首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate the effect of medetomidine on minimum alveolar concentration (MAC), respiratory rate, tidal volume, minute volume (V(M)), and maximum inspiratory occlusion pressure (IOCP(max)) in halothane- and isoflurane-anesthetized dogs. ANIMALS: 6 healthy adult dogs (3 males and 3 females). PROCEDURE: The MAC of both inhalants was determined before and 5, 30, and 60 minutes after administration of medetomidine (5 microg/kg, IV). Dogs were subsequently anesthetized by administration of halothane or isoflurane and administered saline (0.9% NaCl) solution IV or medetomidine (5 microg/kg, IV). Respiratory variables and IOCP(max) were measured at specific MAC values 15 minutes before and 5, 30, and 60 minutes after IV administration of medetomidine while dogs breathed 0% and 10% fractional inspired carbon dioxide (FICO2). Slopes of the lines for VM/FICO2 and IOCP(max)/FICO2 were then calculated. RESULTS: Administration of medetomidine decreased MAC of both inhalants. Slope of V(M)/FICO2 increased in dogs anesthetized with halothane after administration of medetomidine, compared with corresponding values in dogs anesthetized with isoflurane. Administration of medetomidine with a simultaneous decrease in inhalant concentration significantly increased the slope for V(M)/FICO2, compared with values after administration of saline solution in dogs anesthetized with halothane but not isoflurane. Values for IOCP(max) did not differ significantly between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Equipotent doses of halothane and isoflurane have differing effects on respiration that are most likely attributable to differences in drug effects on central respiratory centers. Relatively low doses of medetomidine decrease the MAC of halothane and isoflurane in dogs.  相似文献   

2.
OBJECTIVE: To compare sedative, analgesic, and cardiopulmonary effects after IV administration of medetomidine (20 microg/kg), medetomidine-hydromorphone (20 microg of medetomidine/kg and 0.1 mg of hydromorphone/kg), and medetomidine-butorphanol (20 microg of medetomidine/kg and 0.2 mg of butorphanol tartrate/kg) in dogs. ANIMALS: 6 dogs healthy mixed-breed dogs. PROCEDURE: Instruments were surgically inserted, and heart rate (HR), respiratory rate (RR), systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), mean pulmonary arterial pressure (MPAP), pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), core body temperature, and cardiac output (CO) were measured 0, 5, 10, 15, 30, 45, and 60 minutes after injection. Cardiac index (CI), stroke volume (SV), stroke index (SI), systemic vascular resistance (SVR), and pulmonary vascular resistance (PVR) were calculated. Arterial samples for blood gas analysis were collected 0, 15, and 45 minutes after injection. Intensity of analgesia, degree of sedation, and degree of muscle relaxation were evaluated at aforementioned time points and 75, 90, 120, 150, 180, and 210 minutes after injection. RESULTS: Administration of medetomidine, medetomidine-hydromorphone, and medetomidine-butorphanol was associated with increases in SAP, MAP, DAP, MPAP, PCWP, CVP, SVR, PVR, core body temperature, and PaCO2 and decreases in HR, CO, CI, SV, SI, RR, pH, and PaO2. Clinically important differences were not detected among treatments. Medetomidine-hydromorphone and medetomidine-butorphanol provided a longer duration of sedation and better quality of analgesia, compared with medetomidine alone. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine-hydromorphone or medetomidine-butorphanol is associated with improved analgesia and sedation but has cardiopulmonary effects comparable to those for medetomidine alone.  相似文献   

3.
The objective of this study was to evaluate dexmedetomidine as a premedicant in dogs prior to propofol-desflurane anaesthesia, and to compare it with medetomidine. Six healthy dogs were anaesthetized. Each dog received intravenously (i.v.) five preanaesthetic protocols: D1 (dexmedetomidine, 1 microg/kg, i.v.), D2 (dexmedetomidine, 2 microg/kg, i.v.), M1 (medetomidine, 1 microg/kg, i.v.), M2 (medetomidine, 2 microg/kg, i.v.), or M4 (medetomidine, 4 microg/kg, i.v.). Anaesthesia was induced with propofol (2.3-3.3 mg/kg) and maintained with desflurane. The following variables were studied: heart rate (HR), mean arterial pressure, systolic arterial pressure, diastolic arterial pressure, respiratory rate (RR), arterial oxygen saturation, end-tidal CO2, end-tidal concentration of desflurane (EtDES) required for maintenance of anaesthesia and tidal volume. Arterial blood pH (pHa) and arterial blood gas tensions (PaO2, PaCO2) were measured during anaesthesia. Time to extubation, time to sternal recumbency and time to standing were also recorded. HR and RR decreased significantly during sedation in all protocols. Cardiorespiratory variables during anaesthesia were statistically similar for all protocols. EtDES was significantly different between D1 (8.1%) and D2 (7.5%), and between all doses of medetomidine. Desflurane requirements were similar for D1 and M2, and for D2 and M4 protocols. No statistical differences were observed in recovery times. The combination of dexmedetomidine, propofol and desflurane appears to be effective for induction and maintenance of general anaesthesia in healthy dogs.  相似文献   

4.
The objective of this paper was to evaluate the effect of constant rate infusion of medetomidine on the anaesthetic requirements of desflurane in dogs. For this, six healthy dogs were studied. Measurements for baseline were taken in the awake, unsedated dogs, then each dog received intravenously (i.v.) three anaesthetic protocols: M (no medetomidine infusion), M0.5 (infusion of medetomidine at 0.5 microg/kg/h, i.v.) or M1 (infusion of medetomidine at 1 microg/kg/h, i.v.). All dogs were sedated with medetomidine (2 microg/kg, i.v.) and measurements repeated in 10 min. Induction of anaesthesia was delivered with propofol (3 mg/kg, i.v.) and maintained with desflurane for 90 min to achieve a defined surgical plane of anaesthesia in all cases. After tracheal intubation infusion of medetomidine was initiated and maintained until the end of anaesthesia. Cardiovascular, respiratory, arterial pH (pHa) and arterial blood gas tensions (PaO(2), PaCO(2)) variables were measured during the procedure. End tidal desflurane concentration (EtDES) was recorded throughout anaesthesia. Time to extubation, time to sternal recumbency and time to standing were also noted. Heart rate and respiratory rate were significantly decreased during sedation in all protocols compared to baseline values. Mean heart rate, mean arterial pressure, systolic arterial pressure, diastolic arterial pressure, respiratory rate, tidal volume, arterial oxygen saturation, end-tidal CO(2), pHa, PaO(2), and PaCO(2) during anaesthesia were similar for all protocols. EtDES for M (8.6 +/- 0.8%) was statistically higher than for M0.5 (7.6 +/- 0.5%) and M1 (7.3 +/- 0.7%) protocols. Infusion of medetomidine reduces desflurane concentration required to maintain anaesthesia in dogs.  相似文献   

5.
Medetomidine, a highly specific alpha-2 adrenergic agonist, has been demonstrated to lower intraocular pressure (IOP) in rabbits and cats when applied topically. The purpose of this study was to assess the influence of intravenously injected medetomidine on the pupil size (PS) and the IOP of non glaucomatous dogs. IOP was measured by applanation tonometry and PS was measured using Jameson calipers at t=0 (or time of IV injection of medetomidine (Domitor; Orion) at the dose of 1500 microg/m2 body surface area) and again after 5 minutes (t=5). The IV administration of medetomidine caused miosis in all 14 dogs. The mean PS decreased from 9.0 to 4.0 mm (p<0.001). The IOP was lowered in 10 dogs and in 4 dogs there was a rise in IOP. The mean IOP (mmHg) decreased from 22 to 21 (p>0.2). The data presented above confirm that medetomidine at a dose of 1500 microg/m2 body surface area produces miosis in non glaucomatous dogs, without influencing the IOP.  相似文献   

6.
OBJECTIVE: To determine the cardiopulmonary and sedative effects of medetomidine hydrochloride in adult horses and to compare those effects with effects of an equipotent dose of xylazine hydrochloride. ANIMALS: 10 healthy adult female horses. PROCEDURE: 5 horses were given medetomidine (4 microg/kg of body weight, i.v.), and the other 5 were given xylazine (0.4 mg/kg, i.v.). Heart rate, respiratory rate, arterial blood pressures, pulmonary arterial blood pressures, and cardiac output were recorded, and sedation and ataxia scores were assigned before and every 5 minutes after drug administration for 60 minutes. Rectal temperature and blood gas partial pressures were measured every 15 minutes after drug administration. RESULTS: Arterial blood pressure was significantly decreased throughout the study among horses given medetomidine and was significantly decreased for 40 minutes among horses given xylazine. Compared with baseline values, cardiac output was significantly decreased 10, 20, and 40 minutes after administration of medetomidine and significantly increased 40 and 60 minutes after administration of xylazine. Despite the significant decrease in respiratory rate in both groups, results of blood gas analyses were not significantly changed over time. Ataxia and sedation scores were of similar magnitude for the 2 groups, but ataxia persisted slightly longer among horses given medetomidine. Horses resumed eating hay 10 to 55 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that equipotent low doses of medetomidine and xylazine induce comparable levels of ataxia and sedation and similar cardiopulmonary changes in adult horses.  相似文献   

7.
ABSTRACT

Aim: To evaluate the sedative and clinical effects of I/V xylazine, detomidine, medetomidine and dexmedetomidine in miniature donkeys.

Methods: Seven clinically healthy, male adult miniature donkeys with a mean age of 6 years and weight of 105?kg, were assigned to five I/V treatments in a randomised, cross-over design. They received either 1.1?mg/kg xylazine, 20?μg/kg detomidine, 10?μg/kg medetomidine, 5?μg/kg dexmedetomidine or saline, with a washout period of ≥7 days. The degree of sedation was scored using a 4-point scale by three observers, and heart rate (HR), respiration rate (RR), rectal temperature and capillary refill time (CRT) were recorded immediately before and 5, 10, 15, 30, 60, 90 and 120 minutes after drug administration.

Results: All saline-treated donkeys showed no sedation at any time, whereas the donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine had mild or moderate sedation between 5 and 60 minutes after treatment, and no sedation after 90 minutes. All animals recovered from sedation without complication within 2 hours. The mean HR and RR of saline-treated donkeys did not change between 0 and 120 minutes after administration, but the mean HR and RR of donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine declined between 5 and 60 minutes after drug administration. The mean rectal temperature of all treated donkeys did not change between 0 and 120 minutes after administration. The CRT for all donkeys was ≤2 seconds at all times following each treatment.

Conclusions and clinical relevance: Administration of xylazine at 1.1?mg/kg, detomidine at 20?μg/kg, medetomidine at 10?μg/kg and dexmedetomidine at 5?μg/kg resulted in similar sedation in miniature donkeys. Therefore any of the studied drugs could be used for sedation in healthy miniature donkeys.  相似文献   

8.
Seven captive male African wild dogs (Lycaon pictus) weighing 25-32 kg each, were anesthetized by i.m. injection via hand syringe with a combination of 1.5 mg/kg ketamine, 40 microg/kg medetomidine, and 0.05 mg/kg atropine. Following endotracheal intubation, each animal was connected to a bain closed-circuit system that delivered 1.5% isoflurane and 2 L/min oxygen. Atipamezole (0.1 mg/kg i.v.; 0.1 mg/kg i.m.) was given at the end of each procedure (60 min following injection of medetomidine/ketamine/atropine). Time to sternal recumbency was 5-8 min. Times to standing after atipamezole administration were 8-20 min. This anesthetic regimen was repeated on three separate occasions (September 2000, February 2002, and October 2002) on all males to perform electroejaculation procedures. Each procedure was <80 min from injection to standing. Dogs showed excellent muscle relaxation during the procedures. Arterial blood samples were collected at 10-min intervals for blood gases in one procedure (September 2000). Separate venous samples were taken from each dog during each procedure for hematology and biochemistry. These values were within the normal range for this species. Arterial hemoglobin oxygen saturation (SpO2) and heart rate (HR) were monitored continuously in addition to other anesthesia monitoring procedures (body temperature, respiratory rate [RR], capillary refill time, blink response, pupil position, deep pain perception reflex). All dogs maintained relatively stable SpO2 profiles during monitoring, with a mean (+/-SD) SpO2 of 92% +/-5.4%. All other physiological variables (HR, RR, body temperature, blood pressure) were within normal limits. Following each procedure, normal behavior was noted in all dogs. All the dogs were reunited into the pack at completion of their anesthetic procedures. An injectable medetomidine-ketamine-atropine combination with maintenance by gaseous isoflurane and oxygen provides an inexpensive, reliable anesthetic for captive African wild dogs.  相似文献   

9.
OBJECTIVE: To compare effects of medetomidine and xylazine hydrochloride on results of cystometry and micturition reflexes in healthy dogs and results of urethral pressure profilometry (UPP) in sedated and conscious dogs. ANIMALS: 20 dogs. PROCEDURES: Urodynamic testing was performed 6 times in each dog (3 times after administration of xylazine [1 mg/kg of body weight, IV] and 3 times after administration of medetomidine (30 microg/kg, IM). Before each episode of sedation, UPP was performed. Heart and respiratory rates and indirect blood pressures were recorded prior to and 5, 10, 20, and 30 minutes after injection of sedative. Cystometry measurements included threshold volume, threshold pressure, and tonus limb. The UPP measurements included maximal urethral closure pressure (MUCP), functional profile length, and, in male dogs, plateau pressure. RESULTS: Mean MUCP was decreased markedly in xylazine- and medetomidine-sedated dogs. Xylazine and medetomidine also decreased plateau pressure in male dogs. The MUCP measurements were consistent among days for conscious and xylazine-sedated dogs but were inconsistent for medetomidine-sedated female dogs. The proportion of valid cystometry measurements was greater for xylazine (39 of 60) than for medetomidine (27 of 60). Cystometry was considered invalid when bladder pressure reached 30 cm H2O without initiation of a micturition reflex. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine and xylazine have similar effects on measurement of UPP and cystometry. Medetomidine was less consistent among days for UPP in female dogs and produced fewer valid cystometry tests, compared with xylazine. For urodynamic evaluations, medetomidine administered IM cannot be substituted for xylazine administered IV.  相似文献   

10.
Renal effects of the selective alpha(2)-adrenoceptor agonist, medetomidine, were investigated in anesthetized dogs. Animals were administered medetomidine 20 and 40 microg/kg intravenously (IV) and 80 mug/kg intramuscularly (IM) or 1 ml of saline IV. Urine and blood samples were collected before and at 30, 60, 90 and 120 min following medetomidine injection. Mean arterial blood pressure (MABP), renal blood flow (RBF), glomerular filtration rate (GFR), urine volume (U(v)), urine osmolality (U(osm)), free water clearance (C(H2O)), fractional clearance of sodium (F(Na)), plasma osmolality (P(osm)), plasma glucose levels and plasma antidiuretic hormone (ADH) concentrations were measured. The results showed that IV administration of medetomidine initially increased MABP 5-15 min followed by long-lasting decrease. The initial hypertension was not observed after IM administration, which was accompanied by a more profound hypotensive effects. RBF, GFR, U(v), C(H2O) increased after IV injection and decreased after IM. Medetomidine increased FNa and Posm and decreased U(osm). Plasma glucose levels initially increased and subsequently decreased. Plasma ADH concentration was decreased by IV injection but increased by IM administration. Our data imply that: 1) IV administration of medetomidine at dose rates of 20 and 40 microg/kg results in profound diuresis up to 2 hr; 2) Suppression of ADH release from the CNS is one of the mechanisms of medetomidine-induced diuresis although it may not be the principal one.  相似文献   

11.
OBJECTIVE: To evaluate the effects of medetomidine and its antagonism with atipamezole in goats. STUDY DESIGN: Prospective randomized crossover study with 1 week between treatments. ANIMALS: Six healthy 3-year-old neutered goats (three male and three female) weighing 39.1-90.9 kg (60.0 +/- 18 kg, mean +/- SD). METHODS: Goats were given medetomidine (20 microg kg(-1), IV) followed, 25 minutes later, by either atipamezole (100 microg kg(-1), IV) or saline. Heart and respiratory rate, rectal temperature, indirect blood pressure, and mechanical threshold were measured, and sedation and posture were scored and blood samples obtained to measure epinephrine, norepinephrine, free fatty acids, glucose, and cortisol concentrations at baseline (immediately before medetomidine), 5 and 25 minutes after medetomidine administration, and at 5, 30, 60, and 120 minutes after the administration of antagonist or saline. Parametric and nonparametric tests were used to evaluate data; p < 0.05 was considered significant. RESULTS: Medetomidine decreased body temperature, heart rate, and respiratory rate and increased mean arterial blood pressure, cortisol, and glucose. Recumbency occurred 89 +/- 50 seconds after medetomidine administration. All goats were standing 86 +/- 24 seconds after atipamezole administration whereas all goats administered saline were sedate and recumbent at 2 hours. Tolerance to compression of the withers and metacarpus increased with medetomidine. From 5 to 120 minutes after saline or atipamezole administration, there were differences in body temperature, glucose, and cortisol but none in heart rate or blood pressure. Three of the six goats receiving saline developed bloat; five of six urinated. After atipamezole, four of six goats developed piloerection and all goats were agitated and vocalized. CONCLUSION: At the doses used, atipamezole antagonized the effects of medetomidine on recumbency, sedation, mechanical threshold, and the increase in glucose. Atipamezole increased the rate of return of cortisol toward baseline, and prevented further decline in rectal body temperature. CLINICAL RELEVANCE: Atipamezole may be used to antagonize some, but not all effects of medetomidine.  相似文献   

12.
OBJECTIVE: To determine the cardiorespiratory effects of preemptive atropine administration in dogs sedated with medetomidine. DESIGN: Randomized crossover trial. ANIMALS: 12 healthy adult dogs. PROCEDURES: Dogs underwent 6 treatments. Each treatment consisted of administration of atropine (0.04 mg/kg [0.018 mg/lb] of body weight, IM) or saline solution (0.9% NaCl, 1 ml, IM) and administration of medetomidine (10, 20, or 40 microg/kg [4.5, 9.1, or 18.2 microg/lb], IM) 10 minutes later. Treatments were administered in random order, with a minimum of 1 week between treatments. Cardiorespiratory effects before and after atropine and medetomidine administration were assessed. Duration of lateral recumbency and quality of sedation and recovery were assessed. RESULTS: Bradycardia (heart rate < 60 beats/min) was seen in all dogs when saline solution was administered followed by medetomidine, and the dose of medetomidine was not associated with severity or frequency of bradycardia or second-degree heart block. However, a medetomidine dose-dependent increase in mean and diastolic blood pressures was observed, regardless of whether dogs received saline solution or atropine. Preemptive atropine administration effectively prevented bradycardia and second-degree heart block but induced pulsus alternans and hypertension. The protective effects of atropine against bradycardia lasted 50 minutes. Blood gas values were within reference limits during all treatments and were not significantly different from baseline values. Higher doses of medetomidine resulted in a longer duration of lateral recumbency. CONCLUSIONS AND CLINICAL RELEVANCE: Preemptive administration of atropine in dogs sedated with medetomidine effectively prevents bradycardia for 50 minutes but induces hypertension and pulsus alternans.  相似文献   

13.
OBJECTIVE: To determine whether a high dose of levomedetomidine had any pharmacologic activity or would antagonize the sedative and analgesic effects of dexmedetomidine in dogs. ANIMALS: 6 healthy Beagles. PROCEDURE: Each dog received the following treatments on separate days: a low dose of levomedetomidine (10 microg/kg), IV, as a bolus, followed by continuous infusion at a dose of 25 microg/kg/h; a high dose of levomedetomidine (80 microg/kg), IV, as a bolus, followed by continuous infusion at a dose of 200 microg/kg/h; and a dose of isotonic saline (0.9% NaCl) solution, IV, as a bolus, followed by continuous infusion (control). For all 3 treatments, the infusion was continued for 120 minutes. After 60 minutes, a single dose of dexmedetomidine (10 microg/kg) was administered IV. Sedation and analgesia were scored subjectively, and heart rate, blood pressure, respiratory rate, arterial blood gas partial pressures, and rectal temperatures were monitored. RESULTS: Administration of levomedetomidine did not cause any behavioral changes. However, administration of the higher dose of levomedetomidine enhanced the bradycardia and reduced the sedative and analgesic effects associated with administration of dexmedetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of dexmedetomidine alone may have some cardiovascular benefits over administration of medetomidine, which contains both dexmedetomidine and levomedetomidine. Further studies are needed to confirm the clinical importance of the effects of levomedetomidine in dogs.  相似文献   

14.
OBJECTIVE: To determine effects of low doses of medetomidine administered with and without butorphanol and glycopyrrolate to middle-aged and old dogs. DESIGN: Prospective randomized clinical trial. ANIMALS: 88 healthy dogs > or = 5 years old. PROCEDURE: Dogs were assigned randomly to receive medetomidine (2, 5, or 10 micrograms/kg [0.9, 2.3, or 4.6 micrograms/lb] of body weight, i.m.) alone or with glycopyrrolate (0.01 mg/kg [0.005 mg/lb], s.c.), medetomidine (10 micrograms/kg) and butorphanol (0.2 mg/kg [0.1 mg/lb], i.m.), or medetomidine (10 micrograms/kg), butorphanol (0.2 mg/kg), and glycopyrrolate (0.01 mg/kg). Anesthesia was induced with thiopental sodium and maintained with isoflurane. Degree of sedation and analgesia were determined before and after medetomidine administration. Respiratory rate, heart rate, and mean arterial blood pressure were determined 10 and 30 minutes after medetomidine administration. Adverse effects and amounts of thiopental and isoflurane used were recorded. RESULTS: Sedation increased after medetomidine administration in 79 of 88 dogs, but decreased in 7 dogs that received 2 or 5 micrograms of medetomidine/kg. Mean postsedation analgesia score and amounts of thiopental and isoflurane used were less in dogs that received medetomidine and butorphanol, compared with other groups. Respiratory rate, heart rate, and blood pressure were not different among groups. Significantly more adverse effects developed in dogs that did not receive glycopyrrolate. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of medetomidine (10 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.) induced sedation and analgesia and reduced amounts of thiopental and isoflurane required for anesthesia in middle-aged and old dogs. Glycopyrrolate decreased frequency of medetomidine-associated adverse effects.  相似文献   

15.
The objective of this paper was to evaluate romifidine as a pre-medicant in dogs prior to propofol-isoflurane anaesthesia, and to compare it with medetomidine. For this, eight healthy dogs were anaesthetised. Each dog received three pre-anaesthetic protocols: R40 (romifidine, 40 microg/kg, IV), R80 (romifidine, 80 microg/kg, IV) or MED (medetomidine, 10 microg/kg, IV). Induction of anaesthesia was delivered with propofol and maintained with isoflurane. The following variables were studied before sedative administration and 10 min after sedative administration: heart rate (HR), mean arterial pressure (MAP), systolic arterial pressure (SAP) and diastolic arterial pressure (DAP) and respiratory rate (RR). During maintenance, the following variables were recorded at 5-min intervals: HR, MAP, SAD, DAP, arterial oxygen saturation (SpO(2)), end-tidal CO(2)(EtCO(2)), end-tidal concentration of isoflurane (EtISO) required for maintenance of anaesthesia and tidal volume (TV). Time to extubation, time to sternal recumbency and time to standing were also registered. HR and RR experimented a significantly decreased during sedation in all protocols respect to baseline values. Mean HR, MAP, SAP, DAP, SpO(2), EtCO(2), and TV during anaesthesia were similar for the three protocols. End tidal of isoflurane concentration was statistically similar for all protocols. Recovery time for R40 was significantly shorter than in R80 and MED. The studied combination of romifidine, propofol and isoflurane appears to be an effective drug combination for inducing and maintaining general anaesthesia in healthy dogs.  相似文献   

16.
The purpose of this study was to evaluate the cardio-respiratory effects of the combination of medetomidine and thiopentone followed by reversal with atipamezole as a combination for anaesthesia in 10 healthy German Shepherd dogs breathing spontaneously in a room at an altitude of 1486 m above sea level with an ambient air pressure of 651 mmHg. After the placement of intravenous and intra-arterial catheters, baseline samples were collected. Medetomidine (0.010 mg/kg) was administered intravenously and blood pressure and heart rate were recorded every minute for 5 minutes. Thiopentone was then slowly administered until intubation conditions were ideal. An endotracheal tube was placed and the dogs breathed room air spontaneously. Blood pressure, pulse oximetry, respiratory and heart rate, capnography, blood gas analysis and arterial lactate were performed or recorded every 10 minutes for the duration of the trial. Thiopentone was administered to maintain anaesthesia. After 60 minutes, atipamezole (0.025 mg/kg) was given intramuscularly. Data were recorded for the next 30 minutes. A dose of 8.7 mg/kg of thiopentone was required to anaesthetise the dogs after the administration of 0.010 mg/kg of medetomidine. Heart rate decreased from 96.7 at baseline to 38.5 5 minutes after the administration of medetomidine (P < 0.05). Heart rate then increased with the administration of thiopentone to 103.2 (P < 0.05). Blood pressure increased from 169.4/86.2 mmHg to 253.2/143.0 mmHg 5 minutes after the administration of medetomidine (P < 0.05). Blood pressure then slowly returned towards normal. Heart rate and blood pressure returned to baseline values after the administration of atipamezole. Arterial oxygen tension decreased from baseline levels (84.1 mmHg) to 57.8 mmHg after the administration of medetomidine and thiopentone (P < 0.05). This was accompanied by arterial desaturation from 94.7 to 79.7% (P < 0.05). A decrease in respiratory rate from 71.8 bpm to 12.2 bpm was seen during the same period. Respiratory rates slowly increased over the next hour to 27.0 bpm and a further increases 51.4 bpm after the administration of atipamezole was seen (P < 0.05). This was maintained until the end of the observation period. Arterial oxygen tension slowly returned towards normal over the observation period. No significant changes in blood lactate were seen. No correlation was found between arterial saturation as determined by blood gas analysis and pulse oximetry. Recovery after the administration of atipamezole was rapid (5.9 minutes). In healthy dogs, anaesthesia can be maintained with a combination of medetomidine and thiopentone, significant anaesthetic sparing effects have been noted and recovery from anaesthesia is not unduly delayed. Hypoxaemia may be problematic. Appropriate monitoring should be done and oxygen supplementation and ventilatory support should be available. A poor correlation between SpO2 and SaO2 and ETCO2 and PaCO2 was found.  相似文献   

17.
Using a randomized crossover design, this study compared the anesthetic and cardiorespiratory effects of three intramuscular anesthetic combinations in seven 2-year-old cats: tiletamine-zolazepam (8 mg/kg) and butorphanol (0.2 mg/kg) (TT); tiletamine-zolazepam (3 mg/kg), butorphanol (0.15 mg/kg), and medetomidine (15 microg/kg) (TTD); or the TTD protocol plus atipamezole (75 microg/kg IM) given 20 minutes later to reverse medetomidine. Analgesia was assessed using algometry and needle pricking. All three combinations effectively induced anesthesia suitable for orotracheal intubation within 5 minutes after injection. Hemoglobin oxygen saturation was lower than 90% at least once in all three groups between 5 and 15 minutes after drug administration. Blood pressure and heart and respiratory rates were within normal ranges. Both TT and TTD appeared to be effective injectable anesthetic combinations. TTD provided significantly better analgesia with a longer duration than did TT. Atipamezole administration shortened the duration of analgesia and decreased blood pressure but did not shorten total recovery time.  相似文献   

18.
OBJECTIVES: To determine if chronic selegiline HCl administration affects the cardiopulmonary response to medetomidine, oxymorphone, or butorphanol in dogs. STUDY DESIGN: Prospective randomized experimental study. ANIMALS: Twenty-eight adult, random source, hound dogs weighing 21-33 kg. METHODS: Dogs were assigned to the following treatment groups: selegiline + medetomidine (MED; n = 6); placebo + MED (n = 6), selegiline + oxymorphone (OXY; n = 6); placebo + OXY (n = 6); selegiline + butorphanol (BUT; n = 7) or placebo + BUT (n = 6). Nine dogs were treated with two of the three pre-medicants. Dogs were treated with selegiline (1 mg kg(-1) PO, q 24 hours) or placebo for at least 44 days prior to pre-medicant administration. On the day of the experiment, arterial blood for blood gas analysis, blood pressure measurements, ECG, cardiac ultrasound (mM-mode, 2-D, and continuous wave Doppler), and behavioral observations were obtained by blinded observers. An IV injection of MED (750 micro g m(-2)), OXY (0.1 mg kg(-1)) or BUT (0.4 mg kg(-1)) was given. Cardiopulmonary and behavioral data were collected at 1, 2, 5, 15, 30, and 60 minutes after injection. RESULTS: Selegiline did not modify responses to any of the pre-medicant drugs. Medetomidine caused a significant decrease in heart rate (HR), cardiac output (CO), and fractional shortening (FS). Mean arterial pressure (MAP), systemic vascular resistance (SVR), and central venous pressure (CVP) were increased. Level of consciousness and resistance to restraint were both decreased. Oxymorphone did not affect MAP, CO, CVP, or SVR, but RR and PaCO(2) were increased. Level of consciousness and resistance to restraint were decreased. BUT decreased heart rate at 1 and 5 minutes. All other cardiovascular parameters were unchanged. BUT administration was associated with decreased arterial pH and increased PaCO(2). BUT decreased level of consciousness and resistance to restraint. CONCLUSIONS AND CLINICAL RELEVANCE: Although pre-medicants themselves altered cardiopulmonary and behavioral function, selegiline did not affect the response to medetomidine, oxymorphone, or butorphanol in this group of normal dogs.  相似文献   

19.
OBJECTIVE: To evaluate the effects of administration of a peripheral alpha(2)-adrenergic receptor antagonist (L-659,066), with and without concurrent administration of glycopyrrolate, on cardiopulmonary effects of medetomidine administration in dogs. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs received saline (0.9% NaCl) solution (saline group), L-659,066 (group L), or L-659,066 with glycopyrrolate (group LG). These pretreatments were followed 10 minutes later by administration of medetomidine in a randomized crossover study. Hemodynamic measurements and arterial and mixed-venous blood samples for blood gas analysis were obtained prior to pretreatment, 5 minutes after pretreatment, and after medetomidine administration at intervals up to 60 minutes. RESULTS: After pretreatment in the L and LG groups, heart rate, cardiac index, and partial pressure of oxygen in mixed-venous blood (PvO2) values were higher than those in the saline group. After medetomidine administration, heart rate, cardiac index, and PvO2 were higher and systemic vascular resistance, mean arterial blood pressure, and central venous pressure were lower in the L and LG groups than in the saline group. When the L and LG groups were compared, heart rate was greater at 5 minutes after medetomidine administration, mean arterial blood pressure was greater at 5 and 15 minutes after medetomidine administration, and central venous pressure was lower during the 60-minute period after medetomidine administration in the LG group. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of L-659,066 prior to administration of medetomidine reduced medetomidine-induced cardiovascular changes in healthy dogs. No advantage was detected with concurrent administration of L-659,066 and glycopyrrolate.  相似文献   

20.
OBJECTIVE: To determine the effect of medetomidine on the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. STUDY DESIGN: Prospective randomized study. ANIMALS: Twelve healthy adult female purpose-bred dogs, weighing 16.8 to 25 kg. METHODS: Two treatments were randomly administered to each of twelve dogs at weekly intervals: (1) Saline injected IM followed in 15 minutes by isoflurane anesthesia (ISO) induced by mask and maintained at an end-tidal concentration of 1.8% for 60 minutes; and (2) Medetomidine, 15 ug/lkg IM followed in 15 minutes by isoflurane anesthesia (ISO&MED) induced by mask and maintained at an end-tidal concentration of 1.0% for 60 minutes. One week after completion of these two treatments, all dogs were ovariohysterectomized. six receiving each treatment (SURG and SURG&MED). Central venous blood samples (10 mL) were obtained immediately before medetomidine or saline (baseline) and at 30, 75, and 195 minutes and 24 hours after administration of medetomidine or saline in ISO and ISO&MED. In SURG and SURG&MED, samples were obtained immediately prior to injection of medetomidine or saline (baseline) and at 30 (before skin incision), 45 (after severence of the ovarian ligament), 75 (after skin closure), 105 (30 minutes after skin closure, dog recovered and in sternal recumbency), 135, 195, 375 minutes, and 24 hours after the initial sample. Samples were analyzed for epinephrine, norepinephrine, adrenocorticotrophic hormone (ACTH), cortisol, insulin, and glucose. Data were analyzed by analysis of variance and where significant differences were found, a least significant difference test was applied. RESULTS: Premedication with medetomidine prevented or delayed the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. CONCLUSIONS: The stress response induced by ovariohysterectomy, although significant, is of short duration. Medetomidine safely and effectively reduced surgically-induced stress responses. CLINICAL RELEVANCE: Surgically induced stress responses can be obtunded or prevented by administration of medetomidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号