共查询到20条相似文献,搜索用时 15 毫秒
1.
The lower Himalayan regions of north‐west India experienced a severe land‐use change in the recent past. A study was thus conducted to assess the effect of grassland, forest, agricultural and eroded land uses on soil aggregation, bulk density, pore size distribution and water retention and transmission characteristics. The soil samples were analysed for aggregate stability by shaking under water and water drop stability by using single simulated raindrop technique. The water‐stable aggregates (WSA) >2 mm were highest (17·3 per cent) in the surface layers of grassland, whereas the micro‐aggregates (WSA < 0·25 mm) were highest in eroded soils. The water drop stability followed the similar trend. It decreased with the increase in aggregate size. Being lowest in eroded soils, the soil organic carbon also showed an adverse effect of past land‐use change. The bulk density was highest in eroded lands, being significantly higher for the individual aggregates than that of the bulk soils. The macroporosity (>150 µm) of eroded soils was significantly (p < 0·05) lower than that of grassland and forest soils. The grassland soils retained the highest amount of water. Significant (p < 0·05) effects of land use, soil depth and their interaction were observed in water retention at different soil water suctions. Eroded soils had significantly (p < 0·05) lower water retention than grassland and forest soils. The saturated hydraulic conductivity and maximum water‐holding capacity of eroded soils were sufficiently lower than those of forest and grassland soils. These indicated a degradation of soil physical attributes due to the conversion of natural ecosystems to farming system and increased erosion hazards in the lower Himalayan region of north‐west India. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
《Communications in Soil Science and Plant Analysis》2012,43(5):869-883
The study was conducted to determine the long-term impact of different land uses on carbon sequestration, soil fertility, and microbial indices and to establish their interrelationship in a light-textured hyperthermic Udic Ustochrept. Soil samples were collected from existing land-use systems of (1) Eucalyptus tereticornis, (2) Terminalia chebula, (3) Acacia nilotica, (4) Leucaena leucocephala, (5) Embilica officinalis, (6) Zizyphus spp., and (7) maize–wheat rotation from depths of 0–15, 15–30, and 30–45 cm and examined for pH; organic carbon (OC); electrical conductivity (EC); available nitrogen (N), phosphorus (P), and potassium (K); micronutrients; microbial biomass carbon (MBC); microbial biomass nitrogen (MBN); and microbial biomass phosphorus (MBP). High-density plantations of Eucalyptus teriticornis had a greater potential in sequestering aboveground carbon (472.37 Mg ha?1), compared to widely spaced trees of Acacia nilotica (376.05 Mg ha?1). Eucalyptus teriticornis exhibited the greatest impact in increasing soil OC in all depths, followed by Acaccia nilotica and Terminalia chebula, and the lowest was in agriculture (0.778, 0.749, 0.590, and 0.471%, respectively, in surface soil). Available zinc and iron contents were greatest under Eucalyptus tereticornis, followed by Acacia nilotica, Zizyphus mauritiana, Embilica officinalis, Terminalia chebula, and Leucaena leucocephala. The MBC and MBN were greatest in Eucalyptus tereticornis, followed by Acacia nilotica, and lowest in agriculture. Correlation matrix revealed significant and positive relationships between carbon sequestered with OC, MBC, MBN, and MBP. 相似文献
3.
《Land Degradation u0026amp; Development》2017,28(1):189-198
Carbon accumulation is an important research topic for grassland restoration. It is requisite to determine the dynamics of the soil carbon pools [soil organic carbon (SOC) and soil inorganic carbon (SIC)] for understanding regional carbon budgets. In this study, we chose a grassland restoration chronosequence (cropland, 0 years; grasslands restored for 5, 15 and 30 years, i.e. RG5, RG15 and RG30, respectively) to compare the SOC and SIC pools in different soil profiles. Our results showed that SOC stock in the 0‐ to 100‐cm soil layer showed an initial decrease in RG5 and then an increase to net C gains in RG15 and RG30. Because of a decrease in the SIC stock, the percentage of SOC stock in the total soil C pool increased across the chronosequence. The SIC stock decreased at a rate of 0·75 Mg hm−2 y−1. The change of SOC was higher in the surface (0–10 cm, 0·40 Mg hm−2 y−1) than in the deeper soil (10–100 cm, 0·33 Mg hm−2 y−1) in RG5. The accumulation of C commenced >5 years after cropland conversion. Although the SIC content decreased, the SIC stock still represented a larger percentage of the soil C pool. Moreover, the soil total carbon showed an increasing trend during grassland restoration. Our results indicated that the soil C sequestration featured an increase in SOC, offsetting the decrease in SIC at the depth of 0–100 cm in the restored grasslands. Therefore, we suggest that both SOC and SIC should be considered during grassland restoration in semi‐arid regions. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
黄土高原丘陵区地形和土地利用对土壤有机碳的影响 总被引:3,自引:0,他引:3
土壤有机碳(SOC)作为土壤中重要的组成部分及植物生长的主要元素,在地球生态系统中起着举足轻重的作用,是全球环境尤其是气候变化的重要影响因素。以黄土高原王茂沟小流域为研究对象,通过间隔为150m经纬网格分5层采集0~100cm土壤样品,采集土壤样品包括4种地形(坡顶、坡上、坡中、坡下)和5种土地利用类型(坡耕地、林地、草地、灌木、梯田),共采集土壤样品1 540个,探讨地形和土地利用方式对黄土丘陵沟壑区小流域SOC含量和分布影响,并通过Kriging插值计算流域内SOC空间分布。结果表明,黄土丘陵第一副区王茂沟小流域在0~100cm土层中,SOC平均含量坡上(4.49g·kg~(-1))和坡中(4.30 g·kg~(-1))含量最高,其次为坡下(3.97 g·kg~(-1)),坡顶SOC含量最低(3.34g·kg~(-1));坡耕地SOC含量最低。林地(4.31 g·kg~(-1))、梯田(4.25 g·kg~(-1))、草地(4.12 g·kg~(-1))和灌木(3.82 g·kg~(-1))分别较坡耕地(3.47 g·kg~(-1))SOC含量增加24.2%、22.4%、18.7%和10.1%。表层SOC更易受到环境因子的影响,梯田等水土保持措施可明显固存深层(20cm)SOC。方差成分估计表明,土地利用、地形、深度以及土地利用与地形的交互作用对流域剖面SOC含量空间分布有着极显著的影响(P0.01),其中地形对SOC含量的贡献率最高(32.50%)。土地利用与地形的交互作用在各因子的交互作用中表现出对SOC含量变异解释度最高(7.4%)。流域SOC在空间上呈斑块分布,随着深度的增加,流域SOC的空间分布向均一性发展。研究结果为黄土区水土保持措施规划及退耕还林的固碳效益评价提供了科学依据。 相似文献
5.
不同水土保持耕作措施对径流泥沙与土壤碳库的影响 总被引:1,自引:3,他引:1
为了研究南方红壤坡地不同水土保持耕作措施的蓄水保土和固碳减排效应,通过江西省水土保持生态科技园5a的定位观测资料,对3种耕作措施(横坡间作,纵坡间作和果园清耕)条件下坡面产流产沙及土壤碳库的变化进行了分析。结果表明:(1)与裸露对照相比,3种耕作措施均具有一定的蓄水减流和保土减沙效应,其减流率在21.16%~75.32%,减沙率在38.08%~80.57%,红壤坡地不同耕作措施的蓄水保土效应从优至劣排序为:横坡间作〉纵坡间作〉果园清耕;(2)与裸露对照相比,3种耕作措施均具有提高土壤有机碳质量分数和增加土壤碳库的作用,其表层土壤总有机碳质量分数增加幅度为37.24%~66.34%,土壤碳储量增加幅度为35.23%~55.34%,红壤坡地各项耕作措施实施5a后的表层土壤碳库指数和土壤碳储量大小排序均为:纵坡间作〉横坡间作〉果园清耕;(3)间作措施的蓄水保土和固碳减排效益优于清耕措施,适宜在红壤坡地推广。 相似文献
6.
《Communications in Soil Science and Plant Analysis》2012,43(19-20):2767-2778
Abstract A study was carried out in the Argentine Pampa. Plots under continuous maize and maize–wheat/soybean–soybean rotation were used. Three control plots on grassland with different undisturbed periods were also used. The objective was to show that C3 and C4 plants have a different effect on the quantity of carbon retained in the soil when different crop sequences are used. Total organic carbon was determined, and mass spectrometry techniques were used to assess the natural variation of the abundance of 13C and 12C to trace carbon fate in the soil. No differences were observed in the carbon stock at 90 cm deep across cultivated plots. Maize monoculture represented an important contribution to the soil organic matter when compared to the grassland areas, but the comparison through the initial δ13C from reference plots did not allow an assessment of the original soil carbon in the plot under rotation. 相似文献
7.
《Communications in Soil Science and Plant Analysis》2012,43(20):2523-2533
Acidic soils are limiting the production potential of the crops because of low availability of basic ions and excess of hydrogen (H+), aluminium (Al3+), and manganese (Mn2+) in exchangeable forms. Therefore, a field study was conducted to know the ameliorating effect of organic manures on acidic soils and production performance of cowpea (Vigna unguiculata L., Walp.) by using different locally available organic manures. Growth and yield attributes were observed to be significantly greater with vermicompost (VC) followed by poultry manure (PM). Porosity, maximum water-holding capacity (MWHC), and organic carbon were greater with farmyard manure (FYM) and cow dung manure (CDM). However, water retention at field capacity (FC), permanent wilting point (PWP), bulk density (BD), pH, and availability of nitrogen (N), phosphorus (P), and potassium (K) were greater with VC. However, physical and chemical properties were deteriorated in control plots. 相似文献
8.
《Land Degradation \u0026amp; Development》2017,28(7):1902-1912
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
9.
不同土地利用类型对伊犁地区土壤活性有机碳库和碳库管理指数的影响 总被引:1,自引:0,他引:1
土壤碳库管理指数(CPMI)可以比较准确地发现人为因素对土地利用的干扰情况。以伊犁河谷不同土地利用类型(耕地、林地、草地和荒地)为研究对象,分析了不同土地利用类型土壤有机碳(SOC)含量、活性有机碳含量及其在SOC中的分配情况,各类有机碳含量之间的相关性、CPMI。研究表明:(1)不同土地利用类型SOC含量和水溶性有机碳(WSOC)含量有显著差异,SOC含量为草地 > 林地 > 耕地 > 荒地;WSOC含量为耕地(最高) > 荒地(最低);易氧化碳(ROC)含量为草地最低;在0—20 cm和20—40 cm土层,微生物量碳(MBC)含量为草地(最高) > 林地(最低);ROC含量为荒地高于草地。不同土地利用类型SOC含量均随土层深度增加而降低;ROC含量均随土层深度增加而升高;除林地外,其他样地MBC含量均随土层深度增加呈先升高后降低趋势,而WSOC含量均随土层深度增加而逐渐降低。(2)不同土地利用类型下ROC,MBC和WSOC所占SOC比例各不相同,且碳库的活度主要取决于ROC所占比例,ROC所占比例为荒地 > 耕地 > 林地 > 草地;MBC所占比例为荒地 > 耕地 > 草地 > 林地;WSOC所占比例为耕地 > 林地 > 荒地 > 草地。同一土地利用类型各活性有机碳所占比例情况为ROC > MBC > WSOC。(3)不考虑土层深度影响,耕地ROC含量与MBC含量呈极显著线性负相关;林地SOC含量与ROC含量呈显著线性负相关;荒地SOC含量与WSOC含量呈极显著线性正相关。不同土地利用类型下SOC,ROC,MBC,WSOC含量之间线性相关程度总体偏低。(4)同一土地利用类型,CPMI均随土层深度的加深先增大后减小;0—20 cm土层的CPMI为林地 > 荒地(100) > 耕地 > 草地。土地利用类型由荒地、草地、耕地转变为林地,有利于CPMI的提高,有利于土壤培肥,促进碳循环。 相似文献
10.
[目的]分析不同利用方式下新疆巴音布鲁克高寒草地土壤团聚体稳定性及其有机碳分布差异,为评价该区域土壤团聚体有机碳等生态功能提供理论基础。[方法]选取巴音布鲁克高寒草地开垦、弃耕还牧、放牧3种处理,以10 cm为一个梯度,采集0—40 cm土层土壤,采用干筛和湿筛两种方法筛分土壤团聚体,测算土壤团聚体的平均重量直径(MWD)、几何平均直径(GMD)、土壤团聚体破坏率(PDA)和土壤有机碳(SOC)含量,明确不同利用方式下高寒草地土壤团聚体稳定性及团聚体有机碳含量的差异。[结果](1)3种利用方式下,高寒草地土壤团聚体均以大团聚体(≥0.25 mm粒径)为主。亚表层(10—20 cm)土壤,弃耕还牧处理的PDA显著低于放牧处理(p<0.05),与开垦处理无显著差异(p>0.05);而除亚表层(10—20 cm)外,弃耕还牧处理其余土层土壤PDA显著高于开垦处理和放牧处理(p<0.05)。表层(0—10 cm)土壤,开垦处理与放牧处理PDA无显著差异(p>0.05);而除表层(0—10 cm)外,开垦处理其余土层土壤PDA显著高于放牧处理。(2)弃耕还牧处理的SOC含... 相似文献
11.
不同年限红柳恢复川西北高寒沙地对土壤团聚体和有机碳的影响 总被引:2,自引:3,他引:2
利用土壤大团聚体含量(R_(0.25))、平均重量直径(MWD)、几何平均直径(GMD)、团聚体破坏率(PAD)和团聚体对有机碳贡献率(F)指标,研究不同时间尺度红柳恢复川西北高寒沙地对土壤团聚体稳定性和有机碳分布的影响。结果表明:红柳不同恢复年限土壤机械稳定性团聚体和水稳性团聚体都以微团聚体(0.25mm)组成为主,随着恢复年限增加,表层(0—20cm)2,0.5~2mm粒级土壤团聚体含量显著增加,表层(0—20cm)土壤团聚体R_(0.25)、MWD和GMD表现为0年5年10年15年,PAD呈现相反的特征;红柳恢复引起表层(0—20cm)土壤有机碳含量显著增加,随着恢复年限增加,2,0.5~2mm粒级团聚体有机碳含量显著提高,0.5mm粒级团聚体对土壤有机碳贡献率高达34%~60%;红柳恢复对亚表层(20—40cm)土壤团聚体与有机碳分布特征影响不显著。研究表明土壤团聚体稳定性和有机碳指标可作为川西北高寒沙地土壤生态修复适应性指标,红柳恢复对该区沙化土壤改良具有重要作用。 相似文献
12.
以河北曲周县原状草地土壤和农田土壤为研究对象,分析了土地利用方式、秸秆还田、耕作方式和施肥水平对土壤有机碳特性的影响。研究表明,华北原状草地改变为农田后(34年),土壤砂粒、颗粒有机碳的含量和总有机碳的比例、轻组土壤和轻组土壤有机碳都显著降低,且以秸秆还田影响最大。经过8年的耕作,施加底肥、免耕和秸秆整株还田等农艺措施,明显提高了土壤颗粒有机碳含量。秸秆还田使得0~20cm土壤颗粒有机碳含量明显增加,且整株还田比粉碎还田更能增加10~20cm土壤颗粒的有机碳含量,而免耕对土壤颗粒有机碳的增加主要表现在0~10cm。土壤非保护性有机碳的比例也会显著降低,且非保护性有机碳主要分布在0~5cm土层。 相似文献
13.
以内蒙古赤峰市敖汉旗为研究对象,以实地调查数据为基础,结合土地利用方式与地形的变化,对敖汉旗0~100 cm深度土壤有机碳含量的空间分布特征进行了研究,旨在对地区碳储量的估算和科学利用土地资源起到积极的借鉴作用。结果表明,敖汉旗土壤有机碳含量在0~100 cm深度的土壤剖面内的变化范围为0.23~20.71 g/kg,主要集中在40 cm以上土层,且随着土层深度的增加土壤有机碳平均含量逐渐降低;各土地利用方式下土壤有机碳含量均表现为:林地农地草地。土壤有机碳含量主要富集在高海拔区的平缓地段;受土壤侵蚀的影响,当坡度10°后,不同土地利用类型的有机碳含量均显著降低。 相似文献
14.
《Land Degradation u0026amp; Development》2017,28(2):534-542
No‐till, crop diversity and integrated crop–livestock systems are proposed managements to increase agriculture sustainability in the rice paddies of the Southern Brazilian lowlands and avoid degradation in the region. Because soil is considered a key medium in which management modifications can be measured, our study aimed to evaluate soil‐quality impacts by measuring carbon and nitrogen stocks and microbial activity 18 months after the adoption of different paddy‐farming systems in an Albaqualf soil of Southern Brazil. The treatments consisted of five paddy‐farming systems with a range of vegetation diversity (both in time and in space) and grazing seasons. In addition, a reference area (i.e. native forest) was sampled for comparison. We verified that soil quality was affected over the short term through the adoption of no‐till, crop diversity and integrated grazing practices. However, during the study period, only the system with low anthropic and/or mechanical intervention and high plant diversity differed from the traditional paddy land‐use approach in Brazil in terms of soil‐quality effects. This system achieved a carbon management index of 49 (approximately half that of the native forest) and had the highest enzymatic activity (similar to native forest). These outcomes were primarily due to an increase in the particulate organic matter fraction of the soil carbon stock (4·6 Mg ha−1 more than in rice monocropping). To evaluate changes in soil quality over the long term, additional studies are required. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
有机肥和秸秆等有机物料添加是调控土壤肥力的重要手段,可促进农田土壤有机碳的数量和质量发生变化。研究选取盐亭紫色土农业生态试验站长期(16a)6种不同施肥处理试验小区,探究两种形式的外源有机物料(猪粪堆肥和秸秆还田)添加对土壤有机碳及总氮、总磷、硝态氮和速效磷养分含量的影响,并基于固态13C核磁共振波谱技术(13C-NMR)分析其对土壤有机碳化学组分的影响。研究发现,添加有机物料可显著增加0~30 cm土壤有机碳和各养分含量;猪粪堆肥施用对土壤总磷、速效磷和硝态氮含量的影响大于秸秆还田。结果还表明两种有机物料添加改变了耕层土壤有机碳化学组成及其稳定性,有机物料添加增加了0~10 cm表层土壤有机碳中烷氧基碳和羧基碳的比例,降低了烷基碳的比例,同时降低了10~20 cm土层羧基碳比例,增加了烷基碳比例。本研究可为区域旱耕地有机碳库稳定性及其碳汇功能评估提供科学依据。 相似文献
16.
土壤有机碳(Soil Organic Carbon,SOC)作为陆地生态系统中最大的碳库,在农田土壤质量和作物产量方面发挥着重要作用。准确预测耕地SOC的空间分布对于制定农业管理措施至关重要。在数字土壤制图(Digital Soil Mapping,DSM)框架下,选择有效的环境协变量是提高SOC空间预测精度的重要方法。以往遥感指数和气候变量通常使用某个时段或时点的(平均)值作为输入变量,而很少有研究将时间特性和事件用于土壤有机碳预测。因此,引入物候变量、极端气候变量弥补部分损失的地物信息和气候特征,探讨其对研究区耕地SOC空间变异的响应特性及预测SOC空间分布的可行性。以江西省上高县为研究区域,采用随机森林模型,选取遥感数据、DEM衍生变量、物候参数、气候特征因子等作为环境协变量引入模型中,并用普通克里格(Ordinary Kriging,OK)对模型结果进行残差修正,最后对比不同类型变量组合下模型的预测效果及预测精度。结果表明,时序变量、物候变量及极端气候变量能够改善模型的预测性能,并且残差作为误差项还能进一步提升模型的精度。结合时序变量、物候变量、极端气候变量、地形变量和残差的组合拥有最高的预测精度,相较于地形变量、遥感变量和气候变量的组合,将R^2、MAE和RMSE提升了90.00%、58.95%和57.14%。变量贡献率分析显示,SU、a3和TXx是影响研究区耕地SOC分布的重要变量。因此,物候变量和极端气候变量具有较好的应用前景,未来还需验证极端气候变量作为环境变量在不同土地利用、大尺度研究区下预测土壤属性的有效性。 相似文献
17.
M. Muoz‐Rojas A. Jordn L. M. Zavala D. De la Rosa S. K. Abd‐Elmabod M. Anaya‐Romero 《Land Degradation \u0026amp; Development》2015,26(2):168-179
During the last few decades, land use changes have largely affected the global warming process through emissions of CO2. However, C sequestration in terrestrial ecosystems could contribute to the decrease of atmospheric CO2 rates. Although Mediterranean areas show a high potential for C sequestration, only a few studies have been carried out in these systems. In this study, we propose a methodology to assess the impact of land use and land cover change dynamics on soil organic C stocks at different depths. Soil C sequestration rates are provided for different land cover changes and soil types in Andalusia (southern Spain). Our research is based on the analysis of detailed soil databases containing data from 1357 soil profiles, the Soil Map of Andalusia and the Land Use and Land Cover Map of Andalusia. Land use and land cover changes between 1956 and 2007 implied soil organic C losses in all soil groups, resulting in a total loss of 16·8 Tg (approximately 0·33 Tg y−1). Afforestation increased soil organic C mostly in the topsoil, and forest contributed to sequestration of 8·62 Mg ha−1 of soil organic C (25·4 per cent). Deforestation processes implied important C losses, particularly in Cambisols, Luvisols and Vertisols. The information generated in this study will be a useful basis for designing management strategies for stabilizing the increasing atmospheric CO2 concentrations by preservation of C stocks and C sequestration. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
黄土丘陵区不同土地利用方式对土壤微生物量碳氮磷的影响 总被引:1,自引:1,他引:1
为探讨植被区与土地利用方式对土壤微生物量的影响,在陕西省延河流域森林区、森林草原区和草原区采集5种土地利用方式下的土壤剖面样品(0-10cm,10-30cm),并对其微生物量碳(SMBC)、微生物量氮(SMBN)和微生物量磷(SMBP)及土壤理化性质进行了分析。结果表明,微生物量磷的含量在3个植被区中均是在农地、撂荒地中相对较高,微生物量碳、氮在森林区表现为:乔木林地>农地在森林草原区表现为:灌木林地>天然草地>乔木林地>农地>撂荒地在草原区表现为:天然草地>乔木林地>灌木林地>农地>撂荒地。相同土地利用方式下,土壤养分和微生物量在森林区最高,森林草原区次之,草原区最低。相关分析表明,微生物量碳、氮、磷、代谢熵、微生物量碳氮比与土壤养分相关性极为密切。因此,土壤微生物量能够作为评价土壤质量的生物学指标。不同植被区不同土地利用方式对土壤质量的改善作用不同,林地和天然草地作用效果好,对土壤微生物量的提高有明显的促进作用。 相似文献
19.
Yinguang Shi Xining Zhao Xiaodong Gao Shulan Zhang Pute Wu 《Land Degradation \u0026amp; Development》2016,27(1):60-67
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Ana Carolina Cmara Ferreira Luiz Fernando Carvalho Leite Ademir Srgio Ferreira de Araújo Nico Eisenhauer 《Land Degradation \u0026amp; Development》2016,27(2):171-178
Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi‐arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land‐use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0–10 and 10–20 cm depth) were collected during the wet and dry periods. Split–split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land‐use and soil depth on soil microbial properties, TOC and TN stocks. Land‐use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land‐use form with high ecosystem multifunctionality in Caatinga. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献