching losses were negligible, the denitrification loss was assessed as the difference between total N loss and ammonia loss. When urea was broadcast into the floodwater at transplanting, the ammonia loss varied from 10% to 56% of the applied N. Loss was smallest at Aguilar where wind speeds were low and the greatest at Mabitac where floodwater pH values and temperatures were high and the winds were strong. The ammonia loss was reduced at all sites by incorporating the urea into the soil by harrowing. However, the reduction achieved varied markedly between sites, with the largest reduction (from 56% to 7% loss of the applied N) being observed at Mabitac. The total N lost from the basal application into the floodwater ranged from 59% to 71% of the applied N. Incorporating the urea by harrowing reduced the total N loss at two sites, increased the total N loss at the third site, and had no effect at the fourth site. The denitrification losses ranged widely (from 3% to 50% of the applied N) when urea was broadcast into the floodwater at the four sites. The denitrification loss was low when the ammonia loss was high (Mabitac) and high when the ammonia loss was low (Aguilar). Reducing ammonia losses by incorporating the urea into the flooded soil resulted in increased denitrification losses at three of the sites and appeared to have no effect on denitrification at the fourth site. The results show that reducing the ammonia loss by incorporating urea into the soil does not necessarily result in reduced total N loss, and suggest that the efficiency of fertilizer N will be improved only when both N-loss processes are controlled simultaneously.  相似文献   

5.
Summary A pot experiment was conducted to compare the yields from five commercially cultivated varieties (Bas-198, Bas-370, Bas-Pak, Bas-385, and IR-6) of rice (Oryza sativa L.) and to establish the relative significance of soil N and fertilizer N (15N-labelled ammonium sulphate) in affecting crop performance. Another aim was to study the interaction of fertilizer N and soil N as influenced by different rice varieties. Among the five varieties tested, Bas-Pak gave the maximum dry matter and N yield. The N-use efficiency (percentage of applied N taken up by the plants) of different varieties ranged between 33.7 and 43.7%, Bas-Pak being the most efficient. Significant losses of fertilizer N occurred from the soil-plant system. The maximum N loss (52.1% of applied N) was observed with IR-6 and the minimum loss (39.2%) with Bas-Pak. A substantial increase in the uptake of soil N following the application of fertilizer and an interaction between the two N sources were observed with all varieties except Bas-385. The interaction was attributed to greater root proliferation following the application of fertilizer. It was concluded that a varietey with greater potential to use soil N is likely to give a better yield and that, of the two N sources, the availability of soil N was more important in determining the yield performance of different varieties of rice.  相似文献   

6.
Denitrification losses from puddled rice soils in the tropics   总被引:4,自引:0,他引:4  
Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice.  相似文献   

7.
Summary It is commonly assumed that a large fraction of fertilizer N applied to a rice (Oryza sativa L.) field is lost from the soil-water-plant system as a result of denitrification. Direct evidence to support this view, however, is limited. The few direct field, denitrification gas measurements that have been made indicate less N loss than that determined by 15N balance after the growing season. One explanation for this discrepancy is that the N2 produced during denitrification in a flooded soil remains trapped in the soil system and does not evolve to the atmosphere until the soil dries or is otherwise disturbed. It seems likely, however, that N2 produced in the soil uses the rice plants as a conduit to the atmosphere, as does methane. Methane evolution from a rice field has been demonstrated to occur almost exclusively through the rice plants themselves. A field study in Cuttack, India, and a greenhouse study in Fort Collins, Colorado, were conducted to determine the influence of rice plants on the transport of N2 and N2O from the soil to the atmosphere. In these studies, plots were fertilized with 75 or 99 atom % 15N-urea and 15N techniques were used to monitor the daily evolution of N2 and N2O. At weekly intervals the amount of N2+N2O trapped in the flooded soil and the total-N and fertilized-N content of the soil and plants were measured in the greenhouse plots. Direct measurement of N2+N2O emission from field and greenhouse plots indicated that the young rice plant facilitates the efflux of N2 and N2O from the soil to the atmosphere. Little N gas was trapped in the rice-planted soils while large quantities were trapped in the unplanted soils. N losses due to denitrification accounted for only up to 10% of the loss of added N in planted soils in the field or greenhouse. The major losses of fertilizer N from both the field and greenhouse soils appear to have been the result of NH3 volatilization.  相似文献   

8.
Summary A pot experiment was conducted to study the availability of soil and fertilizer N to wetland rice as influenced by wheat straw amendment (organic amendment) and to establish the relative significance of the two sources in affecting crop yield. Straw was incorporated in soil at 0.1, 0.2, and 0.3% before transplanting rice. Inorganic N as 15N-ammonium sulphate was applied at 30, 60, and 90 g g-1 soil either alone or together with wheat straw in different combinations. After harvesting the rice, the plant and soil samples were analyzed for total N and 15N. Straw incorporation significantly decreased the dry matter and N yield of rice, the decrease being greater with higher rates of straw. The reduction in crop yield following the straw incorporation was attributed mainly to a decrease in the uptake of soil N rather than fertilizer N. The harmful effects of organic matter amendment were mitigated by higher levels of mineral N addition. The uptake of applied N increased and its losses decreased due to the straw incorporation. Mineral N applied alone or together with organic amendment substantially increased the uptake of unlabelled soil N. The increase was attributed to a real added N interaction.  相似文献   

9.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

10.
Ammonium fixation and the effects of soil moisture and application methods on fertilizer N recovery were investigatedin two soils of Shaanxi Province, China, a Luvisol and an Entisol, through two experiments performed in the laboratoryand in a glass shelter, respectively, by using ammonium bicarbonate (NH4HCO3). The laboratory closed incubationbox experiment was conducted using the Luvisol to study NH fixation rate at soil moisture levels of 10.1%, 22.7% and 35.3% water filled pore space (WFPS). The fixed NH -N increased dramatically to 51% and 66%, 67% and 74%,and 82% and 85% 1, 2 and 36 h after fertilizer incorporation at moisture levels of 10.1% and 22.7% WFPS and 35.3% WFPS, respectively. The rapid NH fixation rates at all moisture levels could help prevent NH losses from ammonia volatilization. In the glass shelter pot experiment, N fertilizer was applied by either banding (in a concentrated strip)or incorporating (thoroughly mixing) with the Entisol and the Luvisol. An average of 74.2% of the added N fertilizerwas recovered 26 days after application to the Luvisol, while only 61.4% could be recovered from the Entisol, due tohigher NH fixation capacity of the Luvisol. The amount of fixed NH decreased with increasing WFPS. The amountof fixed NH in the incorporated fertilizer treatment was, oll average, 10% higher than that in the banded treatment.Higher NH fixation rates could prevent N loss and thus increase N recovery. The results from the Luvisol showed lowernitrogen recovery as soil moisture level increased, which could be explained by the fact that most of the fixed NH wasstill not released when the soil moisture level was low. When the fertilizer was incorporated into the soil, the recovery ofN increased, compared with the banded treatment, by an average of 26.2% in the Luvisol and 11.2% in the Entisol, whichimplied that when farmers applied fertilizer, it would be best to mix it well with the soil.  相似文献   

11.
Chemical fixation of NH3 to soil organic matter was studied in two Swedish soils with different contents of organic matter: a clay soil with 2.3% C and an organic soil with 36.6% C. 15N‐labelled urea was applied at different rates to both sterilized and non‐sterilized soils. After 10 days, the soils were extracted and washed with K2SO4 and determined for total N and atom% 15N excess. Urea N was recovered as non‐extractable N in sterilized soil corresponding to 9.7% of supplied l5N‐labelled urea in the organic soil and 2.2% in the clay soil. Since no biological immobilization is thought to occur in the sterile soil, this non‐extractable N is suggested to be chemically fixed to soil organic matter. Owing to urea hydrolysis in the clay soil, pH increased from 6.3 to 9.3 and in the organic soil from 5.7 to 6.9 and 8.8, respectively, at the low and high urea supply.  相似文献   

12.
This experiment was carried out to determine whether the delay in rice growth associated with wheat straw application, especially at the early stage, was due to the acceleration of N assimilation or N uptake inhibition.

Tracer 15N was used for rice plants cultivated in pots. After 24 h of tracer application the plants and soils were sampled for analysis. Seventeen days after transplanting, N uptake of rice decreased and the amount of unavailable tracer remaining in soil increased by wheat straw application. At the booting stage, 6 d before heading, N uptake was larger and the amount of remaining tracer was lower in the plots in which wheat straw was applied than in the control.

It was obvious that the decrease of N uptake by wheat straw application was caused by N uptake inhibition and not by N starvation for a period of time at the early stage. The inhibition was removed at the booting stage.  相似文献   

13.
ABSTRACT

Green manure is an efficient nitrogen (N) source when used as an alternative to chemical fertilizer. However, the N taken up by rice derived from green manure, chemical fertilizers or soil native N in complex nutrient systems is unclear. A pot experiment with partial substitution of urea with Chinese milk vetch (a green manure) implemented with 15N-labeled urea and Chinese milk vetch was set up to study the sources of N in rice and the fate of the fertilizers. The dry weights, N contents, N uptake, and urea N use efficiency were notably higher (by 15–16%, 4–13%, 22–30% and 182%-203%, respectively) in the Chinese milk vetch applied with urea treatment than in the urea alone treatment. The uptake of N from Chinese milk vetch and the use efficiency of Chinese milk vetch N were increased with reductions in the urea input amount. The application of Chinese milk vetch substantially changed the fate of urea: higher amounts of urea N were taken up by rice (approximately 29%) and remained as residue in the soil (approximately 15%) in the related treatments than in the treatment with urea alone (10% and 9%). More urea N than Chinese milk vetch N was taken up by rice (29% vs 20%, respectively) and lost (56% vs 14%, respectively), but less urea N than Chinese milk vetch N remained as residue in the soil (15% vs 66%, respectively). The partial substitution of chemical fertilizer with green manure is an effective method of promoting rice growth by supplying N for rice uptake and promoting more efficient N use.  相似文献   

14.
Summary We used 15N technology to investigate N2 fixation by Sesbania speciosa and Sesbania rostrata and its transfer to a lowland rice crop after incorporation of the Sesbania spp. into soil as green manure. During the first 50 days after establishment in November–December 1989, S. speciosa and S. rostrata produced 1126 and 923 kg dry matter ha-1 respectively. They gathered 31 and 23 kg N ha-1 respectively, of which 62%±5% and 55%±3% respectively, came from N2 fixation. Both these species produced a greater biomass during September–October 1989, with S. rostrata producing more than S. speciosa. These results reflected differential responses by the plants to different day lengths at different times of the year. Furthermore, the dry matter yield and %N of 15N-labelled S. speciosa were smaller than those of the unlabelled plants, possibly due to inhibition of N2 fixation in root nodules by the chemical N fertilizers added during labelling. These differences were not so pronounced in the stem-nodulated S. rostrata. The increased grain yield of rice fertilized with N in the form of chemical fertilizer or green manure was a result of an increased number of panicles per hill. The rice crop manured with S. speciosa produced a lower grain yield, with a lower grain weight than that manured with S. rostrata. This was due to a low uptake of soil N by rice manured with S. speciosa. Recovery of N from the green manure in rice straw with S. speciosa was significantly higher than from rice manured with S. rostrata, because of the higher applied N uptake by rice manured with the former.  相似文献   

15.
Summary Using 15N, the fate of N applied to wetland rice either as Azolla or urea was studied in a field at the International Rice Research Institute (IRRI). In bigger plots nearby, yield response and N uptake were also determined with unlabelled N sources. Azolla microphylla was labelled by repeated application of labelled ammonium sulfate. Labelled and unlabelled N were used alternately in applications of Azolla or urea 0 and 42 days after transplanting, in order to determine the effect of the time of application on the availability of Azolla N. The quantities of Azolla N incorporated were 23% more than those of urea N (30 kg N ha–1) in the isotope plots or 7% less in the yield response plots. Grain yield and total N uptake by the rice plants in the yield-response plots were higher in the urea-treated plots than in the Azolla-treated plots, but the physiological effect of Azolla N (grain yield response/increase in N uptake) was higher than that of rea. The labelled N balance was studied after the first and second crops of rice. Losses of labelled N after the first crop were higher from urea (30%–32%) than from Azolla (0%–11 %). Losses in N applied as a side dressing 42 days after transplanting were less than those of N applied basally. No further losses of 15N occurred after the first crop. The recovery of Azolla 15N in the first crop of rice was 39% from the basal application and 63% from the side dressing. The recovery of urea 15N was 27% from the basal application and 48% from the side dressing. Recoveries of residual N from both Azolla and urea during the second rice crop were similar. Laboratory incubation of the Azolla used and the changes in labelled exchangeable N in the soil showed that at least 65% of Azolla N (4.7% N content) was mineralized within 10 days.  相似文献   

16.
干湿交替灌溉具有节水稳产等优势,但也存在促进NH3挥发和增加N2O排放的风险。而生物炭具有改善土壤、蓄水保肥、降低温室气体排放等诸多正效应。为探究干湿交替灌溉条件下稻田活性氮气体排放(主要为NH3和N2O)对添加生物炭的响应机制,设置不同灌溉模式(淹灌和干湿交替灌溉)和生物炭用量(0和20 t/hm2)2个因素4个处理,通过2020和2021年大田原位试验,对稻田土壤环境、NH3挥发、N2O排放、植物氮素吸收和产量等进行了研究。结果表明,2 a间,干湿交替灌溉对水稻产量均未产生显著影响(P>0.05),但却显著增加了NH3挥发(仅2020年)和N2O排放(P<0.05),增幅分别达到8.9%和105.0%~115.0%;而添加生物炭显著降低了NH3挥发(8.7%~20.5%)和N2O排放(21.6%~24.2%)(P<0.05),减少9.0%~20.6...  相似文献   

17.
Summary Two annual species of Sesbania, S. aculeata and Sesbania sp. PL Se-17, were field evaluated as green manure for wetland rice in an alkaline soil. The two species were raised as a catch crop during summer in a wheat-rice rotation, and added as 24.7 and 20.8 t ha–1 of green matter, 116 and 98 kg N ha–1, respectively, after 45 days of growth. For the optimum green manuring effect on rice grain yield and N uptake, S. aculeata required 5 days of decomposition (after turning in and before rice transplantation), whereas no decomposition period was necessary for Sesbania sp. PL Se-17. The effect on grain yield and N uptake of rice was equivalent to an application of 122 and 78 kg ha–1 of chemical N, for the two species, respectively. There was no residual effect of the green manuring on the soil N status after rice harvest.  相似文献   

18.
Some of the measures suggested for amelioration of drought effects include application of N fertilizer and plant growth regulators (PGRs). Since N2-fixing bacteria produce plant growth substances (PGRs), the effect of foliar application of an active strain of Klebsiella sp. (KUPOS) on IR-50 rice was examined using three foliar sprays applied at 10-day intervals. Irrigation once every 3 days was essential for plant growth. Application of KUPOS and 40 kg N ha-1 improved grain yield of acutely water stressed plants from 330 kg ha-1 to more than 1300 kg ha-1 along with an improvement in several growth variables and yield determinants. Indole acetic acid, kinetin and GA3, in a mixture of 10-4 M of each, were less effective than KUPOS in alleviating stress effects. The adverse effects of water stress on respiration and photosynthesis as indicated by CO2 exchange were also alleviated by these treatments. While uptake of K, Mg, Ca, Fe and Mo was increased, Na content decreased, accompanied by an increase in proline content. The order of effectiveness of the treatments was 40 kg N ha-1 >KUPOS>PGRs.  相似文献   

19.
The effects on nitrification and acidification in three subtropical soils to which (NH4)2SO4 or urea had been added at rate of 250 mg N kg−1 was studied using laboratory-based incubations. The results indicated that NH4+ input did not stimulate nitrification in a red forest soil, nor was there any soil acidification. Unlike red forest soil, (NH4)2SO4 enhanced nitrification of an upland soil, whilst urea was more effective in stimulating nitrification, and here the soil was slightly acidified. For another upland soil, NH4+ input greatly enhanced nitrification and as a result, this soil was significantly acidified. We conclude that the effects of NH4+ addition on nitrification and acidification in cultivated soils would be quite different from in forest soils. During the incubation, N isotope fractionation was closely related to the nitrifying capacity of the soils.  相似文献   

20.
Summary Field studies were conducted over two seasons to examine the effect of Leucaena leucocephala as a green manure on the N uptake and yield of rice grown under lowland conditions. The treatments were 0, 4, 8, and 12t Leucaena ha-1 with 0,44, and 88 kg N ha-1 as urea in a factorial combination. N uptake was evaluated at maximum tillering, panicle initiation, and harvest. The incorporation of Leucaena increased N uptake throughout the vegetative period in both seasons, irrespective of the mineral-N level. At all levels of N, the grain yield increased significantly following the incorporation of Leucaena, and in both seasons the Leucaena treatment of 8 t ha-1 was almost as effective as the highest mineral-N application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号