首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impacts of a wildfire and subsequent rainfall event in 2013 in the Warrumbungle National Park in New South Wales, Australia were examined in a project designed to provide information on post‐fire recovery expectations and options to land managers. A coherent suite of sub‐projects was implemented, including soil mapping, and studies on soil organic carbon (SOC) and nitrogen (N), erosion rates, groundcover recovery and stream responses. It was found that the loss of SOC and N increased with fire severity, with the greatest losses from severely burnt sandstone ridges. Approximately 2.4 million t of SOC and ~74,000 t of N were lost from soil to a depth of 10 cm across the 56,290 ha affected. Soil loss from slopes during the subsequent rainfall event was modelled up to 25 t ha?1, compared to a long‐term mean annual soil loss of 1.06 t ha?1 year?1. Groundcover averages generally increased after the fire until spring 2015, by which time rates of soil loss returned to near pre‐fire levels. Streams were filled with sand to bank full levels after the fire and rainfall. Rainfall events in 2015–2016 shifted creek systems into a major erosive phase, with incision through the post‐fire sandy bedload deposits, an erosive phase likely related to loss of topsoils over much of the catchment. The effectiveness of the research was secured by a close engagement with park managers in issue identification and a communications programme. Management outcomes flowing from the research included installation of erosion control works, redesign of access and monitoring of key mass movement hazard areas.  相似文献   

2.
An algorithm was proposed for the simulation of water erosion as a stochastic process. Two concepts were used: the random single event (e.g., rainfall) and the implementation of a random process as a series of random single events during a long time period. The Monte Carlo method and previously developed and substantiated equations for rain and snow melt erosion were used for the numerical simulation of random single events. The simulation resulted in a series of values for the soil loss during the specified time period, from which the probability distribution of the soil loss during this period could be assessed. The testing results for the chernozemic soils of the Central Chernozemic region showed that the error of the soil loss calculation was 13% during 200 years of land use. It was shown that the SCS equation developed for the United States’ conditions can be used to calculate the rainfall runoff in the Central Chernozemic region of Russia. Problems that cannot be solved using deterministic models and the available observation data can be solved on the basis of the obtained probability distributions.  相似文献   

3.
Despite the high variability of the precipitation regime characterizing the Mediterranean area, the records of rainfall depth are usually not appropriate for long‐term calculations of erosivity and soil losses, because they do not reveal details of short lengths or long durations (daily, monthly). In this work, we present a simple approach to calculate annual erosivity through monthly precipitation records. The study area (olive groves on steep slopes) has a high erosion risk associated to the main soil land use, combined with an irregular and erosive rainfall regime. The relationships between rainfall data at intervals of 10 min for a period of 3 years, daily rainfall records over 10 years and a long‐term monthly dataset of 60 years were checked to calculate the annual erosivity values through daily data, Fourier's index and modified Fourier's index values. A good, adjusted linear relationship between modified Fourier's index and the erosivity was found, which allowed us to optimize the use of the 60‐year monthly data series and to carry out a long‐term analysis of the erosivity quantiles in the study area. The estimated mean erosivity showed a return period of between 2 and 5 years and a variation coefficient of over 50 per cent, which illustrate its high variability and frequency. This approach to calculate erosivity and the use of quantiles could be applied in other areas with month‐long data series in order to study and model the erosion risk using suitable temporal periods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
《Soil Use and Management》2018,34(3):388-403
Increased soil erosion, pressure on agricultural land, and climate change highlight the need for new management methods to mitigate soil loss. Management strategies should utilize comparable data sets of long‐term soil erosion monitoring across multiple environments. Adaptive soil erosion management in regions with intense precipitation requires an understanding of inter‐annual variability in sediment yield (SY ) at regional scales. Here, a novel approach is proposed for analysing regional SY . We aimed to (i) investigate factors controlling inter‐ and intra‐annual SY , (ii) combine seasonality and time compression analyses to explore SY variability and (iii) discuss management implications for different Mediterranean environments. Continuous SY measurements totalling 104 years for eight small catchments were used to describe SY variability, which ranged from 0 to 271 t/ha/year and 0 to 116 t/ha/month. Maximum SY occurs in spring to summer for catchments with oceanic climates, while semi‐arid or dry summer climates experience SY minimums. We identified three time compression patterns at each time scale. Time compression was most intense for catchments with minimum SY in spring to summer. Low time compression was linked to very high soil loss, low run‐off and sediment production thresholds, and high connectivity. Reforestation, grassland and terracing changed SY magnitudes and time compression, but failed to reduce SY for large storm events. Periods with a high probability of high SY were identified using a combination of intra‐annual SY variability, seasonality analysis, and time compression analysis. Focusing management practices on monthly flow events, which account for the majority of SY , will optimise returns in Mediterranean catchments.  相似文献   

5.
植被和降雨是水土流失的关键因素,探究二者对水土流失的影响对开展水土保持具有重要意义。该研究基于鹰潭红壤生态试验站5种植被结构类型的径流小区2016-2018年93次降雨、径流、泥沙观测资料以及各小区植被结构参数,利用自组织映射(self-organizing maps,SOM)方法,根据雨量、历时、60 min最大雨强、平均雨强、降雨集中性等特征指标划分降雨模式,研究了不同降雨模式和植被结构类型的水土流失特征,并采用冗余分析(RDA)定量研究降雨与植被对林下水土流失的影响。结果表明,SOM方法能客观识别红壤区4种典型侵蚀降雨模式,R模式(短历时、大雨强、雨量集中)是造成水土流失的主要降雨模式,R模式(多雨量、大雨强、长历时)最具侵蚀性破坏力;植被结构类型显著影响水土流失,水土保持功能从大到小依次为:灌草混交林、草地、低灌林、乔木林、高灌林。RDA分析表明,降雨模式与植被结构类型能够改变降雨、植被对水土流失的影响,随着降雨模式由弱到强转变,植被的水土保持功能逐渐减小,降雨影响增强,水土流失由植被主控演变为平衡控制、降雨主控;随着植被结构类型...  相似文献   

6.
红壤丘陵区坡长对作物覆盖坡耕地土壤侵蚀的影响   总被引:6,自引:2,他引:4  
坡长对坡耕地土壤侵蚀的影响随雨强的不同而变化,为解决南方红壤丘陵区坡耕地水土流失问题,该文采用野外人工模拟降雨的方法,研究了南方红壤丘陵区作物覆盖坡耕地上不同雨强下坡长对其土壤侵蚀的影响,并探讨了侵蚀增强的临界雨强和设置水土保持措施的合理坡长,结果表明:产沙量随坡长延长整体呈增大趋势,但存在一定的波动,二者的关系可用幂函数(决定系数0.84)表示。坡长延长相同长度时,产沙量不呈比例增加,但每隔4 m产沙量增量有减少的趋势,且径流侵蚀产生的泥沙中主要为粒径0.002~0.02 mm的粉粒及粒径0.002 mm的黏粒,加剧了耕地土壤粗化,因此,可每隔4 m设置水土保持措施,有效减少坡耕地水土流失。坡面径流侵蚀产沙量随着雨强的增大而增加,坡长越长,产沙量随雨强增加速度越快,二者呈幂函数关系(决定系数0.76),60 mm/h是红壤丘陵区侵蚀增强的临界雨强;雨强、坡长与产沙量均呈正相关关系,且雨强对坡耕地产沙量的影响较坡长大。对不同雨强下坡长对作物覆盖坡耕地土壤侵蚀的影响研究,可以为南方红壤丘陵区坡耕地水土流失的治理提供一定的理论依据。  相似文献   

7.
Experimental plots were constructed in the Zhangjiachong Watershed of the Three Gorges Reservoir Area to evaluate soil erosion of traditional slope land farming and effects of soil conservation measures. Surface runoff and sediment from the watershed and each plot were collected and measured during 2004–2007. Field investigations indicated that hedgerows were the best for soil erosion control, followed by stone dike terraces and soil dike terraces. The Water Erosion Prediction Project (WEPP) model was used to simulate erosion of annual and rainfall events both at the watershed and plot levels. The low deviation, high coefficient of determination and model efficiency values for the simulations indicated that the WEPP model was a suitable model. The soil erosion rate distribution was modeled to determine where serious erosion would occur during rainfall events in the Zhangjiachong Watershed and so control measures can be taken.  相似文献   

8.
可移动水土流失实验系统使固定的野外径流小区坡面侵蚀观测转变为车载流动试验观测.实践结果表明,该系统可实时对不同坡度的小区进行人工降雨模拟实验,分析侵蚀土壤理化性质和坡面侵蚀过程,极大地提高了水土流失观测的速度和效率.系统中液压自动升降坡面侵蚀土槽可根据试验要求稳定变化,且坡度可在0°~30°之间任意调整,加快了数据采集速度,缩短了试验周期,数据采集更加方便.针对长江流域土壤侵蚀特点对传统试验土槽做了改进,增加了壤中流收集装置,使得坡面侵蚀试验装置更趋合理.人工模拟降雨试验喷头模拟的雨强范围也明显增加,可在20~170 mm/h之间任意调整.  相似文献   

9.
《CATENA》2004,55(1):79-90
Vineyards are one of the lands that incur the highest soil losses in Mediterranean environments. Most of the studies that report about this problem only focus on soil losses and few investigations have addressed the nutrient losses associated with erosion processes during the storms. The present research evaluates the loss of nitrogen, phosphorus and potassium in vineyard soils located in a Mediterranean area (NE Spain), after an extreme rainfall event recorded on 10 June 2000. The total rainfall of this event was 215 mm, 205 mm of which fell in 2 h 15 min. The maximum intensity in 30-min periods reached 170 mm h−1. This rainfall produced a large amount of sediments both inside and outside the plots, with the consequent soil mobilisation and loss of nutrients. The estimate of soil loss was based on the subtraction of two very accurate digital elevation models (DEMs) of different dates in GIS, and measures of the nutrient content of sediment collected in the plot. Soil loss in the study plot reached 207 mg ha−1. Most sediment was produced by concentrated surface runoff. Nutrient losses amounted as 108.5 kg ha−1 of N, 108.6 kg ha−1 of P and 35.6 kg ha−1 of K. The proposed method allowed mapping the sediment contribution and deposition areas and the distribution of the nutrient load and losses within the plot.  相似文献   

10.
《CATENA》2002,50(1):1-16
Estimating catchment scale soil loss based on rainfall simulators is often hampered by the difficulty to scale up simulator results. Our objective was to develop and test a method for estimating catchment scale soil loss based on observed rainfall using a variable intensity rainfall simulator in an erosion-sensitive catchment in semiarid Tunisia. A 7-year period, 1992–1999, with observed sedimentation amounts in a downstream reservoir was chosen to test a methodology. The methodology was based on (1) energy adjustment for the used simulator due to the difference in kinetic energy of simulated and natural rainfall at equal intensities and (2) upscaling of simulated erosion in which rill erosion was estimated by adjusting the difference between slope lengths for the plots versus the catchment after onset of runoff. The comparison between calculated soil loss from rainfall simulator experiments and observed sedimentation in the downstream reservoir displayed good overall results. Calculated soil loss was found to be about 96%, 36%, and 80% for different observed subperiods, respectively. The observed low value for the second period was probably due an exceptionally intense rainfall event during this period, which appears to have led to gully erosion, soil slide, and riverbank collapse. Therefore, during this event, siltation in the reservoir may essentially be due to unaccounted erosion processes such as gully erosion. Overall, however, it appears that plot-scale variable intensity rainfall simulators can rather successfully estimate catchment scale soil losses.  相似文献   

11.
基于次降雨小流域侵蚀产沙过程的复杂性、非线性,利用支持向量机回归和主成分分析方法,确定了影响次降雨小流域侵蚀产沙量的关键因子,包括浑水径流深、洪峰最大流量、降雨量和30min最大降雨强度。建立了向量机回归支持下的次降雨小流域侵蚀产沙预测模型。利用60次侵蚀产沙实测资料,对模型预报精度进行了分析,结果表明,基于支持向量回归的次降雨流域侵蚀产沙预报模型具有较好的预测精度,预测精度平均为在86%。该研究为揭示次降雨小流域土壤侵蚀规律提供了新的途径和方法。  相似文献   

12.
An experiment to evaluate the impact of water erosion and cultivation on the soil carbon dynamic and carbon stock in a semiarid area of South-East Spain was carried out. The study was performed under three different land use scenarios: (1) forest; (2) abandoned agricultural field; and (3) non-irrigated olive grove. Experimental erosion plots (in olive grove and forest) and sediment traps (in the abandoned area) were used to determine the carbon pools associated with sediments and runoff after each event occurring between September 2005 and November 2006.

Change in land use from forest to cultivated enhanced the risk of erosion (total soil loss in olive cropland seven-fold higher than in the forest area) and reduced the soil carbon stock (in the top 5 cm) by about 50%. Mineral-associated organic carbon (MOC) represented the main C pool in the three study areas although its contribution to soil organic carbon (SOC) was significantly higher in the disturbed areas (78.91 ± 1.81% and 77.29 ± 1.21% for abandoned and olive area, respectively) than in the forest area (66.05 ± 3.11%). In both, the olive and abandoned soils, the reduction in particulate organic carbon (POC) was proportionally greater than the decline in MOC.

The higher degree of sediment production in the olive cropland had an important consequence in terms of the carbon losses induced by erosion compared to the abandoned and forest plots. Thus, the total OC lost by erosion in the sediments was around three times higher in the cultivated (5.12 g C m−2) than the forest plot (1.77 g C m−2). The abandoned area displayed similar OC losses as a result of erosion as the forest plot (in the measurement period: 2.07 g C m−2, 0.63 g C m−2 and 0.65 g C m−2 for olive, forest and abandoned area, respectively). MOC represented the highest percentage of contribution to total sediment OC for all the events analysed and in all uses being, in general these values higher in Olive (74–90%) than in the other two areas (55–80%). The organic carbon lost was basically linked to the solid phase in the three land uses, although the contribution of DOC to total carbon loss by erosion varied widely with each event.

Data from this study show that the more labile OC fraction (POC) lost in soil in the cultivated area was mainly due to the effect of cultivation (low overall biomass production and residue return together with high C mineralization) rather than to water erosion, given that the major part of the OC lost in sediments was in the form of MOC.  相似文献   


13.
This paper reports computer simulations carried out using data from a rainfall simulator study on a steeply sloping revegetated area (a soundbund) at the NorthParkes Mine, near Parkes in New South Wales, Australia. Simulations of slope stability used a combination of daily time‐step models to consider soil water balances and runoff, growth of grass/legume pasture and soil erosion. Simulations indicated that long‐term erosion rates on the soundbund would be low (1·01–1·27 t ha−1 yr−1) due to low runoff rates and good vegetative cover. The simulations highlighted that peak vegetative growth occurred prior to the period of peak erosion hazard, with carry‐over dry matter being crucial for erosion control during the period of peak rainfall erosivity. This, in turn, indicated that grazing during the periods of peak growth and peak erosion hazard should be avoided (to avoid loss of dry matter). It also indicated that there was value in establishing grass species that would give greater growth during summer months, and that may produce dry matter that is more persistent through time. Simulations of stormwater flows in channels draining various lifts on the soundbund compared a range of alternatives with respect to channel length, gradient and roughness. The simulations indicated little effect of channel length on peak flow rates or depths once channel lengths exceeded 250 m and also showed little effect of vegetative roughness on peak flow rates or depths once Manning's n values exceeded 0·05. Implications of these results for design of drainage channels and drop structures on the soundbund are discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The Ebro River valley in Northeast Spain experiences regularly strong west-northwest winds that are locally known as cierzo . When the cierzo blows, wind erosion may potentially occur on unprotected agricultural lands. In this paper the first results of field measurements of soil characteristics and saltation transport in the Ebro River valley near Zaragoza are presented. An experiment was conducted on a silt loam soil in the summers of 1996 and 1997. Two plots of 135×180 m were both equipped with a meteorology tower, three saltiphones (acoustic sediment sensors) and ten sediment catchers. The plots were different with respect to tillage practices. One plot received mouldboard ploughing followed by a pass of a compacting roller (conventional tillage—CT), whereas the other plot only received chisel ploughing (reduced tillage—RT). Soil characterizations indicated that soil erodibility was significantly higher in the CT plots than in the RT plots. Consequently, no significant saltation transport was observed in the RT plots during both seasons. In the CT plot, four saltation events were recorded during the 1996 season and nine events during the 1997 season. Most events were preceded by rainfall during the previous one or two days, which reduced saltation transport significantly. It is concluded that the occurrence of wind erosion in the Ebro River valley depends on the timing and type of tillage, distribution of rainfall and soil-surface crusting. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Soil erosion is a key process to understand the land degradation, and modelling of soil erosion will help to understand the process and to foresee its impacts. The applicability of the Universal Soil Loss Equation (USLE) at event scale is affected by the fact that USLE rainfall erosivity factor does not take into account runoff explicitly. USLE‐M and USLE‐MM, including the effect of runoff in the event rainfall–runoff erosivity factor, are characterized by a better capacity to predict event soil loss. The specific objectives of this paper were (i) to determine the suitable parameterization of USLE, USLE‐M and USLE‐MM by using the dataseries of Sparacia experimental site and (ii) to evaluate their performances at both event and annual scale. The measurements allowed to establish the relationships for calculating the factors of USLE, USLE‐M and USLE‐MM usable at the Sparacia experimental area. At first, for slope‐length values greater than 33 m, the calibration of USLE model at event scale pointed out that sediment delivery processes, that is processes involving deposition of the transported eroded soil particles, occur. The analysis showed that USLE and USLE‐M tend to overestimate low event soil losses, while for USLE‐MM, this tendency is less pronounced. However, the USLE‐MM performed better than USLE and USLE‐M and was able to reproduce better than other two models the highest soil loss values that are the most interesting from a practical point of view. The results obtained at annual scale were generally consistent with those obtained at event scale. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
An analysis of the statistical distribution of event soil loss was carried out using the data collected in the period 1999–2008 at the microplots and plots of the Sparacia experimental area (Sicily, Italy). For a given microplot size, the analysis allowed to establish that the soil loss frequency distribution was skewed. Using the soil loss normalized by the event mean value, the analysis also showed that the frequency distributions corresponding to different microplot and plot sizes were overlapping, i.e. all distributions were extracted by the same statistical population. The developed analysis allowed to suggest that the soil loss of a given return period can be estimated using a scale and a frequency factor. Finally the sediment yield data collected in two basins of the Sparacia area were used to compare the frequency distributions of normalized soil erosion data collected at different spatial scales (plot, basin). The overlapping of the two distributions was satisfactory, and the conclusion was that the mean value of the measured variable is expressive of the characteristics of the sediment source area.  相似文献   

17.
Recent research has shown a lack of long-term monitoring for detailed analysis of gully erosion response to climate characteristics. Measures carried out from 1995 to 2007 in a wheat-cultivated area in Raddusa (Sicily, Italy), represent one of the longest series of field data on ephemeral gully, EG, erosion. The data set collected in a surface area of almost 80 ha, permits analysis of the influence of rainfall on EG formation and development. Ephemeral gullies formed in the study area were measured on a yearly scale with a Post-Processing Differential GPS for length and with a steel tape for the width and depth of transversal sections. Ephemeral gully formation was observed for 8 years out of 12, which corresponds to a return period of 1.5 years. The measurements show strong temporal variability in EG erosion, in agreement with the rainfall characteristics. The total eroded volumes ranged between 0 and ca. 800 m3 year−1, with a mean of ca. 420 m3 year−1, corresponding to ca. 0.6 kg m−2 year−1. Ephemeral gully erosion in the study area is directly and mainly controlled by rainfall events. An antecedent rainfall index, the maximum value of 3-days rainfall (Hmax3_d), is the rain parameter which best accounts for EG erosion. This index is used here as a simple surrogate for soil water content. An Hmax3_d threshold of 51 mm was observed for EG formation. The return period of the Hmax3_d threshold is almost the same as the return period for EG formation. Although a mean of seven erosive rain events were recorded in a year, EG formation and development generally occur during a single erosive event, similarly to other semiarid environments. The most critical period is that comprised between October and January, when the soil is wetter and the vegetation cover is scarce. Empirical models for EG eroded volume estimation were obtained using the data set collected at this site. A simple power-type equation is proposed to estimate the eroded volumes using Hmax3_d as an independent variable. This equation shows an R2 equal to 0.67 and a standard error of estimation of 0.79.  相似文献   

18.
长江流域降雨侵蚀力时空变化及成因分析   总被引:3,自引:2,他引:1  
基于1961-2017年均一化逐日降水资料,采用线性回归及Mann-kendall 显著性检验、Spearman秩偏相关、广义极值分布等方法对长江流域年降雨侵蚀力及侵蚀性的降雨特征时空分布特点、变化趋势和成因、10年一遇次降雨侵蚀力极端变化进行分析,并从总体趋势和极端变化角度综合探讨导致土壤水蚀加剧的气候危险性格局,为长江流域生态环境保护、可持续发展及制定针对性精细化水土保护措施和流域治理提供参考。结果表明:1)1961-2017年,长江流域年降雨侵蚀力和年侵蚀性的降雨量、降雨日数、雨强变化速率增加,雨强增加趋势明显;2)流域和大部分分区年降雨侵蚀力增加主要受年侵蚀性降雨量和雨强增加变化的影响,多数分区因雨强的显著增加起主导作用;3)71.6%的站点年降雨侵蚀力变化速率增加,10年一遇次降雨侵蚀力1961-2017年相对1961-1990年时段增加的站点比例为61.2%;4)1961-2017年年降雨侵蚀力增加趋势和/或10年一遇次降雨侵蚀力后一时段增加,均可能造成土壤水蚀加剧的危险,长江流域水蚀气候危险性增加的站点范围广,比例多达81.5%,对水土流失预防和治理十分不利。  相似文献   

19.
研究紫色土区坡耕地玉米全生育期细沟侵蚀阶段水土及氮素流失规律,以期为研究区氮素流失有效防控提供科学依据。采用人工模拟降雨与野外径流小区相结合的方法,开展降雨强度为1.5mm/min条件下玉米全生育期细沟侵蚀阶段地表径流、壤中流和侵蚀泥沙中氮素流失特征的研究。结果表明:细沟侵蚀阶段,玉米各生育期地表径流量、壤中流量和侵蚀产沙量总体表现为随降雨时间延长呈先增加后平稳的变化趋势。地表径流中总氮、可溶性总氮、硝态氮和侵蚀泥沙中总氮流失量总体呈现先增加后平稳的趋势,而地表径流中铵态氮流失量变化趋势在降雨前期呈现波动性变化,降雨后期逐渐平稳。壤中流中总氮、可溶性总氮、硝态氮、铵态氮流失量则随着降雨时间延长呈现平稳的变化趋势。细沟侵蚀阶段地表径流中氮素流失总量在玉米苗期最大,为628.77mg/m2;壤中流中氮素流失总量在拔节期和抽雄期最大;侵蚀泥沙中氮素流失总量在苗期最大,为144.95mg/m2。壤中流为氮素流失主要途径,硝态氮为氮素流失主要形态。  相似文献   

20.
《CATENA》2001,44(3):187-203
This study was undertaken as part of a larger project to evaluate the impact of soil erosion on soil productivity in Costa Rica, Nicaragua and Mexico. An important part of the overall project consists of the use of the event-based EUROSEM model (European Soil Erosion Model) to predict soil erosion rates. This paper evaluates the use of the model both for single event and yearly soil loss estimations using erosion plot data from Nicaragua and data obtained through rainfall simulator experiments in Costa Rica and Mexico. EUROSEM was calibrated based on the hydrographs followed by the sedigraphs in Costa Rica and Mexico and this was followed by a model validation. In Nicaragua, model calibration was done using total soil loss values for 1993 and the model was consecutively validated using plot data for 1994 and 1995. The study stresses the importance of calibrating the model for individual catchments, and that the total area of plant stems and soil cohesion are crucial calibration parameters when modelling grassland with cover percentages above 60%. EUROSEM generally did not perform well on single event simulations in terms of simulating hydrographs and sedigraphs. Whereas the difference between observed and simulated total soil loss was between 0.0% and 100.0%, differences in total discharge, peak run-off rate and peak soil loss ranged between 2.0% and 326.5%. The difference was attributed to the model's inability to model crusting. The application of the model for yearly soil loss predictions looks promising with simulated and observed total soil loss values in Nicaragua differing by between 2.5% and 5.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号