首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   

2.
High thermal conductive polymer composites have recently attracted much attention, along with the quick development to the electronic devices toward higher speed. The addition of high thermal conductive fillers is an efficient method to solve this problem. Here, we introduced superfullerene (SF), a novel zero-dimensional carbon-based filler, and incorporated into PVDF by a solution method. The effects of SF filler on the thermal conductivity of PVDF composites were systematically investigated. It was found that PVDF composites exhibited an improvement in thermal conductivity at a low SF loading. PVDF composites with only 5 wt% SF filler present the thermal conductivity value of 0.365 Wm-1K-1, which is as much as 121 % enhancement in comparison with that of neat PVDF. In view of the excellent thermal transport performance, the composites may enable some applications in thermal management in the future.  相似文献   

3.
Homogeneus Polypyrrole (PPy)/poly(acrylonitrile-co-styrene) (SAN) composite thin films were prepared by chemical polymerization of pyrrole on poly(acrylonitrile-co-styrene) matrix. Ce (IV) is used as an oxidant for in-situ polymerizion of pyrrole on SAN matrix, having an advantageous over the impregnation method. The formation and incorporation of PPy in the copolymer matrix were confirmed by FTIR-ATR and UV-Visible spectrophotometric measurements. Thermal analyses showed that after polymerization of Py in copolymer matrix, thermal behavior of SAN was changed and derivative of weight loss at this temperature was increased by increasing of PPy content. XPS and FTIR-ATR analysis of composite films indicated cerium salt with nitrate ion acted as a dopant. The increase in the AC electrical conductivity of the PPy/SAN composites over pure SAN was observed. At lower frequency up to 105 Hz, conductivity was shown an independent behavior from frequency; but at high frequencies (105–107 Hz), dependence on frequency was explained by polaron and bipolaron formations of PPy. The dispersion of PPy particles in copolymer matrix was proven by SEM, AFM and digital camera. By the increase of PPy content in the composite films, increase in AC conductivities, and decrease in dielectric constants and loss were observed.  相似文献   

4.
A series of semi-interpenetrating network (semi-IPN) anion exchange membranes (QCS/St-G8-2-8, Quaternized chitosan/styrene-[maleic alkylene group diethyl bis (octyl dimethyl chloro/bromide), abbreviated as G8-2-8] were prepared via in-situ polymerization by Styrene (St) and G8-2-8 in QCS casting solution. During the process of in-situ polymerization, linear block polymers (St-G8-2-8) of Styrene and G8-2-8 was constructed, then was mixed with QCS casting solution, followed crosslinking the QCS by glutaraldehyde (GA). With the increasing content of linear block polymer, water uptake and swelling ratio of the composite membrane decreased; This kind of linear structure makes an order arrangement of quaternary ammonium groups which improves the OH? migration efficiency. At 70 °C, the M-30 composite membrane performs a high OH? conductivity of 8.20×10-2 S·cm-1, the methanol permeability is 3.23×10-6 cm-2·s-1 which is still lower than Nafion 115 of 2.42×10-6 cm-2·s-1, but M-30 shows a higher selectivity of 25.3 than Nafion 115 of 11.6. Furthermore, the membranes exhibited excellent thermal stability (≥150 °C), the tensile strength of the composite membrane is in the range of 14-25 MPa and elongation at break is in the range of 16-37 % at room temperature, as well as superior chemical stability in 1.0 M KOH solution for 250 h.  相似文献   

5.
A new thermal conductive poly(vinylidene fluoride) (PVDF) composite has been developed via a hybrid functionalized graphene sheets (FGS)-nanodiamonds (NDs) filler by a simple solution method. The PVDF composite showed different thermal conductivities at different proportion of hybrid filler. The thermal conductivity of the composite was up to 0.66 W/m·K for a mixture containing 45 wt% hybrid filler, which is about 2-fold increment in comparison to the PVDF martrix. The PVDF composites consisting of 20 wt% hybrid FGS/ND filler at the weight ratio of 1:3 shows the best thermal stability. The electrical conductivity of composites was increased from 5.1×10?15 S cm?1 (neat PVDF) to 7.1×10?7 S cm?1 of the PVDF composite with 10 wt% hybrid filler.  相似文献   

6.
Partially acetylated softwood kraft lignin (ASKL) is used as filler in synthetic polymers such as LDPE, PP, PS and PET. ASKL/synthetic polymer composites are prepared by melt-blending and compression molding with ASKL content up to 50.0 wt%. The chemical and physical properties of ASKL/synthetic polymer composites are also investigated. TGA results show that ASKL is more thermally stable than SKL up to 200 °C. FTIR spectra demonstrate a formation of free volume by crystallization of LDPE in ASKL/LDPE composite. DSC results show that the glass transition temperature of ASKL decreased by acetylation, and ASKL/synthetic polymer composites (50/50 w/w) have a single glass transition. The AFM images of ASKL/synthetic polymer composites show no significant phase separation. Young’s moduli of ASKL/synthetic polymer composites increased with ASKL content in some extents. Tensile strength and breaking strain of ASKL/PET composite are almost retained in spite of the addition of ASKL as a result of a contraction in free volume or densification.  相似文献   

7.
Nanostructured silver thin films were sputtered onto the aromatic thermotropic liquid crystalline fibers of Vectran by magnetron sputtering technology. Plasma treatment was used as pre-treatment in order to improve the deposition of the coating layer. Surface morphology of the coated fibers was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A full energy dispersive X-ray analysis (EDX) was used to detect the elemental composition of the material. Its conductivity and mechanical properties were measured and analyzed as well. The study revealed that a very thin conductive silver deposition exhibited high electrical conductivity as well as less influence on the mechanical properties of the pre-treated Vectran fiber. The plasma treatment could improved the deposition of the coating layer, but the surface roughness caused by plasma treatment also affected the surface conductivity. It was found that the surface resistivity could reach very low value of 1.66×10−3 Ω·cm after sputtering deposition for 30 min.  相似文献   

8.
In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.  相似文献   

9.
The graphene oxide (GO) sheets are chemically grafted with γ-etheroxygentrimethoxysilane (KH560) and liquid crystalline epoxy (LCE) is synthesized from 4,4′-bis(2-hydroxyhexoxy)biphenyl (BP2) and epichlorohydrin before being incorporated into epoxy matrix. Then we present a novel approach to the fabrication of advanced polymer composites from epoxy matrix by incorporation of two modifiers, which are grafted GO (g-GO) and LCE. The mechanical properties of epoxy composites are greatly improved by incorporating LCE/g-GO hybrid fillers. For instance, the addition of 3 wt% hybrid filler (2 wt% g-GO and 1 wt% LCE) into the epoxy matrix resulted in the increases in impact strength by 132.6 %, tensile strength by 27.6 % and flexural strength by 37.5 %. Moreover, LCE/g-GO hybrid fillers are effective to increase thermal decomposition temperature, glass transition temperature, and storage modulus by strong affinity between the fillers and epoxy matrix.  相似文献   

10.
Research and development of biodegradable bio-composite can replacement the synthetic polymer materials, which is used for automobile interior materials, finishing materials of air conditioner and refrigerator. To develop both components as biodegradable bio-composite, this research used natural polymer starch as matrix and kenaf fiber as a filler. Various plasticizer(polyvinyl alcohol, polyethylene glycol, glycerol) were added and examined the mechanical properties of the kenaf/starch bio-composites according to these plasticizer. The kenaf bast which cultivated in Korea was retted with 2 % NaOH solution. The plasticizer weighting 10 % of that of matrix was added. kenaf/starch composites were molded with hot press for 30 minutes at 130 °C and 3,500 PSI molding condition. The mechanical properties such as tensile strength, elongation, and young modulus of the kenaf/starch composites were measured. Also, we measured the SEM cross-section images in order to investigate interfacial adhesion properties of fractured surfaces. The order of strength size of composites were G (12.42 MPa) > PVA (9.72 MPa) > PEG (4.73 MPa) samples respectively. The tensile strength of PEG sample is lower than the control sample (5.40 MPa).  相似文献   

11.
Polyurethane-based side-chain cholesteric liquid crystalline polymers (ChLCPs) with variable clearing temperatures were synthesized in a two-step reaction. The chemical structures of ChLCPs were confirmed by FT-IR and 1H-NMR spectroscopy. The mesogenic properties and phase transition behavior were investigated by means of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction measurements. The DSC studies show that the melting temperature and isotropic transition temperature of the ChLCPs increased with the weight percentage of cholesterol in the polymer. POM shows that the ChLCPs had a distinct spherulite structure that melted at about 140 °C, and these results are consistent with those of the DSC studies. The thermogravimetric studies show that the ChLCPs were stable up to 200 °C, though there was a reduction in the thermal stability as the weight proportion of cholesterol and glycerol in the polymer increased.  相似文献   

12.
This article reports on a facile route for the preparation of polypyrrole nanospheres with improved water solubility, ordering and conductivity in the presence of a polyelectrolyte, such as phosphorylated polyvinyl alcohol. The phosphorylated polyvinyl alcohol (PPVA) was used as both the stabilizer and the dopant in the chemical oxidative polymerization of pyrrole. The resulting PPVA doped polypyrrole (PPy) nanocomposites (PPy-PPVA) were characterized with FTIR, TGA, SEM and AFM techniques. The electrical conductivity of polymer was measured by four-point probe method. Our observation and results suggest a plausible formation mechanism of PPy nanospheres, PPVA micelle might have functioned as ‘template’ during the polymerization of pyrrole monomers, meanwhile, the PPy chains doped with phosphate group. It was found that the size decreased and their dispersion stability in water increased with the increasing feeding ratio of PPVA. The conductivity of PPy with different morphologies was also measured and compared. When the PPVA: pyrrole feeding ratio ranged from 20 to 50 wt%, the PPy-PPVA nanoparticles showed spherical shape with excellent uniformity, good electrical conductivity (up to 33.1 S·cm?1), and weakly temperature dependent conductivity. It’s worth mentioning that the PPy-PPVA nanocomposite prepared in high PPVA feeding ratio has been well-dispersed for more than 24 months, which indicates its significant dispersion stability.  相似文献   

13.
Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of 298∼338 K was investigated. The PEG/LiClO4 complexes exhibited the highest ionic conductivity of ∼10−5 S/cm at 25°C with the salt concentration of 1.5 M. In addition, the plasticized PEG/LiClO4 complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/LiClO4/(EC-PC) was 5.33×10−4 S/cm at 25°C.  相似文献   

14.
In this study, we report a simple and efficient method to prepare three-dimensional graphene oxide (3DGO) network by freeze drying and investigate the effect of 3DGO network on thermal properties of epoxy composites. It was found that the 3DGO network not only improved thermal conductivity, thermal stability, glass transition temperature and storage modulus of epoxy composites, but also reduced the thermal expansion properties of epoxy composites. For instance, the thermal conductivity value of epoxy composite with only 1.3 wt% 3DGO is 0.62 Wm-1K-1, increased by 148 % in comparison with that of the neat epoxy (0.25 Wm-1K-1).  相似文献   

15.
Organically modified montmorillonite (C8PPh-MMT) was obtained using the ion exchange reaction between Na+-montmorillonite (Na+-MMT) and 1-octenyltriphenyl phosphonium chloride (C8PPh-Cl). Polystyrene nanocomposites were then prepared by in-situ free-radical polymerization of the styrene containing intercalated C8PPh-MMT. The resulting polystyrene hybrids with various organoclay contents were investigated with FT-IR, which confirmed that PS hybrids were successfully prepared via the reaction of styrene monomer in the interlayers of the clays. The variations of the thermal behaviors of the hybrids with increases in the organoclay content from 0 to 8 wt% were determined. The glass transition temperatures (Tg) and initial thermal degradation temperatures (TD i) of the PS hybrids were found to increase linearly with increases in the organoclay loading. Regardless of the organoclay content of the hybrids, the clay was found to be dispersed homogeneously in the matrix polymer. This is direct evidence that the PS hybrids formed nanocomposites. This result was confirmed with XRD and TEM.  相似文献   

16.
Enhanced electrical conductivity of cotton fabrics coated with polyaniline (PANI) and PANI/carbon coated Fe (Fe@C) and carbon coated Co (Co@C) metal nanoparticles (NPs) composites were investigated. PANI/metal nanoparticle (NP) composites were fabricated with a surface initialized polymerization method and silanization helped with chemical bonding to cotton. The volume resistivity of the samples and structural characterizations were assessed by relevant methods. The results showed that enhanced electrical conductivity, thermal stability and magnetization were obtained via polymeric nanocomposites (PNC) and all these findings revealed that PANI/metal NP PNC coated cotton fabrics would exhibit good level electromagnetic shielding performance as a function of combined electrical conductivity and magnetization which is the objective of our future studies.  相似文献   

17.
In this article, we demonstrated the preparation of carbon-fiber-reinforced composites using a polyamide 6 (PA6)/thermoplastic polyurethane (TPU) blend, in which the addition of TPU resulted in superior mechanical performances and increased thermal stability. According to various characterization techniques, these results are attributed to an enhanced adhesion and a homogeneous dispersion of long-carbon-fibers (LCFs) with TPU sizing in blended polymer matrix. Above all, dynamic-mechanical thermal analysis (DMTA) measurements clearly show that the dynamic storage modulus (E') of the blend composites is increased by threefold with temperature ranges below and above the glass transition temperature. The presence of LCFs in TPU systems induces effective fiber orientation, exhibiting simultaneous improvements in the tensile strength, flexural strength, and thermal stability.  相似文献   

18.
The experimental results obtained from scratching a semicrystalline poly (ether ether ketone) surfaces, (PEEK), and its composites are presented in this paper. A semicrystalline PEEK and a carbon fiber oriented PEEK were scratched using conical indenters on a pendulum sclerometer. The carbon fiber oriented PEEK composites were scratched in the parallel, the orthogonal and the transverse direction to the fiber orientation. Subsequent deformations of the surfaces were assessed through subjective evaluation of the images obtained from a scanning electron microscope (SEM). The semicrystalline PEEK samples were found to be deformed by ductile ploughing and brittle deformation mechanism. In addition a fibrillation of the crystalline lamella of the polymer was also seen to be formed in case of severe brittle deformations. Fiber matrix debonding, matrix material debris formation, and fiber breakage were observed to be the dominant deformation mechanisms of the carbon fiber oriented composites. The scratch deformations of fiber oriented polymers were found to be highly dependent on fiber orientation angle relative to the scratching direction.  相似文献   

19.
Polyaniline (PANI) and shell membrane composites have been synthesized via chemical oxidative polymerization of aniline in the presence of shell membrane. Combination of surfactant, PANI, and shell membrane allows production of conductive textile with smooth surface. Fourier transform infrared spectroscopy (FTIR) measurements suggest that the oxidation degree of PANI was affected by the initial ratio of shell membrane vs. monomer amount. The PANI/shell membrane composites were characterized with UV-vis absorption spectroscopy, electron spin resonance (ESR) spectroscopy. Electrical conductivity of the composites was measured with four-probe method. The surface of the composites was observed with scanning electron microscopy (SEM). Thermal stability of the composites was discussed with the result of thermogravimetric analysis.  相似文献   

20.
Layer by layer (LBL) self-assembly technique has been proved to be a feasible method that enables to accomplish the preparation of functional membranes with multilayered structure. In this research, the polymer of sulfonated polyetheretherketone (SPEEK) and thioglycolic acid capping of cadmium telluride (CdTe) nanocrystals as polyanion, the polymer of polyurethane (PU) as polycation have been used to prepare membrane electrolytes. These multilayered membranes showed good thermal stability and exhibited low liquid methanol permeability, which provided a possibility for the prepared membranes as proton exchange membranes (PEMs) to apply in direct methanol fuel cells (DMFCs). We have also demonstrated that the multicomponent (SPEEK/PU/CdTe/PU)100 membranes favored to combine more phosphoric acid (PA) molecules and possessed a higher proton conductivity comparing to the bicomponent (SPEEK/PU)210 membranes. So PA doped (SPEEK/PU/CdTe/PU)100 membrane presented a maximum proton conductivity up to 8.6×10-2 S/cm at 160 °C under anhydrous conditions. However, PA doped (SPEEK/PU)210 membranes underwent a drop on proton conductivity while the temperature exceeded 120 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号