首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 104 毫秒
1.
梁桓  索全义  侯建伟  刘常涛 《土壤》2015,47(5):886-891
掌握不同生物炭材料的结构特征和化学特性是合理利用生物炭的基础。通过无氧炭化法制备了不同炭化温度下的玉米秸秆生物炭和沙蒿生物炭,对比了不同材料和不同炭化温度下生物炭性质的差异。结果表明:炭化温度低于400℃时,两种材料生物炭的孔隙结构保存完整,600℃以上时,两种材料生物炭的蜂窝状结构均遭到破坏,玉米秸秆生物炭被破坏得更严重;同一炭化温度下,玉米秸秆生物炭的比表面积及总孔容和平均孔径均大于沙蒿生物炭,两种生物炭的比表面积随炭化温度的升高均增大,总孔容呈"V"形变化;两种材料的生物炭均呈碱性,炭化温度越高,pH越大,400℃~800℃,每升高10℃,玉米秸秆生物炭和沙蒿生物炭的pH均以0.02的幅度增加,同一温度下,玉米秸秆生物炭的pH大于沙蒿生物炭,在400℃、600℃和800℃下分别比沙蒿生物炭高0.31、0.35和0.29单位;随炭化温度的升高,玉米秸秆生物炭和沙蒿生物炭的C、P、K和灰分含量增加,400℃~800℃,玉米秸秆生物炭的C、P、K含量以炭化温度每升高10℃分别增加2.94、0.11、0.20 g/kg的幅度变化,沙蒿生物炭也以4.35、0.07、0.24 g/kg的幅度增加,与此同时,玉米秸秆生物炭的N、H含量以每升高10℃分别以0.13 g/kg和0.86 g/kg的幅度降低,沙蒿生物炭的N、H含量分别以0.04 g/kg和0.82 g/kg的幅度下降,S含量无明显变化,C/N和C/H增大,且不同材料生物炭的元素含量差异显著;两种材料生物炭的N、P、K有效性随炭化温度的升高均下降,400℃~600℃,玉米秸秆生物炭和沙蒿生物炭的速效N含量分别下降了57.89%和19.05%,800℃时两种生物炭的速效N均接近0 mg/kg,400℃~800℃玉米秸秆生物炭和沙蒿生物炭的速效P含量分别降低了67.41%和52.36%,此时速效K含量也分别降低了45.62%和90.16%。总之,不同材料和炭化温度对生物炭的物理特征和化学特性都有较大影响。  相似文献   

2.
不同热解温度制备的水稻秸秆生物炭理化特性分析   总被引:1,自引:0,他引:1  
以不同热解温度(100~800℃)制备的水稻秸秆生物炭为研究对象,研究在不同热解温度下制成的生物炭的理化特性。结果表明,热解温度为100~300℃制成的水稻秸秆生物炭呈弱酸性,400℃以上时呈碱性;水稻秸秆生物炭表面碱性含氧官能团数量随着热解温度的升高而增加、酸性含氧官能团则减少;水稻秸秆生物炭中的官能团C=C、C-O-C、-OH和-C=O在较高的热解温度下发生缔合或消除,促进了芳香基团的形成;随着热解温度的升高,水稻秸秆生物炭的阳离子交换量(CEC)、比表面积、孔径、比孔容、氮气吸附量和颗粒表面的分型维数(D1)均先增加后降低,阳离子交换量(CEC)在300~500℃时、其它性状在400~600℃之间达到最大值;以不同热解温度制成的水稻秸秆生物炭颗粒的孔隙结构均以孔隙宽度2~50 nm的中孔为主。随热解温度的升高,水稻秸秆生物炭的产率逐渐降低;400~500℃炭化2 h,生物炭产率最高,其孔隙结构最为复杂,所以可以认为400~500℃是水稻秸秆炭化的最佳温度。  相似文献   

3.
为了提升农林废弃物在储能领域的高附加值利用,该研究以杉木屑为原料,磷酸三聚氰胺为磷、氮源,基于冷冻NaOH/硫脲体系溶解木质原料中纤维素,通过一步热解制备氮、磷、硫共掺杂多孔炭,并考察活化温度、NaOH/杉木屑质量比和冷冻条件对多孔炭结构及电化学性能的影响。通过X射线光电子能谱(XPS, X-ray photoelectron spectroscop )和比表面积分析仪(BET,Brunauer-Emmett-Teller)研究多孔炭的表面结构和孔隙结构;采用循环伏安(CV,cyclic voltammetry)、恒流充放电(GCD,galvanostatic charge/discharge)和交流阻抗(EIS,electrochemical impedance spectroscopy)等测试手段表征其电化学性能。研究结果表明:随着活化温度和NaOH/杉木屑质量比的增加,多孔炭的表面积、全孔孔容和比电容呈现先增加后减小的趋势;冷冻条件和磷酸三聚氰胺的加入可以增加多孔炭的比表面积和全孔孔容,提升电化学性能。当活化温度900 ℃,NaOH/杉木屑质量比为1.2时,制备的氮、磷、硫共掺杂多孔炭的比表面积为2 048 m2/g,全孔孔容为1.655 cm3/g,介孔率为99.7%,氮、磷、硫的含量为3.41%、0.29%、1.40%。三电极体系下、6 mol/L KOH电解液中,当电流密度0.5 A/g时,比电容可达261 F/g。用NPS-900-1.2组装的对称超级电容器5 A/g电流密度条件下,比电容值为108 F/g,循环5 000次后库伦效率接近100%,电容保持率为92%。对称的超级电容器功率密度为248 W/kg时,能量密度可达17.2 Wh/kg。该研究为农林废弃物制备高性能超级电容器提供了参考依据。  相似文献   

4.
水稻秸秆生物质炭对土壤磷吸附影响的研究   总被引:3,自引:2,他引:3  
本文以水稻秸秆为原料,分析了不同热解温度下生物炭的性质,并利用批处理实验,分析了生物炭添加量和热解温度对土壤磷吸附特性的影响。结果表明:随着热解温度的升高,生物炭的碳化程度、比表面积和磷含量增加。生物炭添加显著减少了土壤对磷的吸附量,而且随着生物炭热解温度的增加,土壤对磷的吸附量显著增加。Langmuir方程和Freundlich方程都能够较好地拟合生物炭对土壤磷的等温吸附。准一级动力学方程和准二级动力学方程可较好地描述生物炭对土壤磷吸附动力学的行为。通过以上研究结果可知,水稻秸秆生物炭可以减少土壤对磷的吸附并增加土壤有效磷的含量,因此在土壤改良方面具有一定的应用潜力。  相似文献   

5.
项目研究了重金属修复基地水稻、玉米、油菜、高粱4种修复材料秸秆的热重反应,并首次探讨了重金属修复材料在制备生物炭过程中,不同生物炭制备条件对重金属在生物炭中留存的影响。结果表明:四种秸秆热重反应变化趋势基本一致,失重主要发生在200~400℃之间,而在400~600℃区间,基本保持恒重。水稻秸秆失重率90%明显高于其他三种秸秆失重率75%。在不同终点温度条件下(350~550℃),重金属在生物炭中浓度有增加趋势,其百分比例均随温度的升高而降低,原料利用热值则在400℃最高。在不同升温速率和保温时间下,重金属在生物炭中的含量随升温速率升高和保温时间的延长而升高,生物炭得率和秸秆综合利用热值却随之下降。因此,秸秆生物炭制备过程中为获得较低重金属含量和高热值的生物炭,建议以400℃为终点温度,升温速率不宜过快,保温时间不宜过长,分别在1℃min-1和1 h左右即可。  相似文献   

6.
中国农田土壤镉等重金属污染问题突出,对其生产过程中产生的镉污染水稻秸秆进行无害化和资源化利用研究具有重要意义。该研究通过连续提取试验、风险评价指数法、吸附动力学/热力学、土柱试验,以及X射线衍射分析、傅里叶变换红外光谱分析等手段,探究了不同热解温度下制备的镉污染水稻秸秆生物炭对土壤中Cd的稳定特性。研究结果表明,镉污染水稻秸秆热解制备的生物炭可有效吸附土壤镉。热解温度显著影响生物炭对Cd的吸附能力(P<0.05),高温生物炭对Cd吸附容量大,700 ℃下制备的生物炭对Cd的吸附容量可达72.57 mg/g。生物炭对Cd的吸附主要通过含氧官能团表面络合和碳酸盐共沉淀吸附,其吸附过程符合Langmuir方程和准二级动力学模型,吸附过程受化学速率控制。土柱试验表明,镉污染水稻秸秆生物炭能有效降低土壤Cd的下渗迁移能力,其作用机制主要是将土壤Cd从酸可提取态转化为残渣态,施入高温生物炭的土壤中Cd的残渣态比例最高。上述结果表明,热解可有效处理镉污染水稻秸秆,制备的生物炭可用于Cd等重金属污染土壤的稳定修复,有效解决镉污染水稻秸秆的潜在二次污染问题并实现其安全利用。  相似文献   

7.
秸秆炭基肥料挤压造粒成型优化及主要性能   总被引:5,自引:4,他引:5  
炭基肥料是以生物炭为基质与其他肥料复合而成的新型肥料,能有效提高土壤的肥力和透气能力,同时具有对肥料的缓释效果等。为了炭基肥料成型工艺优化及工业化生产,该文以复混肥料的国家标准为参考,尿素、过磷酸钙、磷酸氢二铵、氯化钾作为提供氮磷钾元素的基础肥料,并以秸秆炭为基质,着重讨论了成型前加水量、有无添加胶黏剂和成型前物料粒度对炭基肥料成型的影响。研究成型炭基肥料的较佳工艺为基础肥料质量分数占70.36%,总养分的质量分数为28%,其中N:P2O5:K2O养分质量比为10:8:10,秸秆炭质量分数16.64%,不加研磨,配以13%的水,搅拌均匀常温造粒成型;并对在此条件下成型后的炭基肥料养分含量、含水率、溶水性、强度、pH值和对土壤化学性质的影响等性能进行表征,指标如下:氮质量分数为10.07%,水溶性磷质量分数5.47%,有效磷质量分数8.38%,水溶性磷占有效磷65.27%,钾质量分数10.45%,水分质量分数3.24%,机械强度85%以上,pH值为6.41。实测结果符合国家相应标准,工艺设计简单可行,进而为炭基肥料的工业生产提供参考。  相似文献   

8.
生物炭颗粒在饱和多孔介质中的迁移与滞留   总被引:2,自引:0,他引:2  
生物炭在实际生产实践中具有许多潜在的农业和环境效益,因此受到了越来越多的关注。生物炭在多孔介质中的迁移不仅会影响它在土壤中的归趋,还可能会影响微生物群体及土壤有机质的动态变化以及被吸附的污染物对环境的影响。实验通过柱实验研究了微米级生物炭颗粒在饱和多孔介质中的迁移和滞留特性,主要选取了四种影响生物炭迁移的潜在因素:原材料、裂解温度、背景溶液pH值和离子强度。实验结果显示微米级生物炭在饱和多孔介质中具有一定的迁移能力,但是大部分的微米级生物炭会滞留在饱和多孔介质的表面和孔隙间。生物炭的制备原材料对于生物炭的表面电势特性有较大影响,从而影响了微米级生物炭在饱和多孔介质中的迁移能力。热解温度越高,生物炭的表面电势越大,迁移能力越弱。随着背景溶液离子强度增加和pH值减小,微米级生物炭颗粒在多孔介质中滞留增加,迁移能力减弱。  相似文献   

9.
不同水分条件下秸秆生物炭对高粱生长和养分含量的影响   总被引:2,自引:0,他引:2  
【目的】 研究不同水分条件下秸秆生物炭对高粱生长、养分含量以及土壤理化性质和养分含量的影响,以探明秸秆生物炭对高粱生长的作用效果。 【方法】 以高粱“晋杂34号”为供试作物,石灰性褐土为供试土壤进行盆栽试验。试验设3个水分处理,分别为正常供水,田间持水量的85% (W1);轻度胁迫,田间持水量的65%(W2);重度胁迫,田间持水量的45% (W3)。设5个秸秆生物炭添加量,分别占土壤干重的0、0.5%、1%、3%和6%。高粱出苗后70天调查株高,采集地上部 (茎和叶),测定生物量、N、P、K、Ca、Mg、Fe、Mn、Cu和Zn的含量,同时采集土样测定pH值、EC、有机质、全氮、有效磷、速效钾、交换性Ca和Mg、有效Fe、Mn、Cu和Zn的含量。 【结果】 干旱胁迫显著降低了高粱生物量和株高;施用0.5%秸秆生物炭显著增加了重度干旱胁迫条件下高粱生物量,但是当施用量 > 1%时不同水分条件下高粱生物量和株高均显著降低。干旱胁迫降低了高粱P含量,增加了K、Ca、Mn和Zn的含量;秸秆生物炭提高了高粱K和Zn含量,降低了N、P和Mg的含量;随着水分含量的减少,作物收获后土壤有效Mn和有效Zn含量降低;添加生物炭显著提高了土壤速效K和有效Zn的含量,但是当施用量大于1%时,土壤交换性Mg、有效Fe和有效Mn的含量显著降低。 【结论】 供试条件下,施用0.5%秸秆生物炭能够提高高粱钾和锌的含量,促进干旱胁迫条件下 (45%田间持水量) 高粱的生长,但过量施用 (> 1%) 会对高粱生长产生抑制作用。   相似文献   

10.
热解温度对生物炭表面性质及释放氮磷的影响   总被引:1,自引:0,他引:1  
热解温度是影响生物炭表面性质的重要因素。在250~450℃范围内制备玉米秸秆生物炭(CB)和杨木生物炭(PB)。采用X-射线光电子能谱仪对生物炭的表面元素进行分析,发现各元素含量随热解温度而变化,2种生物炭的变化规律不同。傅里叶变换红外分析表明,热解温度升高造成生物炭基团的变化,C=O基团增多,芳香性增强。研究生物炭在水中的氮磷释放行为发现,随着热解温度的升高,NH_4~+-N和NO_3~--N的释放呈现先增加后减少的趋势;CB的总磷释放有所增加,PB的总磷释放先增加后降低。不同热解温度的生物炭,其营养元素的释放速率在初期存在一定差别,释放过程在48 h内基本完成。生物炭的表面性质及氮磷释放行为与热解温度及生物质来源密切相关。  相似文献   

11.
The objective of this work was to study the effect of different biochar on alkaline calcareous soil, inherently low in soil organic carbon and fertility. Experiments were conducted in laboratory and greenhouse. Biochar was produced from wheat and rice straws at pyrolysis temperatures of 300°C, 400°C and 500°C (denoted as WSB300, WSB400, WSB500, RSB300, RSB400 and RSB500, respectively). In the first experiment, soil was incubated with biochar (1.0 % w/w) for up to 50 weeks. The results indicate that, WSB300 caused a significant decrease in soil pH and increased the CEC and nutrients (N, P and K) after 50 weeks of incubation. In the second experiment, maize plants were grown in pots containing calcareous soil amended with WSB and RSB for 60 days the results revealed that the application of WSB300 caused a significant increase in shoot (36%) and root (38%) dry matters over the respective control. Moreover, the highest nutrient concentrations (N and P) in shoot and root were observed with the WSB300 compared to other treatments. Therefore, it is concluded that application of wheat straw biochar produced at low temperature (WSB300) could be successfully used to improve soil properties and growth of plants in calcareous soils.  相似文献   

12.
将秸秆粉用氨基淀粉黏合剂均相包覆,并掺杂纳米二氧化硅(nano SiO_2),采用原位发泡、炭化处理技术制备成纳米SiO_2/氨基淀粉黏合剂秸秆炭(掺杂纳米SiO_2秸秆多孔颗粒炭,nano SiO_2/AR-biochar)。通过透射电镜(transmission electron microscope,TEM)、热稳定性(thermogravimetry,TG)、扫描电镜-能谱扫描(scanning electron microscope-energy dispersive spectrometer,SEM-EDS)、比表面积与孔分析(Brunauer,Emmett and Teller,BET)、氮气吸附和压缩测试等技术手段对nano SiO_2/AR-biochar的孔结构特征、比表面积、微观形貌及压应力进行系统表征,并研究了nano SiO_2/AR-biochar对磷酸根吸附过程等温线及动力学模型。结果表明,掺杂nano SiO_2/AR-biochar孔结构分布匀称、比表面积大幅改善;TEM和SEM发现,掺杂nano SiO_2秸秆多孔颗粒炭材料的表面可形成类似海绵絮状结构,为炭材料提供较高的吸附位点;掺杂nano SiO_2可显著提高炭材料的机械压缩性能,当掺杂量为秸秆粉质量的6%时,压缩强度由3.89 MPa增加到7.96 MPa,增幅达104.6%。由于纳米SiO_2的掺杂,nano SiO_2/AR-biochar具有了更强除磷效果,且吸附过程符合准二级动力学模型,在短时间内(5 min)其吸附率可高达18.42 mg/g,体现了该掺杂纳米二氧化硅秸秆多孔颗粒炭具有良好的除磷特性。  相似文献   

13.
秸秆生物碳质吸附剂的制备及其吸附性能   总被引:8,自引:6,他引:8  
为了开辟一条废弃生物质材料利用的新途径,该研究以小麦秸秆为生物质材料,通过中低温区间限氧升温熔融碳化方法制备生物碳质吸附剂,并以铜离子为例,研究吸附剂对废水中重金属的吸附性能。结果表明:在中低温区间(200~500℃)制备的吸附剂产率高、能耗小、制备工艺简单、吸附速率快、达到平衡时间短,最慢的吸附剂(P200)需要3 h达到吸附平衡,最快的吸附剂(P500)仅需0.5 h就达到吸附平衡。30℃时吸附剂P500对铜离子的饱和吸附量为11.19 mg/g。吸附动力学过程符合Lagergren准二级反应动力学模型,吸附等温线符合Langmuir方程,分离因子RL值在0~1之间,为有利吸附。扫描电镜分析显示,随着碳化温度的升高,秸秆的微孔变形程度加剧,增大了表面粗糙程度,孔道效应更易发挥,从而提高吸附性能,为生物质吸附剂的工程应用提供参考。  相似文献   

14.
为了研究生物炭对向日葵秸秆热解的影响,以向日葵秸秆为原料,基于TG-FTIR研究生物炭添加前后向日葵秸秆热解特性与气体产物的变化。结果表明,与向日葵秸秆相比,混合样品主热解区间由276~349℃变得更长,并且发生不同程度的偏移,热解活化能不同程度降低,由60.21降到38.07~50.35 kJ/mol,呋喃类、酸类、含羰基类化合物、芳香醛类、CO、CH4等产物吸光度值存在差异。随着添加500℃制备生物炭比例增加,混合样品热解的活化能减小,释放气体产物中芳香醛类释放量增量减少,CO与CH4释放量降低。添加不同制备温度的生物炭,混合样品热解产生呋喃类、酸类、含羰基类化合物释放量均有所降低;添加500和700℃制备的生物炭,混合样品热解气体产物中芳香醛类增加。添加900℃制备的生物炭,向日葵秸秆热解气体产物中CO产量增加。该研究为向日葵秸秆的有效利用提供理论基础和技术支撑。  相似文献   

15.
为探讨高温堆肥中氮素损失的有效控制技术,以2种不同热解温度制备的稻壳生物质炭为堆肥添加剂,与羊粪、食用菌渣混合,进行了43 d的堆肥试验。设置了3个处理,羊粪与食用菌渣质量比9:1混合体作为预备物料,在预备物料上分别添加450、650℃热解的生物质炭(占预备物料质量百分比15%)为B1、B2处理,在预备物料上添加未热解的稻壳(与生物质炭等体积)为CK处理。监测了堆肥体的温度、NH3挥发、N2O排放、p H值等参数变化动态,分析了不同热解温度生物质炭在堆肥中的保氮效果。结果表明,与对照组相比B1、B2处理促进了堆肥初期的温度快速上升,堆肥体初次升温至55℃所需时间分别较CK缩短了2、6 d,B2处理的促升温、增温效应优于B1处理;堆肥43 d后,CK、B1与B2处理的NH3挥发累积量分别为378.12、117.22、94.16 mg/kg,N2O排放累积量分别为13.9、26.3、23.6 mg/kg,氮素损失率分别为47.8%、34.1%,30.5%;与对照组相比B1、B2处理增加了堆肥体N  相似文献   

16.
Abstract

A short-term study was conducted to investigate the greenhouse gas emissions in five typical soils under two crop residue management practices: raw rice straw (Oryza sativa L., cv) and its derived biochar application. Rice straw and its derived biochar (two biochars, produced at 350 and 500°C and referred to as BC350 and BC500, respectively) were incubated with the soils at a 5% (weight/weight) rate and under 70% water holding capacity for 28 d. Incorporation of BC500 into soils reduced carbon dioxide (CO2) and nitrous oxide (N2O) emission in all five soils by 4?40% and 62?98%, respectively, compared to the untreated soils, whereas methane (CH4) emission was elevated by up to about 2 times. Contrary to the biochars, direct return of the straw to soil reduced CH4 emission by 22?69%, whereas CO2 increased by 4 to 34 times. For N2O emission, return of rice straw to soil reduced it by over 80% in two soils, while it increased by up to 14 times in other three soils. When all three greenhouse gases were normalized on the CO2 basis, the global warming potential in all treatments followed the order of straw > BC350 > control > BC500 in all five soils. The results indicated that turning rice straw into biochar followed by its incorporation into soil was an effective measure for reducing soil greenhouse gas emission, and the effectiveness increased with increasing biochar production temperature, whereas direct return of straw to soil enhanced soil greenhouse gas emissions.  相似文献   

17.
稻草及其制备的生物质炭对土壤团聚体有机碳的影响   总被引:11,自引:0,他引:11  
向土壤中添加生物质炭已被认为是改善土壤质量,增加碳吸存的有效措施。通过模拟实验,利用同位素δ13C标记技术,研究稻草及其制备的生物质炭添加对土壤团聚体有机碳的影响。结果表明:稻草和生物质炭对土壤团聚体中新形成碳和原有机碳的影响截然不同。培养112 d,来自稻草或生物质炭的新碳主要进入到中团聚体(50 ~ 250 μm)中,比例为70.3% ~ 75.3%。与对照土壤相比,稻草添加显著促进了大团聚体(250 ~ 2 000 μm)原有机碳的分解(p <0.05),但对中团聚体和微团聚体(<50 μm)原有机碳的影响并不明显,而生物质炭添加(SB250和SB350)则对大团聚体和中团聚体原有机碳没有显著影响,但SB250处理(土壤中加入250℃热解制备的生物质炭)显著抑制了微团聚体原有机碳的分解(p <0.05),而SB350处理(土壤中加入350℃热解制备的生物质炭)的则无影响。对于同一粒级团聚体,稻草与生物质炭处理的区别,主要体现在新碳分配上,而对原有机碳的影响并不显著。  相似文献   

18.
温度及过筛方式对猪粪和稻秆炭理化特性和镉吸附的影响   总被引:4,自引:2,他引:4  
该文以猪粪、水稻秸秆为原料,采用2种过筛处理(热解前、后过筛),于300~700℃下制备生物炭,通过电镜扫描(scanning electron microscope,SEM)、X射线衍射(X-ray diffraction,XRD)和傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)对其进行表征并分析其理化性质,探讨不同处理生物炭理化性质及镉吸附能力之间的相关关系,并优选出以修复土壤镉污染为目标的生物炭处理。结果表明:1)稻秆生物炭的镉吸附能力(最大吸附量为69.2 mg/g)显著高于猪粪生物炭(最大吸附量为36.4 mg/g)。制备温度为300℃时,前、后过筛处理的稻秆生物炭对镉的吸附能力分别为10.6和11.5 mg/g;制备温度为700℃时分别增加至61.4和69.2 mg/g。前后过筛方式对稻秆和猪粪生物炭镉吸附的影响规律不明显。2)生物炭的产率与灰分含量显著负相关,与H/C极显著正相关。3)前、后过筛处理的稻秆生物炭以及前过筛处理的猪粪生物炭的镉吸附能力均与产率和H/C呈显著负相关。后过筛处理猪粪生物炭的镉吸附能力与所有理化性质均不显著相关。  相似文献   

19.
采用低温烘焙技术制备玉米秸秆成型生物炭,可解决玉米秸秆带来的环境污染及资源浪费。研究以玉米秸秆成型颗粒为原料,利用固定床反应器,制备了不同烘焙温度(250~400℃)成型生物炭,采用元素分析、工业分析、能量产率、质量产率、机械性能、疏水性、红外光谱(Fourier transform infrared spectroscopy,FTIR)、扫描电镜(Scanning electron microscopy,SEM)、元素K含量等分析生物炭特性。随烘焙温度升高,热值增加,能量产率降低,400℃时,成型生物炭热值为21.86MJ/kg,能量产率为50.17%。成型生物炭颗粒表面裂纹增多,机械性能降低,350℃烘焙成型生物炭(CSP350)机械性能好于400℃烘焙成型生物炭(CSP400),低于成型生物质颗。烘焙生物炭疏水性提升,可贮藏于室外。成型玉米秸秆经烘焙热解发生了脱水、脱羰基、脱甲基反应,纤维素、半纤维素热解剧烈,木质素开始热解。随温度升高,其孔径呈下降趋势,比表面积增大。结果表明,玉米秸秆成型烘焙生物炭可作为优质生物燃料,适宜制备温度为300~350℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号