首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于卷积神经网络的白背飞虱识别方法   总被引:4,自引:0,他引:4  
为了实现白背飞虱虫情信息的自动收集和监测,提出一种基于卷积神经网络的白背飞虱识别方法并进行应用研究。首先,用改进的野外环境昆虫图像自动采集装置,采集田间自然状态下的白背飞虱图像,对所获取的图像进行归一化处理。然后,随机选取1/2图像样本作为训练集、1/4作为测试集。利用5×5卷积核对训练样本进行卷积操作,将所获取的特征图以2×2邻域进行池化操作。再次经过卷积操作和3×3邻域池化操作后,通过自动学习获取网络模型参数和确定网络模型参数,得到白背飞虱的最佳网络识别模型。试验结果显示,利用训练后的网络识别模型,对训练集白背飞虱的识别正确率可达96.17%,对测试集白背飞虱的识别正确率为94.14%。  相似文献   

2.
基于深度学习中数字图像识别的理论,课题组构建了深层卷积神经网络,并使用网络模型对苹果树叶片进行分类试验,基于深度学习MobileNet,修改输出的全连接层尺寸,搭建了MobileNet苹果树叶分类模型,实现了Alternaria_Boltch(斑点落叶病)、Brown_Spot(褐斑病)、Grey_Spot(灰斑病)、...  相似文献   

3.
基于迁移学习的卷积神经网络植物叶片图像识别方法   总被引:10,自引:0,他引:10  
郑一力  张露 《农业机械学报》2018,49(S1):354-359
为了提高植物叶片图像的识别准确率,考虑到植物叶片数据库属于小样本数据库,提出了一种基于迁移学习的卷积神经网络植物叶片图像识别方法。首先对植物叶片图像进行预处理,通过对原图的随机水平、垂直翻转、随机缩放操作,扩充植物叶片图像数据集,对扩充后的叶片图像数据集样本进行去均值操作,并以4∶1的比例划分为训练集和测试集;然后将训练好的模型(AlexNet、InceptionV3)在植物叶片图像数据集上进行迁移训练,保留预训练模型所有卷积层的参数,只替换最后一层全连接层,使其能够适应植物叶片图像的识别;最后将本文方法与支持向量机(SVM)方法、深度信念网络(DBN)方法、卷积神经网络(CNN)方法在ICL数据库进行对比实验。实验使用Tensorflow训练网络模型,实验结果由TensorBoard可视化得到的数据绘制而成。结果表明,利用AlexNet、InceptionV3预训练模型得到的测试集准确率分别为95.31%、95.40%,有效提高了识别准确率。  相似文献   

4.
基于卷积神经网络的油茶籽完整性识别方法   总被引:2,自引:0,他引:2  
针对现有油茶籽色选机无法识别碎籽的问题,提出一种基于卷积神经网络的油茶籽完整性识别算法。以油茶籽完整性识别为目标,构建油茶籽图像库;基于油茶籽完整性识别任务要求,通过对Alex Net网络进行优化得到适合油茶籽完整性识别的卷积神经网络模型,该网络具有4层卷积层、2层归一化层、3层池化层和1层全连接层。为了提高网络分类准确率和实时性,从网络结构简化和超参数优化两方面对卷积神经网络进行优化,最终网络结构(CO-Net)的分类准确率、训练收敛速度和泛化性能均得到了提高。实验结果表明,优化后的网络对油茶籽完整性识别准确率达98.05%,训练时间为0.58 h,模型规模为1.65 MB,单幅油茶籽图像检测平均耗时13.91 ms,可以满足油茶籽在线实时分选的要求。  相似文献   

5.
多类农田障碍物卷积神经网络分类识别方法   总被引:4,自引:0,他引:4  
针对农田作业场景中可能会遭遇更大生命财产损失的人和其他农业车辆等动态障碍物, 提出了一种基于卷积神经网络的农业自主车辆多种类障碍物分类识别方法。搭建了包括1个输入层、2个卷积层、2个池化层、1个全连接层和1个输出层的卷积神经网络识别模型;建立了人和农业车辆的障碍物数据库,其中包括训练集和检测集;利用5×5卷积核对训练样本进行卷积操作,将所获取的特征图以2×2邻域进行池化操作,再次经过3×3卷积核的卷积操作和2×2池化操作后,通过自动学习获取并确定网络模型参数,得到最佳网络模型。试验结果表明,障碍物的检测准确率可达94.2%,实现了较好的识别效果。  相似文献   

6.
为提取水果图像的多维特征,运用卷积神经网络深度学习技术,在LeNet-5的模型结构的基础上,设计了一个卷积神经网络结构,进而完成水果识别任务.实验结果表明,所提出的网络结构取得了较高的识别准确率.  相似文献   

7.
针对现有的车牌识别方法存在车牌无法定位且车牌字符无法正确分割等情况,提出了一种基于卷积神经网络的车牌识别技术。首先,设计了一套图像处理流程实现车牌定位和字符分割,然后,利用提出的卷积神经网络对车牌字符集进行训练、识别。所提方法可以达到98.54%以上的准确率,极大提高适用性和准确率。  相似文献   

8.
病害是我国养蚕业健康发展面临的主要威胁之一,为研究机械化养蚕模式下的家蚕病害防治方法,采用卷积神经网络进行家蚕病害图像的识别研究。首先在实际环境下,采用饲养和添食病原的方法,集中获取家蚕品种芳·秀×白·春在大蚕期的部分生长阶段下患脓病、微粒子病、白僵病、细菌病、农药中毒以及健康状态的样本,并开展图像采集工作,构建出家蚕病害图像数据集。其次采用特征融合和缩减结构的方法,对残差神经网络进行部分改进,以避免直接使用该算法会导致不必要的计算耗损。最后进行家蚕病害识别试验。结果表明:卷积神经网络能够高效准确识别家蚕病害图像,使用改进的算法在测试集上的准确率达到94.31%,与标准的残差神经网络准确率相当,但训练的参数量仅为原来的1/3,且识别效率大幅提升,更有利于网络的训练与部署。  相似文献   

9.
基于FTVGG16卷积神经网络的鱼类识别方法   总被引:3,自引:0,他引:3  
针对大多数应用场景中,大多数鱼类呈不规则条状,鱼类目标小,受他物遮挡和光线干扰,且一些基于颜色、形状、纹理特征的传统鱼类识别方法在提取图像特征方面存在计算复杂、特征提取具有盲目和不确定性,最终导致识别准确率低、分类效果差等问题,本文在分析已有的VGG16卷积神经网络良好的图像特征提取器的基础上,使用Image Net大规模数据集上预训练的VGG16权重作为新模型的初始化权重,通过增加批规范层(Batch normalization,BN)、池化层、Dropout层、全连接层(Fully connected,FC)、softmax层,采用带有约束的正则权重项作为模型的损失函数,并使用Adam优化算法对模型的参数进行更新,汲取深度学习中迁移学习理论,构建了FTVGG16卷积神经网络(Fine-tuning VGG16 convolutional neural network,FTVGG16)。测试结果表明:FTVGG16模型在很大程度上能够克服训练的过拟合,收敛速度明显加快,训练时间明显减少,针对鱼类目标很小、背景干扰很强的图像,FTVGG16模型平均准确率为97. 66%,对部分鱼的平均识别准确率达到了99. 43%。  相似文献   

10.
基于深度卷积神经网络的柑橘目标识别方法   总被引:7,自引:0,他引:7  
针对户外自然环境,基于深度卷积神经网络设计了对光照变化、亮度不匀、前背景相似、果实及枝叶相互遮挡、阴影覆盖等自然环境下典型干扰因素具有良好鲁棒性的柑橘视觉识别模型。模型包括可稳定提取自然环境下柑橘目标视觉特征的深层卷积网络结构、可提取高层语义特征来获取柑橘特征图的深层池化结构和基于非极大值抑制方法的柑橘目标位置预测结构,并基于迁移学习完成了柑橘目标识别模型训练。本文运用多重分割的方法提高了柑橘目标识别模型的多尺度图像检测能力和实时性,利用包含多种干扰因素的自然环境下柑橘目标数据集测试,结果表明,柑橘识别模型对自然采摘环境下常见干扰因素及其叠加具有良好的鲁棒性和实时性,识别平均准确率均值为86. 6%,平均损失为7. 7,平均单帧图像检测时间为80 ms。  相似文献   

11.
基于改进卷积神经网络的在体青皮核桃检测方法   总被引:1,自引:0,他引:1  
采摘机器人对核桃采摘时,需准确检测到在体核桃目标。为实现自然环境下青皮核桃的精准识别,研究了基于改进卷积神经网络的青皮核桃检测方法。以预训练的VGG16网络结构作为模型的特征提取器,在Faster R-CNN的卷积层加入批归一化处理、利用双线性插值法改进RPN结构和构建混合损失函数等方式改进模型的适应性,分别采用SGD和Adam优化算法训练模型,并与未改进的Faster R-CNN对比。以精度、召回率和F1值作为模型的准确性指标,单幅图像平均检测时间作为速度性能评价指标。结果表明,利用Adam优化器训练得到的模型更稳定,精度高达97.71%,召回率为94.58%,F1值为96.12%,单幅图像检测耗时为0.227s。与未改进的Faster R-CNN模型相比,精度提高了5.04个百分点,召回率提高了4.65个百分点,F1值提升了4.84个百分点,单幅图像检测耗时降低了0.148s。在园林环境下,所提方法的成功率可达91.25%,并且能保持一定的实时性。该方法在核桃识别检测中能够保持较高的精度、较快的速度和较强的鲁棒性,能够为机器人快速长时间在复杂环境下识别并采摘核桃提供技术支撑。  相似文献   

12.
基于自适应卷积神经网络的染病虾识别方法   总被引:1,自引:0,他引:1  
针对南美白对虾样本来源多样导致的泛化效果较差的问题,引入香农信息论构造不同来源样本的特征差异模型,以深度卷积神经网络(DCNN)为识别框架基础,依据多源样本组成的数据集在分类前后呈现的熵减规则计算DCNN中的网络超参数,消解数据集从随机输入到规则输出的信息熵,打破数据类型从三维输入到一维输出的熵变动,实现图像数据由高维空间向低维空间的映射,获取DCNN中关于超参数和网络深度的自适应优化策略,以提高识别不同来源染病虾的泛化效果。实验结果表明,所提方法在单个数据集上的识别精度最高可达97.96%,并在其他4个图像数据集上进行了测试泛化,泛化精度下降幅度小于5个百分点。  相似文献   

13.
基于卷积神经网络的冬小麦麦穗检测计数系统   总被引:7,自引:0,他引:7  
为进一步提高大田环境下麦穗识别与检测计数的准确性,基于图像处理和深度学习技术,设计并实现了基于卷积神经网络的冬小麦麦穗检测计数系统。根据大田环境下采集的开花期冬小麦图像特点,提取麦穗、叶片、阴影3类标签图像构建数据集,研究适用于冬小麦麦穗识别的卷积神经网络结构,构建了冬小麦麦穗识别模型,并采用梯度下降法对模型进行训练;将构建的冬小麦麦穗识别模型与非极大值抑制结合,进行冬小麦麦穗计数。试验结果表明,该系统构建的冬小麦麦穗识别模型能够有效地克服大田环境下的噪声,实现麦穗的快速、准确识别,总体识别正确率达到99. 6%,其中麦穗识别正确率为99. 9%,阴影识别正确率为99. 7%,叶片识别正确率为99. 3%。对100幅冬小麦图像进行麦穗计数测试,采用决定系数和归一化均方根误差(NRMSE)进行正确率定量评价,结果表明,该系统计数结果与人工计数结果线性拟合的R~2为0. 62,NRMSE为11. 73%,能够满足冬小麦麦穗检测计数的实际要求。  相似文献   

14.
针对传统果蔬品质检测方法中因样本数量不足而导致检测误差大的问题,提出了一种基于面光源下光子传输模拟的苹果品质检测方法.以苹果为研究对象,采用蒙特卡洛方法仿真光子在苹果双层平板模型的运动轨迹,快速得到20 000幅苹果组织表面光亮度分布图像,以光学参数作为标签,输入卷积神经网络进行训练,将得到的模型进行微调迁移,应用到少...  相似文献   

15.
基于无人机高光谱成像遥感系统,在400~1 000 nm波段内采集低矮、混杂生长的荒漠草原退化指示物种的高光谱图像信息。分别在退化指示物种的开花期、结实期和黄枯期进行飞行实验,飞行高度30 m,高光谱图像地面分辨率2. 3 cm。采用特征波段提取与深度学习卷积神经网络相结合的方式,提出一种荒漠草原物种水平分类的方法,结合植物物候给出了中国内蒙古中部荒漠草原物种分类的推荐时相,总体分类精度和Kappa系数平均值分别达到94%和0. 91。研究结果表明,无人机高光谱成像遥感技术及深度卷积神经网络可以较好地实现荒漠草原退化指示物种的分类,与基于径向基核函数的支持向量机、基于主成分分析的深度卷积神经网络分类法相比,基于特征波段选择的深度卷积神经网络分类法效果最好,分类精度最高。无人机搭载高光谱成像仪低空遥感和卷积神经网络法提供了一种草原物种水平分类的途径。  相似文献   

16.
为实现苹果果径与果形快速准确自动化分级,提出了基于改进型SSD卷积神经网络的苹果定位与分级算法。深度图像与两通道图像融合提高苹果分级效率,即对从顶部获取的苹果RGB图像进行通道分离,并提取分离通道中影响苹果识别精度最大的两个通道与基于ZED双目立体相机从苹果顶部获取的苹果部分深度图像进行融合,在融合图像中计算苹果的纵径相关信息,实现了基于顶部融合图像的多个苹果果形分级和信息输出;使用深度可分离卷积模块替换原SSD网络主干特征提取网络中部分标准卷积,实现了网络的轻量化。经过训练的算法在验证集下的识别召回率、精确率、mAP和F1值分别为93.68%、94.89%、98.37%和94.25%。通过对比分析了4种输入层识别精确率的差异,实验结果表明输入层的图像通道组合为DGB时对苹果的识别与分级mAP最高。在使用相同输入层的情况下,比较原SSD、Faster R-CNN与YOLO v5算法在不同果实数目下对苹果的实际识别定位与分级效果,并以mAP为评估值,实验结果表明改进型SSD在密集苹果的mAP与原SSD相当,比Faster R-CNN高1.33个百分点,比YOLO v5高14.23个百分点...  相似文献   

17.
基于GoogLeNet深度迁移学习的苹果缺陷检测方法   总被引:4,自引:0,他引:4  
针对目前国内苹果分选大部分以人工操作的现状,提出利用GoogLeNet深度迁移模型对苹果缺陷进行检测。检测结果表明,本文方法对扩充后的1 932个训练样本的识别准确率为100%,对235个测试样本的识别准确率为91.91%。为评估目前苹果缺陷检测常用算法的性能,将GoogLeNet与浅层卷积神经网络(AlexNet和改进型LeNet-5)及传统机器学习方法(K-NN、RF、SVM)进行了对比,结果表明,与苹果缺陷检测的常用算法相比,本文方法具有更好的泛化能力与鲁棒性。  相似文献   

18.
基于深度学习的无人机土地覆盖图像分割方法   总被引:2,自引:0,他引:2  
编制土地覆盖图需要包含精准类别划分的土地覆盖数据,传统获取方法成本高、工程量大,且效果不佳。提出一种面向无人机航拍图像的语义分割方法,用于分割不同类型的土地区域并分类,从而获取土地覆盖数据。首先,按照最新国家标准,对包含多种土地利用类型的航拍图像进行像素级标注,建立无人机高分辨率复杂土地覆盖图像数据集。然后,在语义分割模型DeepLab V3+的基础上进行改进,主要包括:将原始主干网络Xception+替换为深度残差网络ResNet+;引入联合上采样模块,增强编码器的信息传递能力;调整扩张卷积空间金字塔池化模块的扩张率,并移除该模块的全局池化连接;改进解码器,使其融合更多浅层特征。最后在本文数据集上训练和测试模型。实验结果表明,本文提出的方法在测试集上像素准确率和平均交并比分别为95. 06%和81. 22%,相比原始模型分别提升了14. 55个百分点和25. 49个百分点,并且优于常用的语义分割模型FCN-8S和PSPNet模型。该方法能够得到精度更高的土地覆盖数据,满足编制精细土地覆盖图的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号