首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil erosion from cropland is a primary cause of soil degradation in the hilly red soil region of China. Soil characteristics and the resistance of soil to erosion agents can be improved with appropriate management practices. In this study, hydraulic flume experiments were conducted to investigate the effects of five management practices [manure fertilizer (PM), straw mulch cover (PC), peanut–orange intercropping (PO), peanut–radish rotation (PR) and traditional farrow peanut (PF)] on soil detachment. Based on the results, three conservation management practices (PC, PM and PO) increased the resistance of soil to concentrated flow erosion. The rill erodibility of different treatments was ranked as follows: PC (0·001 s m−1) < PM (0·004 s m−1) < PO (0·007 s m−1) < PF (0·01 s m−1) < PR (0·027 s m−1). The rill erodibility was affected by soil organic content, aggregate stability and bulk density. The soil detachment rate was closely correlated with the flow discharge and slope gradient, and power functions for these two factors were developed to evaluate soil detachment rates. Additionally, the shear stress, stream power and unit stream power were compared when estimating the soil detachment rate. The power functions of stream power and shear stress were equivalent, and both are recommended to predict detachment rates. Local soil conservation can benefit from the results of this study with improved predictions of erosion on croplands in the red soil region of China. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Field runoff plots were established in 1984 to evaluate the effects of slope length on runoff, soil erosion and crop yields on newly cleared land for four consecutive years (1984–1987) on an Alfisol at Ibadan, Nigeria. The experimental treatments involved six slope lengths (60 m to 10 m at 10-m increments) and two tillage methods (plough-based conventional tillage and a herbicide-based no-till method) of seedbed preparation. A uniform crop rotation of maize (Zea mays)/cowpeas (Vigna unguiculata) was adopted for all four years. An uncropped and ploughed plot of 25 m length was used as a control. The water runoff from the conventional tillage treatment was not significantly affected by slope length, but runoff from the no-till treatment significantly increased with a decrease in slope length. The average runoff from the no-till treatment was 1·85 per cent of rainfall for 60 m, 2·25 per cent for 40 m, 2·95 per cent for 30 m, 4·7 per cent for 20 m and 5·15 per cent for 10 m slope length. In contrast to runoff, soil erosion in the conventional tillage treatment decreased significantly with a decrease in slope length. For conventional tillage, the average soil erosion was 9·59 Mg ha−1 for 60 m, 9·88 Mg ha−1 for 50 m, 6·84 Mg ha−1 for 40 m, 5·69 Mg ha−1 for 30 m, 1·27 Mg ha−1 for 20 m and 2·19 Mg ha−1 for 10 m slope length. Because the no-till method was extremely effective in reducing soil erosion, there were no definite trends in erosion with regard to slope length. The average sediment load (erosion:runoff ratio) also decreased with a decrease in slope length from 66·3 kg ha−1 mm−1 for 60 m to 36·3 kg ha−1 mm−1 for 10 m slope length. The mean C factor (ratio of soil erosion from cropped land to uncropped control) also decreased with a decrease in slope length. Similarly, the erosion:crop yield ratio decreased with a decrease in slope length, and the relative decrease was more drastic in conventional tillage than in the no-till treatment. The slope length (L) and erosion relationship fits a polynomial function (Y=c+aL+bL2). Formulae are proposed for computing the optimum terrace spacing in relation to slope gradient and tillage method. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Reclamation of disturbed soils is done with the primary objective of restoring the land for agronomic or forestry land use. Reclamation followed by sustainable management can restore the depleted soil organic carbon (SOC) stock over time. This study was designed to assess SOC stocks of reclaimed and undisturbed minesoils under different cropping systems in Dover Township, Tuscarawas County, Ohio (40°32·33′ N and 81°33·86′ W). Prior to reclamation, the soil was classified as Bethesda Soil Series (loamy‐skeletal, mixed, acid, mesic Typic Udorthent). The reclaimed and unmined sites were located side by side and were under forage (fescue—Festuca arundinacea Schreb. and alfa grass—Stipa tenacissima L.), and corn (Zea mays L.)—soybean (Glycine max (L.) Merr.) rotation. All fields were chisel plowed annually except unmined forage, and fertilized only when planted to corn. The manure was mostly applied on unmined fields planted to corn, and reclaimed fields planted to forage and corn. The variability in soil properties (i.e., soil bulk density, pH and soil organic carbon stock) ranged from moderate to low across all land uses in both reclaimed and unmined fields for 0–10 and 10–20 cm depths. The soil nitrogen stock ranged from low to moderate for unmined fields and moderate to high in some reclaimed fields. Soil pH was always less than 6·7 in both reclaimed and unmined fields. The mean soil bulk density was consistently lower in unmined (1·27 mg m−3 and 1·22 mg m−3) than reclaimed fields (1·39 mg m−3 and 1·34 mg m−3) planted to forage and corn, respectively. The SOC and total nitrogen (TN) concentrations were higher for reclaimed forage (33·30 g kg−1; 3·23 g kg−1) and cornfields (21·22 g kg−1; 3·66 g kg−1) than unmined forage (17·47 g kg−1; 1·98 g kg−1) and cornfield (17·70 g kg−1; 2·76 g kg−1). The SOC stocks in unmined soils did not differ among forage, corn or soybean fields but did so in reclaimed soils for 0–10 cm depth. The SOC stock for reclaimed forage (39·6 mg ha−1 for 0–10 cm and 28·6 mg ha−1 for 10–20 cm depths) and cornfields (28·3 mg ha−1; 32·2 mg ha−1) were higher than that for the unmined forage (22·7 mg ha−1; 17·6 mg ha−1) and corn (21·5 mg ha−1; 26·8 mg ha−1) fields for both depths. These results showed that the manure application increased SOC stocks in soil. Overall this study showed that if the reclamation is done properly, there is a large potential for SOC sequestration in reclaimed soils. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Tillage and soil management effects on soil physical and chemical qualities were monitored for eight years from 1979 through 1987 in a long-term experiment involving 17 consecutive crops of maize. Effects of no-till and plow-till methods of seedbed preparation were compared at two levels of residue management (residue removed versus residue returned) and two levels of fertilizer application (without fertilizer versus recommended fertilizer). Soil chemical quality was better for no-till compared with plow-till methods. Mean soil chemical properties of 0–5 cm depth for no-till and plow-till treatments respectively were 18·6 g kg−1 versus 12·2 g kg−1 for soil organic carbon content, 1·9 g kg−1 versus 1·1 g kg−1 for total soil nitrogen, 0·14 units yr−1 versus 0·18 units yr−1 rate of decline in soil pH, 63·1 mg kg−1 versus 31·8 mg kg−1 for Bray-P, and 6·0 cmol kg−1 versus 2·3 cmol kg−1 for Ca+2. Soil chemical quality consistently declined, although the rate of decline differed among tillage and fertilizer treatments. There were also differences in soil physical quality. Soil bulk density increased with cultivation duration in both tillage methods, and use of furadan in no-till plots drastically increased soil bulk density. Infiltration rate and soil moisture retention at all suctions was consistently more for no-till than plow-till treatments. Decline in soil quality with cultivation was reflected in decrease in crop yields. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Chemical reclamation of sodic and saline-sodic soils has become cost-intensive. Cultivation of plants tolerant of salinity and sodicity may mobilize the CaCO3 present in saline-sodic soils instead of using a chemical approach. Four forage plant species, sesbania (Sesbania aculeata), kallar grass (Leptochloa fusca), millet rice (Echinochloa colona) and finger millet (Eleusine coracana), were planted in a calcareous saline-sodic field (ECe = 9·6–11·0 dS m−1, SAR = 59·4–72·4). Other treatments included gypsum (equivalent to 100 per cent of the gypsum requirement of the 15 cm soil layer) and a control (no gypsum or crop). The crops were grown for 5 months. The performance of the treatments in terms of soil amelioration was in the order: Sesbania aculeata ≅ gypsum > Leptochloa fusca > Echinochloa colona > Elusine coracana > control. Biomass production by the plant species was found to be directly proportional to their reclamation efficiency. Sesbania aculeata produced 32·3 Mg forage ha−1, followed by Leptochloa fusca (24·6 Mg ha−1), Echinochloa colona (22·6 Mg ha−1) and Eleusine coracana (5·4 Mg ha−1). Sesbania aculeata emerged as the most suitable biotic material for cultivation on salt-affected soils to produce good-quality forage, and to reduce soil salination and sodication processes.  相似文献   

6.
The influence of differing soil management practices on changes seen in soil organic carbon (SOC) content of loamy Haplic Luvisol was evaluated. The field experiment included two types of soil tillage: 1. conventional tillage (CT) and 2. reduced tillage (RT) and two treatments of fertilization: 1. crop residues with nitrogen, phosphorus, and potassium (NPK) fertilizers (PR+NPK) and 2. NPK fertilizers (NPK). The results of SOC fluctuated from 9.8 to 14.5 g kg?1 and the tillage systems employed and fertilization status did not have a statistically significant influence on SOC. The SOC content was higher in RT (12.4 ± 0.86 g kg?1) than in CT (12.2 ± 0.90 g kg?1). On average, there was a smaller higher value of SOC in PR+NPK (12.4 ± 1.02 g kg?1) than in NPK (12.3 ± 0.88 g kg?1). During a period of 18 years, reduced tillage and application of NPK fertilizers together with crop residues build up a SOC at an average speed of 7 and 16 mg kg?1 year?1, respectively, however conventional tillage and NPK fertilizer applications caused a SOC decline at an average speed of 104 and 40 mg kg?1 year?1, respectively.  相似文献   

7.
Sustainability of mined‐land reclamation is of growing importance, with over 600,000 ha of the Appalachian coal region disturbed since 1977. Long‐term evaluation of soil under various reclamation strategies is also important. Aggregation and organic matter (OM) influence both soil structure and function and can be of use in evaluating reclaimed systems. The objective of this study was to examine these two parameters in a long‐term experiment (27 years) where various types (control‐CON, topsoil‐TS, sawdust‐SD and biosolids‐BS) and rates of soil amendments (biosolids: BS‐22, BS‐56, BS‐112 and BS‐224 Mg ha−1) have been applied. Macroaggregates (>250 µm) comprised >95% of total aggregation across all treatments, indicating the importance of this size class for soil development. Macroaggregate carbon (C) and nitrogen (N) pools contributed more to stabilization of OM in these soils than microaggregate pools. All BS treatments contained higher concentrations of aggregate C (96·8–127 g C kg−1 aggregate) and N (6·80–8·22 g N kg−1 aggregate) relative to CON; however, mass of C and N did not vary among application rates. Though few differences were expressed in C and N pool sizes among treatments, there was some indication that amendments impact reclaimed sites early in soil development (~ < 10 years), while vegetation may exert more dominance in subsequent years. It is important to select appropriate management strategies to favor not only the establishment of desirable vegetation but also preservation of soil macroaggregate structure to improve long‐term nutrient supply, physical soil properties and potential C‐sequestration in reclaimed soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Soil erosion and runoff were monitored from 1988 to 1990 on a Miamian soil (Typic Hapludalf) of 5-6 per cent slope using field runoff plots. Four treatments were studied: (i) disk-plough up and down the slope to 0.3 m depth (DP); (ii) disk-plough up and down the slope followed by a protective netting (PN); (iii) uncultivated fallow without any vegetation followed by surface soil removal (R); (iv) uncultivated fallow with natural vegetation followed by ploughing (F). Mean annual runoff losses were 6, 114 and 128 mm, or 4, 20 and 18 per cent of the rainfall, and mean annual soil losses were 1.2, 85.0 and 64.0 Mg ha−1 in 1988, 1989 and 1990, respectively. Mean runoff amounts were 26, 69, 116 and 118mm and mean annual soil losses were 0.4, 23.2, 58.6 and 118 Mg ha−1 for the F, PN, DP and R treatments, respectively. In comparison with DP, PN decreased annual runoff by 40.3 per cent and annual soil loss by 79.5 per cent. The high mean soil loss for the R treatment was due to erosion following soil removal. An additional 2920 Mg ha−1 of surface soil was removed from the R treatment in May 1990. The F treatment reduced runoff by 78, 77 and 62 per cent and reduced soil loss by 99.7, 99.4 and 98.4 per cent compared with the R, DP and PN treatments, respectively. Mean losses of K, Ca, Mg and P were 1.3, 4, 1 and 01 kg ha−1, respectively for F, 3, 16, 5 and 0.3kg ha−1, respectively, for PN, 5, 31, 1 and 0.6kg ha−1, respectively, for DP, and 3, 32, 12 and 0.4 kg ha−1, respectively, for R. Soil and nutrient losses for each treatment were in the order R > DP > PN > F. The soil organic carbon (SOC) content was significantly affected by soil erosion and management treatments, and ranged from 0.98 per cent for the R treatment to 2.3 per cent for the F treatment. Soil surface removal for the R treatment in 1990 reduced water-stable aggregates (WSA) by 9.0 per cent, SOC by 0.6 per cent, and clay content of the uppermost 0-50 mm depth by about 7.0 per cent. Mean total porosity (ft) ranged from 0.43 for the F to 0.52 for the DP treatment. Cumulative infiltration for 3h ranged from 13 cm for R to 34cm for PN, with corresponding infiltration rates of 4 cm h−1 and 13 cm h−1, respectively. Regardless of the treatment, there were also temporal changes in soil properties. In comparison with 1988, measurements made in 1990 showed a significant decrease in WSA of 21.3 per cent, an increase in clay content of 2.8 per cent, and a decrease in SOC of 0.39 per cent. Runoff and soil losses were significantly correlated with the mean weight diameter (MWD), SOC, bulk density (pb) and available water capacity (AWC). Plant height measured 8 weeks after planting (WAP) for the R treatment was reduced by 33.3 per cent, 33.0 per cent and 29.0 per cent compared withh DP, PN and F, respectively. Nitrogen uptake by maize plants (Zea mays L.) 10 WAP for the R treatment was lower by 15 per cent, 8 per cent, and 6 per cent compared with the DP, PN and F treatments, respectively, while P uptake was lower by 33 per cent, 32 per cent and 29 per cent, respectively, compared with the same treatments. Grain yield was 9.78 Mg ha−1 for PN, 9.76 Mg ha−1 for DP, 8.64 Mg ha−1 for F and 6.60 Mg ha−1 for R during the 1990 crop season. Grain yield was reduced by about 32.4 per cent in the R treatment compared with the PN treatment, representing a maize grain yield reduction of 158 kg ha−1 for each centimeter of soil lost.  相似文献   

9.
This study sought to contribute to the understanding of soil redistribution by tillage on terraces and the extent and causes of within-field variation in soil properties by examining the spatial distributions of soil redistribution rates, derived using caesium-137, and of total nitrogen and total phosphorus concentrations, within a ribbon and a shoulder terrace in a yuan area of the Loess Plateau of China. Additional water erosion rate data were obtained for nine other terraces. Water erosion rates on the ribbon terraces were low (<1 kg m−2 yr−1), unless slope tangents exceeded 0·1. However, despite the use of animal traction, high rates of tillage erosion were observed (mean 5·5 kg m−2 yr−1). Soil nitrogen concentrations were related to rates of soil redistribution by tillage on the ribbon terrace examined in detail. In general, higher rates of water erosion (0·5–2·9 kg m−2 yr−1) and lower rates of tillage erosion (mean 1·4 kg m−2 yr−1) were evident on the longer shoulder terraces. On the shoulder terrace examined in detail, soil phosphorus concentrations were related to net rates of soil redistribution. A statistically significant regression relationship between water erosion rates and the USLE length and slope factor was used in conjunction with the simulation of tillage erosion rates to evaluate a range of terrace designs. It is suggested that off-site impacts of erosion could be further reduced by ensuring that the slope tangents are kept below 0·06 and lengths below 30 m, especially on the shoulder terraces. Tillage erosion and the systematic redistribution of soil nutrients could be reduced by modification of the contour-cultivation technique to turn soil in opposing directions in alternate years. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Temporal changes in soil chemical and nutritional properties were evaluated in a long-term experiment conducted on Alfisols in West Africa. Effects of land use and cropping duration on soil chemical properties at 0–5 cm and 5–10 cm depths were evaluated for five treatments: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) mucuna (Mucuna utilis) fallowing for 1 year followed by maize (Zea mays)-cowpea (Vigna unguiculata) cultivation for 2 years on severely degraded land; (3) fallowing with mucuna on moderately degraded soils; (4) ley farming involving growing improved pastures for 1 year, grazing for the second year, and growing maize-cowpea for the third year on severely degraded land; (5) ley farming on moderately degraded soils. Soil chemical properties were measured once every year from 1982 through 1986 during the dry season, and included pH, soil organic carbon (SOC), total soil nitrogen (TSN), Bray-P, exchangeable cations, and effective cation exchange capacity (CEC). Regardless of the cropping system treatments, soil chemical quality decreased with cultivation time. The rate of decrease at 0–5 cm depth was 0·23 units year−1 for pH, 0·05 per cent year−1 for SOC, 0·012 per cent year−1 for TSN, 0·49 cmol kg−1 year−1 for Ca2+, 0·03 cmol kg−1 year−1 for Mg2+, 0·018 cmol kg−1 year−1 for K+, and 0·48 cmol kg−1 year−1 for CEC. Although there was also a general decrease in soil chemical quality at 5–10 cm depth, the trends were not clearly defined. In contrast to the decrease in soil properties given above, there was an increase in concentration at 0–5 cm depth of total acidity with cultivation time at the rate of 0·62 cmol kg−1 year−1, and of Mn3+ concentration at the rate of 0·081 cmol kg−1 year−1. Continuous cropping also increased the concentration of Bray-P at 0–5 cm depth due to application of phosphatic fertilizer. Trends in soil chemical properties were not clearly defined with regards to cropping system treatments. In general, however, soil chemical properties were relatively favorable in ley farming and mucuna fallowing treatments imposed on moderately degraded soils. Results are discussed in terms of recommended rates of fertilizer use, in view of soil test values, expected yields, and critical limits of soil properties.  相似文献   

11.
This study analyses soil organic carbon (SOC) and hot‐water extractable carbon, both measures of soil quality, under different land management—(i) conventional tillage (CT); (ii) CT plus the addition of oil mill waste alperujo (A); (iii) CT plus the addition of oil mill waste olive leaves (L); (iv) no tillage with chipped pruned branches (NT1); and (v) no tillage with chipped pruned branches and weeds (NT2)—in a typical Mediterranean agricultural area: the olive groves of Andalusia, southern Spain. SOC values in CT, A, NT1 and NT2 decreased with depth, but in NT2, the surface horizon (0–5 cm) had higher values than the other treatments, 47% more than the average values in the other three soils. In L, SOC also decreased with depth, although there was an increase of 88·5% from the first (0–10 cm) to the second horizon (10–16 cm). Total SOC stock values were very similar under A (101·9 Mg ha−1), CT (101·7 Mg ha−1), NT1 (105·8 Mg ha−1) and NT2 (111·3 Mg ha−1, if we consider the same depth of the others). However, SOC under L was significantly higher (p < 0·05) at 250·2 Mg ha−1. Hot‐water extractable carbon decreased with depth in A, CT and NT1. NT2 and L followed the same pattern as the other management types but with a higher value in the surface horizon (2·3 and 4·9 mg g−1, respectively). Overall, our results indicate that application of oil mill waste olive leaves under CT (L) is a good management practice to improve SOC and reduce waste. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Changes in runoff and sediment loads are of great importance for the management of river basins and the implementation of soil and water conservation measures. This study compared the suspended sediment dynamics in the Huangfuchuan and Yanhe catchments on the Loess Plateau. Both annual runoff and sediment load displayed significant reductions from 1955 to 2012. The decreasing rates were −0·88 mm a−1 and −2·72 Mg ha−1 a−1 in the Huangfuchuan catchment, respectively, and ‐0.31 mm a−1 and −1·20 Mg ha−1 a−1 in the Yanhe catchment. A total of 183 and 195 events, respectively, were selected to assess the suspended sediment dynamics in both catchments during the periods of 1971–1989 and 2006–2012. The results showed a good linear relationship between the sediment yield and runoff depth in both catchments from 1971 to 1989 and a relatively worse relationship in the Yanhe catchment from 2006 to 2012. The magnitude and frequency of the hyper‐concentrated sediment flow obviously decreased in the 2000s compared with that between 1971 and 1989. A hysteresis analysis suggested that complex and counter‐clockwise loops were the dominant patterns. Various soil and water conservation measures (e.g., afforestation, grassing, terraces, and check dams) played a critical role in runoff and sediment load changes in both catchments. The two catchments showed obvious heterogeneities in runoff and sediment yield because of different lithologies, soil types, and vegetation. The results of this study provide valuable information on suspended sediment dynamics and could be used to improve soil erosion control measures on the Loess Plateau. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Several standard techniques currently used in the reclamation and revegetation of former quarry land in Italy's northern Apennine region were compared. The trial site, a 40-degree slope with clay soil, high pH and a little organic matter, was arranged in a randomized block design. The techniques assayed were hydro-seeding+tillage, hydro-seeding on sod, straw mulch+tar, jute mats+tillage+hydro-seeding, jute mats+tillage and a control. Each plot was enriched with equal amounts of chopped straw (120 g m−2), worm compost (140 g m−2) and the fertilizer Biosol® (140 g m−2); the binder Terravest® (36 g m−2) was also used in the three hydro-seeded plots. Ground cover, species, runoff and erosion were compared in each treatment. The overall 3-year data indicate significant differences in the treatments tested. There is a clear distinction between the treatments that promoted good grass cover growth and checked erosion (straw and tar, jute on tilled soil, and hydro-seeding on jute and tilled soil) on the one hand and the hydro-seeded treatments (on sod and on tilled soil), which showed no differences from control, on the other. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
Effects of six slope lengths, 60 m to 10 m with 10-m increments, on soil physical properties were evaluated for plough-based conventional till and no-till seedbed preparation on field runoff plots for three consecutive years from 1984 to 1987. Soil physical properties measured included texture, bulk density, infiltration capacity, and soil moisture retention characteristics. Conventional till treatment caused a rapid increase in soil bulk density and penetration resistance, and decrease in available water capacity and equilibrium infiltration rate. Gravel content increased with cultivation duration. Soil bulk density of 0–5 cm depth was 1·20 Mg m−3 for 1984, 1·39 Mg m−3 for 1985 and 1·46 Mg m−3 for 1986 for conventional till; and 1·13 Mg m−3 for 1984, 1·33 Mg m−3 for 1985, and 1·27 Mg m−3 for 1986 for the no-till treatment. The penetration resistance of the no-till treatment was relatively low and increased with cultivation duration. Mean penetration resistance for 0–5 cm depth was 2·2 kg cm−2 in 1984, 2·71 kg cm−2 in 1985, and 3·79 kg cm−2 in 1986. The available water capacity decreased in both tillage methods without any consistent trends with regard to slope length. The equilibrium infiltration rate declined drastically for long slopes and conventional till methods. The data support the conclusion that these soils should be managed with short slope lengths and a no-till method of seedbed preparation. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Current interest in soil‐conserving tillage in China has developed from the concern that Chinese agricultural land loses 73·8 Mg C annually. Previous research has shown that changing from conventional tillage to conservation tillage field management increases soil C sequestration. The aim of this study is to determine if no tillage with stubble retention can reduce soil carbon loss and erosion compared with conventional tillage for a cornfield in northern China. We found that soil organic C storage (kg m−2) under conservation tillage in the form of no post‐harvest tillage with stubble retention increased from 28% to 62% in the soil depths of 0–30 cm (p < 0·01) compared with the conventional tillage. Retaining post‐harvest stubble with a height of 30 cm and incorporating the stubble into the soil before seeding the next spring increased soil organic carbon the most. Carbon storage (kg ha−1) in aboveground and belowground biomass of the corn plants in seedling and harvest stages was significantly greater (p < 0·01) with stubble retention treatments than with conventional tillage. Carbon content in root biomass in all treatments with stubble retention was significantly greater than that with conventional tillage. Soil erosion estimates in the study area under conservation tillage with stubble retention was significantly lower than that under conventional tillage during the monitoring period. Given the complexities of agricultural systems, it is unlikely that one ideal farming practice is suitable to all soils or different climate conditions, but stubble retention during harvesting and incorporation of the stubble into soil in the next spring appears to be the best choice in the dry northern China where farmlands suffer serious wind erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Agricultural activities emit greenhouse gases (GHGs) and contribute to global warming. Intensive plough tillage (PT), use of agricultural chemicals and the burning of crop residues are major farm activities emitting GHGs. Intensive PT also degrades soil properties by reducing soil organic carbon (SOC) pool. In this scenario, adoption of no‐till (NT) systems offers a pragmatic option to improve soil properties and reduce GHG emission. We evaluated the impacts of tillage systems (NT and PT) and wheat residue mulch on soil properties and GHG emission. This experiment was started in 1989 on a Crosby silt loam soil at Waterman Farm, The Ohio State University, Columbus, Ohio, USA. Mulching reduced soil bulk density and improved total soil porosity. More total carbon (16.16 g kg−1), SOC (8.36 mg L−1) and soil microbial biomass carbon (152 µg g−1) were recorded in soil under NT than PT. Mulch application also decreased soil temperature (0–5 cm) and penetration resistance (0–60 cm). Adoption of long‐term NT reduced the GHG emission. Average fluxes of GHGs under NT were 1.84 g CO2‐C m−2 day−1 for carbon dioxide, 0.07 mg CH4‐C m−2 day−1 for methane and 0.73 mg N2O‐N m−2 day−1 for nitrous oxide compared with 2.05 g CO2‐C m−2 day−1, 0.74 mg CH4‐C m−2 day−1 and 1.41 mg N2O‐N m−2 day−1, respectively, for PT. Emission of nitrous oxide was substantially increased by mulch application. In conclusion, long‐term NT reduced the GHG emission by improving the soil properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Phospho-compost (PC) and poultry manure (PM) were evaluated in field experiments to diversify integrated nutrient management (INM) for rain-fed cotton. Seed cotton yield in the PC (2501–2579 kg ha?1) was similar to the recommended INM (2673 kg ha?1) treatment and was significantly better than nitrogen, phosphorus and potassium (100% NPK) (2130 kg ha?1) and farmers practice (FP) (1886 kg ha?1). Yield was lower in the PM (2476–2617 kg ha?1) than in the PC. Nutrient uptake was higher in all INM intervention plots due to an improvement in soil nutrient status compared with those receiving 100% NPK. Soil labile carbon values were higher in the INM treatments (333–452 mg kg?1), with a greater magnitude in the PC-amended plots (402–452 mg kg?1). Carbon management index (CMI) values were higher for the INM than treatments NPK and FP. Among INM interventions, PC plots had higher values than the PM.  相似文献   

18.
The effects of two different soil rehabilitation treatments on runoff, infiltration, erosion and species diversity were evaluated in a shrubland area in Galicia (NW Spain) after an experimental fire by means of rainfall simulations. The treatments compared were: seeding, seeding + mulching and control (untreated). Rainfall simulations were conducted 9 months after fire and the application of soil rehabilitation treatments. A rainfall rate of 67 mm h−1 was applied for 30 min to each runoff plot. Seeding significantly increased plant species richness in the treated plots relative to the control plots, although it had no effect on diversity or evenness. Rehabilitation treatments did not significantly increase soil cover or affect runoff and infiltration. Soil losses were low in all cases, varying from 75·6 kg ha−1 in the seeded + mulched plots to 212·1 kg ha−1 in the untreated plots. However, there were no significant differences in sediment yields between treatments. The percentage of bare soil appeared to be a critical variable in controlling runoff and erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The effects of compost application on soil carbon sequestration potential and carbon budget of a tropical sandy soil was studied. Greenhouse gas emissions from soil surface and agricultural inputs (fertiliser and fossil fuel uses) were evaluated. The origin of soil organic carbon was identified by using stable carbon isotope. The CO2, CH4 and N2O emissions from soil were estimated in hill evergreen forest (NF) plot as reference, and in the corn cultivation plots with compost application rate at 30 Mg ha−1 y−1 (LC), and at 50 Mg ha−1 y−1 (HC). The total C emissions from soil surface were 8·54, 10·14 and 9·86 Mg C ha−1 y−1 for NF, HC and LC soils, respectively. Total N2O emissions from HC and LC plots (2·56 and 3·47 kg N2O ha−1 y−1) were significantly higher than from the NF plot (1·47 kg N2O ha−1 y−1). Total CO2 emissions from fuel uses of fertiliser, irrigation and machinery were about 10 per cent of total CO2 emissions. For soil carbon storage, since 1983, it has been increased significantly (12 Mg ha−1) under the application of 50 Mg ha−1 y−1 of compost but not with 30 Mg ha−1 y−1. The net C budget when balancing out carbon inputs and outputs from soil for NF, HC and LC soils were +3·24, −2·50 and +2·07 Mg C ha−1 y−1, respectively. Stable isotope of carbon (δ13C value) indicates that most of the increased soil carbon is derived from the compost inputs and/or corn biomass. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号