首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The aim of this study was to determine the effect of land‐use and forest cover depletion on the distribution of soil organic carbon (SOC) within particle‐size fractions in a volcanic soil. Emphasis was given to the thermal properties of soils. Six representative sites in Mexico were selected in an area dominated by Andosols: a grassland site, four forested sites with different levels of degradation and an agricultural site. Soils were fractionated using ultrasonic energy until complete dispersion was achieved. The particle‐size fractions were coarse sand, fine sand, silt, clay and particulate organic matter from the coarse sand sized fraction (POM‐CS) and fine sand (POM‐FS). Soil organic carbon decreased by 70% after forest conversion to cropland and long‐term cultivation; forest cover loss resulted in a decrease in SOC of up to 60%. The grassland soil contained 45% more SOC than the cropland one. Soil organic carbon was mainly associated with the silt‐size fraction; the most sensitive fractions to land‐use change and forest cover depletion were POM followed by SOC associated with the silt and clay‐sized fractions. Particulate organic matter can be used as an early indicator of SOC loss. The C lost from the clay and silt‐sized fractions was thermally labile; therefore, the SOC stored in the more degraded forest soils was more recalcitrant (thermally resistant). Only the transformation of forest to agricultural land produced a similar loss of thermally stable C associated with the silt‐sized fraction.  相似文献   

2.
(1)根据中国知网(CNKI)的《中国学术期刊影响因子年报(自然科学与工程技术.2010版)计量指标统计表》,《水土保持通报》综合统计源统计的总被引频次为3 446次(2009年版中为1 358次);复合影响因子为0.955;期刊综合影响因子为0.568(2008年为0.493),在所统计  相似文献   

3.
荒漠草原沙漠化对土壤无机碳和有机碳的影响   总被引:1,自引:0,他引:1  
以空间代替时间的方法,通过对宁夏荒漠草原不同沙漠化阶段土壤有机碳(SOC)和无机碳(SIC)的研究,探讨荒漠草原沙漠化对土壤SIC、SOC及不同粒径组分土壤SIC、SOC分布特征的影响。结果表明:(1)随着荒漠草原沙漠化程度的加剧,0—10cm土层各粒径组分土壤SIC和SOC含量呈下降趋势。半固定沙地和流动沙地各粒径组分土壤SIC含量均表现为黏粉粒无机碳(CSIC)>细砂粒无机碳(FIC)>粗砂粒无机碳(CIC),而SOC含量均表现为细砂粒有机碳(FOC)>粗砂粒有机碳(COC)>黏粉粒有机碳(CSOC)。(2)随着荒漠草原沙漠化程度的加剧,0—30cm土层土壤无机碳(SICD)、土壤有机碳(SOCD)和土壤总碳(STCD)密度均表现为荒漠草原>固定沙地>半固定沙地>流动沙地。固定沙地、半固定沙地和流动沙地土壤SOCD、SICD分别比荒漠草原降低了18.5%,57.7%,60.5%和6.7%,35.9%,47.0%。(3)0—10cm土层各粒径组分土壤SOC和SIC含量、全土SOC含量与0—30cm土层SOC和SIC均呈显著正相关关系,其中土壤粗砂粒有机碳和粗砂粒无机碳对SOC影响最大,而土壤黏粉粒有机碳和黏粉粒无机碳与全土SIC含量呈显著负相关关系。因此,沙漠化防治对于减少荒漠草原土壤碳损失极为重要。  相似文献   

4.
Soil restoration is a means of combating desertification in semi‐arid and arid parts of the world. There, vast areas of the cropped soil degrade, particularly because of the loss of organic matter. One approach to reverse this loss is the conversion of cropland into permanent grassland for use as pasture. This study was designed to evaluate how fast and to what degree degraded cropland may re‐sequester soil organic carbon (SOC) when converted into permanent secondary pasture. Topsoil samples (0–5, 5–10 and 10–20 cm) were taken from chronosequences of secondary pastures (1 to 31 years old) at three agro‐ecosystems in the semi‐arid Highveld of South Africa. Long‐term croplands and primary grassland used as pastures served as the controls. In bulk soil samples (<2 mm) and their clay (<2 µm), silt (2–20 µm), fine sand (20–250 µm) and coarse sand (250–2000 µm) fractions, the contents of carbon (C) and nitrogen were determined. In all three agro‐ecosystems, using a mono‐exponential model, the SOC stocks increased exponentially until a maximum was reached 10–95 years after land conversion. This gain in SOC was clearly pronounced for the top 0–5 cm of soil, but hardly detectable at 10–20‐cm depth. The sand fractions recovered organic C more rapidly but less completely than did the finer size separates. Overall, between 9.0 and 15.3 t of SOC were sequestered in the 0–20 cm of surface soil by this land conversion. Thus, the SOC recovery in the secondary pastures resulted in SOC stocks that were 29.6–93.9% greater than those in the arable land. Yet, in no agro‐ecosystem, at any soil depth, nor in any soil fraction, did the measured SOC content reach that of the primary grassland. In part this can be attributed to a slightly finer texture of the primary grassland that had not lost silt through wind erosion or had never been used as arable land because of slightly elevated clay contents. Overall it appears, however, that previous losses of SOM cannot easily be rectified, suggesting that the native primary grassland soils are only partially resilient to land‐use change.  相似文献   

5.
The present study combined a physical fractionation procedure with the determination of the natural abundance of 15N to investigate the impact of organic manure and mineral fertilizer application, and fallow on changes of N associated with different soil particle size fractions. The long‐term field experiment was conducted since 1956 in Ultuna, Sweden, on an Eutric Cambisol. Nitrogen in bulk soil and in particle size fractions changed significantly since 1956. The Nt concentrations in bulk soil decreased in all treatments not receiving organic materials. Comparing the N contribution of particle‐size fractions to the total N amount revealed the following ranking: silt > clay > fine clay > fine sand > coarse sand. The relative contribution of N in silt sized particles significantly increased from low to high bulk soil N contents, whereas N in clay and fine clay fractions decreased. The C : N ratios of particle size fractions differed considerably more between treatments than C : N ratios in bulk soils. Generally, the C : N ratios decreased from coarse to fine fractions emphasizing the tendency of smaller fractions being more significant as N sink than as Corg sink. 15N abundances varied more between particle size fractions of single treatments than between bulk soil from differently treated plots. Within treatments we observed differences of up to 7.1 ‰ between particle size fractions. In most cases δ 15N values increased with decreasing particle sizes. This pattern on average was similar to changes in δ 13 C. Our results suggest that silt sized particles acted as medium‐term sink of introduced N and that 15N abundances in particle size fractions sensitively reflect changes in N status in response to soil management.  相似文献   

6.
中亚热带天然次生常绿阔叶林水文生态效应研究   总被引:2,自引:0,他引:2       下载免费PDF全文
以科尔沁沙地为研究区域,测定分析了流动沙丘栽植22a的樟子松林和24a的小叶锦鸡儿灌木林对土壤物理组分有机碳分配的影响。结果表明,(1)流动沙丘造林后土壤粗砂、极细砂和黏粉粒含量增加,细砂含量减少,土壤容重降低。(2)流动沙丘栽植樟子松和小叶锦鸡儿林后,全土有机碳储量分别增加357和514g/m2,增幅为729%和1 050%。(3)流动沙丘、樟子松和小叶锦鸡儿林地土壤轻组质量分别为0.08%,1.24%和1.14%,轻组碳储量分别为9.7,182.5和185.9g/m2,占其全土碳储量的比例依次为20%,45%和33%。(4)土壤有机碳在不同粒级土壤中的分配状况为,流动沙丘:细砂>粗砂>极细砂>黏粉粒;樟子松林地:粗砂>细砂>极细砂>黏粉粒;小叶锦鸡儿林地:粗砂>极细砂>细砂>黏粉粒。(5)流动沙丘造林后,轻组有机碳储量的变化比总有机碳的变化更为明显,粗砂组分中非保护性有机质的增加是引起土壤总有机碳变化的主要原因。  相似文献   

7.
有机肥对棕壤不同粒级有机碳和氮的影响   总被引:3,自引:1,他引:3  
采集棕壤长期肥料定位试验站不施肥和施用不同用量有机肥的土壤,通过超声波分散—离心分离得到细黏粒(<0.2μm)、粗黏粒(0.2~2μm)、粉粒(2~53μm)、细砂粒(53~250μm)和粗砂粒(250~2000μm)5个颗粒级别后,分析全土及不同粒级中土壤有机碳和氮并进行含量与分布的比较。结果表明,有机质主要分布于黏粒级中,其含量占全土有机碳的42.8%、全氮的58.3%,碳氮比随着粒级的增加而逐渐增大,表明氮易于在小粒级中富集。长期施用有机肥后,全土及各粒级有机碳和氮含量均有显著增加;砂粒级中有机碳和氮的富集系数升高,黏粒级中富集系数降低,粉粒级和砂粒级中的碳氮比降低。增加有机肥的用量加强了全土和各粒级对有机碳和氮的积累,同时加强了粉粒级和砂粒级碳氮比降低的程度。  相似文献   

8.
长期施肥土壤不同粒径颗粒的固碳效率   总被引:1,自引:1,他引:0  
【目的】探讨不同施肥措施土壤有机碳在不同粒级颗粒中的分配及变化情况,可揭示各级颗粒中有机碳与外源有机碳输入之间的定量关系。【方法】依托南方红壤连续20年长期定位施肥试验,依据外源有机碳累积输入梯度选择不施肥(CK)、氮磷钾化肥配施(NPK)、氮磷钾化肥与秸秆配施(NPKS)、轮作条件下氮磷钾化肥与有机肥配施(NPKMR)、氮磷钾化肥与有机肥配施(NPKM)、单施有机肥(M)、增量氮磷钾化肥与增量有机肥配施(1.5NPKM)7个处理,并采用物理分组方法将土壤颗粒分为砂粒(53~2000μm)、粗粉粒(5~53μm)、细粉粒(2~5μm)和粘粒(2μm)4个组分。【结果】与不施肥相比,长期施肥均能显著增加土壤总有机碳及各级颗粒中的有机碳的储量,其中以施用有机肥的效果最明显。不同施肥处理各级颗粒中以粘粒的有机碳储量最高,平均为16.26 t/hm~2。施用有机肥和秸秆还田均能显著增加砂粒中有机碳的分配比例,降低粘粒有机碳的分配比例而对粗粉粒和细粉粒无显著影响。土壤砂粒所占的质量百分比及其与粗粉粒、细粉粒和粘粒的比值均与粗粉粒、细粉粒和粘粒组分中有机碳的浓度呈显著正相关关系表明小颗粒(粗粉粒、细粉粒和粘粒)中有机碳的固持和富集促进了大颗粒(砂粒)的形成与稳定。各级颗粒之间,施用有机肥处理的土壤粘粒组分的固碳速率最快,为0.29~0.52 t/(hm~2·a),其次为砂粒[0.30~0.40 t/(hm~2·a)]而粗粉粒和细粉粒的固碳速率基本相当为0.09~0.16t/(hm~2·a)。分析结果还表明土壤总有机碳及各级颗粒有机碳与外源有机碳的输入呈显著正线性相关关系,其中土壤总固碳效率为10.57%而各级颗粒之间,粘粒和砂粒组分的固碳效率(4.25%和3.60%)相当于粗粉粒和细粉粒(1.73%和1.00%)的2倍以上。【结论】南方红壤各级颗粒中有机碳均没有出现饱和现象,有机碳主要在土壤粘粒和砂粒组分中富集,细颗粒中有机碳的富集会促进大粒径土壤颗粒的形成而粘粒是土壤固碳效率最重要的矿物颗粒组成部分。表明长期配施有机肥不仅是红壤有机质提升的重要措施,也是改善红壤结构的重要途径。  相似文献   

9.
The preservation of plant residues is important for sustainable arable cropping. Lignin is a marker for plant residues in soils. We have investigated influences of the length of cultivation on the dynamics of lignin. Composite samples were taken from the top 20 cm of soils that have been cropped for periods varying from 0 to 98 years in each of three different agro‐ecosystems in the Free State Province of South Africa. Lignin‐derived phenols were determined in the <2 µm (clay), 2–20 µm (silt), 20–250 µm (fine sand) and 250– 2000 µm (coarse sand) size separates. With increasing length of cultivation, the concentration of such phenols decreased to 36% of that in the grassland. The lignin contents as proportions of the total carbon did not change during cultivation, suggesting that there was no selective enrichment of lignin moieties as C was lost as a result of cultivation. The loss rate constants of lignin concentrations in particle‐size fractions increased in the order clay (0.17 year?1) ≤ silt (0.18 year?1) < fine sand (0.20 year?1) < coarse sand (0.22 year?1). Increasing ratios of phenolic acids to aldehydes in bulk soil, silt and fine sand fractions with increasing length of cultivation indicated that side chains were being oxidized. The ratios in the silt fraction, however, decreased after 10–20 years. We attribute this to a loss of lignin together with silt by wind erosion, resulting in a rejuvenation of lignin compounds in the remaining silt‐sized pools of C.  相似文献   

10.
伊犁河谷不同森林模式下土壤的养分特征和粒径组成   总被引:1,自引:0,他引:1  
[目的]对伊犁河谷不同森林模式下土壤粒径组成和养分空间特征进行研究,为科学栽培和可持续经营提供理论依据。[方法]通过野外采样与室内试验,分析伊犁河谷不同模式下土壤粒径分布特征及其与土壤理化性质的关系。[结果]7个模式林地土壤基本集中在细粉粒和粗粉粒两个粒级。主要由细粉粒—粗粉粒—黏粒、细粉粒—粗粉粒—极细砂粒和粗粉粒—细粉粒—极细砂粒为主的质地组成,其中细粉粒—粗粉粒—黏粒土壤养分较佳,相比之下含有砂粒的土壤养分较低。土壤有机质和土壤碱解氮与黏粒和细粉粒含量的关系非常密切,尤其是细粉粒;速效磷与砂粒、黏粒和细粉粒呈正相关;速效钾与黏粒和细粉粒含量的关系密切,随着其含量增加而增加,跟砂粒呈显著负相关,砂粒含量高,速效钾含量降低。[结论]伊犁河谷7个模式林分土壤养分状况各异,养分各项指标含量不同,可根据养分状况进行抚育管理。各模式土壤中粉粒含量占绝对优势。根据各养分含量与各粒径组成之间的相关性分析表明,土壤颗粒越细,与土壤养分的关系越密切。  相似文献   

11.
Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil) and Areni-Gleyic Luvisol (sandy soil) in Zimbabwe. At the time of sampling the soils had been under conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR) for 9 years. Soil was fully dispersed and separated into 212–2000 μm (coarse sand), 53–212 μm (fine sand), 20–53 μm (coarse silt), 5–20 μm (fine silt) and 0–5 μm (clay) size fractions. The whole soil and size fractions were analyzed for C content. Conventional tillage treatments had the least amount of SOC, with 14.9 mg C g−1 soil and 4.2 mg C g−1 soil for the red clay and sandy soils, respectively. The highest SOC content was 6.8 mg C g−1 soil in the sandy soil under MR, whereas for the red clay soil, TR had the highest SOC content of 20.4 mg C g−1 soil. Organic C in the size fractions increased with decreasing size of the fractions. In both soils, the smallest response to management was observed in the clay size fractions, confirming that this size fraction is the most stable. The coarse sand-size fraction was most responsive to management in the sandy soil where MR had 42% more organic C than CR, suggesting that SOC contents of this fraction are predominantly controlled by amounts of C input. In contrast, the fine sand fraction was the most responsive fraction in the red clay soil with a 66% greater C content in the TR than CT. This result suggests that tillage disturbance is the dominant factor reducing C stabilization in a clayey soil, probably by reducing C stabilization within microaggregates. In conclusion, developing viable conservation agriculture practices to optimize SOC contents and long-term agroecosystem sustainability should prioritize the maintenance of C inputs (e.g. residue retention) to coarse textured soils, but should focus on the reduction of SOC decomposition (e.g. through reduced tillage) in fine textured soils.  相似文献   

12.
In the fragile hilly ecosystem of North‐eastern Himalayan Region (NEHR) of India, interaction of land use change and soil organic carbon (SOC) holds significance in sustaining land productivity. However, because of limited data, the effect of land use on SOC inventory at regional level is poorly quantified. The present study assessed the influence of seven major land uses and agrophysical variables (soil texture, bulk density, annual rainfall and mean temperature) on SOC concentration and stock across altitudinal gradients (6–3,500 masl) of NEHR of India. Results revealed that non‐agricultural land uses (grasslands and forests) registered significantly higher SOC concentration (2·20 to 2·51%) and stock (35·2–42·1 Mg ha−1) compared with agricultural (shifting and settled‐up and lowlands), plantation and horticultural land uses (SOC, 1·44 to 1·63%; stock, 27·4–28·4 Mg ha−1). Principal component analysis exhibited that the variation in SOC concentration among the land uses was mostly contributed by finer fractions of soil separates (silt and clay contents), and altitudinal gradient led variation in climatic variables (rainfall and temperature). Trend analyses depicted that SOC increased with an increase in rainfall and clay content but decreased with mean temperature and soil bulk density. Along the altitudinal gradient (6 to 1,000 masl), an inconsistent increase in silt + clay, annual rainfall, SOC concentration, and stock was also observed. However, beyond 1,000 masl, the corresponding increase was linear. The wide variability in SOC concentration and stock, therefore, resulted from the interaction of land uses, altitudinal gradients, textural gradients and climatic variables Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
我国北方半干旱地区土壤的沙漠化演变过程与机制   总被引:6,自引:0,他引:6  
土地沙漠化是我国北方干旱半干旱地区土地退化最严重的类型之一。但迄今为止,人们对这一地区土地沙漠化过程中土壤沙化过程和机制的了解还不够透彻。2002-2003年,我们在科尔沁沙地选择具有明显沙漠化梯度的一个区域,调查和研究了土壤沙漠化演变过程和机制。结果表明,在科尔沁沙地,不同粒径土壤颗粒的理化特性具有较大差异,其中土壤粘粉粒和粗沙相比,具有较低的土壤容重和较高的土壤结持力、起沙风速、毛管持水力和养分含量。从土壤粘粉粒到粗沙,容重增加了10.32%,结持力、毛管持水量、有机碳、全氮分别下降了99.15%,51.23%,83.73%和80.24%。沙漠化过程中,土壤的理化性质随着土地沙漠化程度的增强而明显恶化。和非沙漠化土地相比,严重沙漠化土地的土壤粗沙含量、非毛管孔隙度和容重分别增加了35.04%,117.50%和21.7%,细沙含量、粘粉粒含量、总孔隙度、毛管孔隙度、田间持水量、毛管持水量、土壤有机碳、全氮、全磷、有效氮和有效磷分别下降了77.78%,70.00%,15.38%,27.49%,54.34%,37.54%,64.15%,70.77%,65.90%,66.32%和50.59%。相关分析结果表明,沙漠化过程中,土壤有机碳、全氮、全磷、土壤含水量和土壤结持力的变化与土壤粘粉粒的减少呈明显正相关,与土壤粗沙含量的增加呈明显负相关。这说明,沙漠化过程中,由于风蚀而导致的富含养分和具有较高持水能力的土壤细颗粒的损失,是沙漠化过程中土壤退化的主要机制。  相似文献   

14.
The knowledge about the relevance of physical and chemical fractionation methods to soil organic carbon (SOC) stabilization mechanisms is fragmentary but needed to manage the SOC pool. Therefore, our objective was to compare the C contents of the particle size fractions coarse and fine sand, silt, and clay of the two uppermost horizons of a soil under three different management systems (meadow; no-till corn, NT; no-till corn with manure, NTm). The mineral composition was dominated by silt (48–60%). However, coarse sand and clay showed the highest enrichment of C compared to the bulk soil. In spite of an enrichment factor below 1, the high proportion of silt made this fraction the main C store. In the upper 30 cm, this fraction amounted to 27.1 Mg C ha−1 in NTm and progressively less in NT (15.5 Mg C ha−1), and meadow (14.9 Mg C ha−1), representing 44%, 39%, and 39% of the total SOC pool, respectively. The C in the isolated particle size fractions was further investigated by an oxidizing treatment with Na2S2O8 and a treatment with HF to solubilize the mineral phases. The pools of oxidizable C were comparable among particle size fractions and pedons, as indicated by Na2S2O8 treatment. The pools of C preferentially associated with soil minerals were also comparable among pedons, as indicated by HF treatment. However, NTm stored the largest pool (12.6 Mg ha−1) of mineral-associated C in 0–30 cm depth. The silt-associated and mineral-bound SOC pool in NTm was greater compared to NT due to increased organic matter (OM) input. Thus, the silt particle size fraction at the North Appalachian Experimental Watershed (NAEW) has the potential for SOC sequestration by stabilizing OM inputs. Mineralogical and molecular level analyses on a larger set of fractions obtained from entire rooted soil profiles are required, however, to compare the SOC sequestration capacity of the land uses.  相似文献   

15.
耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系   总被引:64,自引:5,他引:64  
四川 1 6个耕地表层的土壤颗粒表面分形维数D为 2 80 5~ 2 942 ,其中砂土2 82 1、壤土 2 870、粘壤土 2 91 6和粘土 2 939。统计分析表明D分别与国际制粗砂粒和细砂粒含量呈极显著负相关 ,与粉粒和粘粒含量呈极显著正相关 ;它与粉粒、粘粒和有机质含量的偏相关关系达极显著水平 ,与容重的偏相关关系达显著水平  相似文献   

16.
A calcareous and clayey xeric Chromic Haploxerept of a long‐term experimental site in Sicily (Italy) was sampled (0–15 cm depth) under different land use management and cropping systems (CSs) to study their effect on soil aggregate stability and organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual‐layer [DL] and conventional tillage [CT]) and two CSs (durum wheat monocropping [W] and durum wheat/faba bean rotation [WB]). The annually sequestered SOC with W was 2·75‐times higher than with WB. SOC concentrations were also higher. Both NT and CT management systems were the most effective in SOC sequestration whereas with DL system no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7·4 Mg C ha−1 y−1. Independent of the CSs, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting with minerals. Macroaggregates (>250 µm) and large microaggregates (75–250 µm) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macroaggregates while NT and CT gave rise to higher SOC contents. In Mediterranean areas with Vertisols, agricultural strategies aimed at increasing the SOC contents should probably consider enhancing the proportion of coarser soil fractions so that, in the short‐term, organic C can be accumulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
长期施肥下红壤有机碳及其颗粒组分对不同施肥模式的响应   总被引:12,自引:3,他引:12  
采集不同施肥24年的红壤,采用物理分组的方法,观测了长期不同施肥下红壤有机碳及其组分变化,并结合历史资料分析了不同施肥模式对红壤有机碳及其颗粒组分的影响。结果表明,化肥配施有机肥(NPKM)处理下红壤总有机碳含量(10.33 g/kg),砂粒(2000~53 m)、细粉粒(5~2 m)和粘粒(2 m)组分中的有机碳含量显著高于其他处理。与不施肥(CK)相比,施用化肥(NPK、2NPK)和有机肥(NPKM、M)显著地提高了红壤有机碳在砂粒和粘粒中的分配比例,而降低了其在粗粉粒和细粉粒的分配比例。施化肥(NPK、2NPK)、单施有机肥(M)、化肥配施有机肥(NPKM)处理,土壤有机碳的平均固定速率分别为0.05 t/(hm2?a)、0.18 t/(hm2?a)、0.26 t/(hm2?a)。相关分析表明,不同施肥模式下红壤有机碳的固定量与碳投入量之间存在着极显著的线性相关关系(R2=0.909, P0.01),土壤的固碳效率为8.1%;随着碳投入的增加,粗粉粒和细粉粒有机碳储量逐渐下降,而砂粒和粘粒中碳储量逐渐增加,并且粘粒增加速率要远远高于砂粒。以上结果说明,红壤中有机碳还没有达到饱和,还具有一定的固碳潜力,增加的有机碳主要固持在粘粒中,粘粒是红壤有机碳的主要固持组分。  相似文献   

18.
持久性有机污染物在土壤环境中的行为在很大程度上取决于土壤有机质对它们的吸附作用,粒径分组通常用来区分具有不同有机质组成和周转速率的有机质库。本研究利用菲(Phe)和苯并[a]芘(Bap)作为多环芳烃(PAHs)低、高环组分的代表物质,研究了它们在污染区9个农业表层土壤(0~20cm)不同粒径组分(粘粒、细粉粒、粗粉粒、细砂粒和粗砂粒)中的分配特征。结果表明,Phe在不同粒径组分中的平均含量大小顺序为粗砂粒〉细砂粒〉粘粒〉细粉粒〉粗粉粒,Bap为粗砂粒〉细砂粒〉粗粉粒〉细粉粒〉粘粒。Phe和BaP在不同粒径组分中的含量与粒径组分中有机质的含量均呈显著性正相关(P〈0.01)。不同粒径组分中的有机质对Phe富集能力的大小顺序为粗粉粒〉细粉粒〉细砂粒〉粗砂粒〉粘粒,对Bap的富集能力为粗粉粒〉粗砂粒〉细粉粒〉细砂粒〉粘粒。  相似文献   

19.
马悦阳    夏栋      舒倩    郭士维    罗婷    闫书星    刘大翔   《水土保持研究》2023,30(4):83-89
[目的]研究不同生态修复后边坡土壤颗粒分形特征,为分形维数作为评价修复后向家坝工程扰动区边坡土壤质量的综合指标提供科学依据。[方法]以向家坝工程扰动区6种不同生态修复模式下的0—10 cm边坡土壤为研究对象,通过野外采样和室内试验,采用单重和多重分形理论相结合的方法,研究自然演替与人工修复模式下土壤粒径分布(PSD)和分形特征及土壤养分特征并分析了其相关关系。[结果]不同生态修复模式下土壤颗粒组成以粉粒和砂粒为主,黏粒含量较少,粒径分布不均匀。天然林地土壤养分含量相对较高且土壤颗粒较细。黏粒与Dv呈极显著正相关(p<0.01),与土壤有机碳和速效氮呈显著正相关(p<0.05),粉粒含量与D1,D2呈极显著负相关(p<0.01),砂粒与D1,D2呈极显著正相关(p<0.01)。土壤养分与黏粒、粉粒含量呈不显著正相关,与砂粒含量,D1,D2呈不显著负相关。[结论]向家坝工程扰动区土壤颗粒以粉粒和砂粒为主,土壤质地较...  相似文献   

20.
Intensive vegetable production in greenhouses has rapidly expanded in China since the 1990s and increased to 1.3 million ha of farmland by 2016, which is the highest in the world. We conducted an 11‐year greenhouse vegetable production experiment from 2002 to 2013 to observe soil organic carbon (SOC) dynamics under three management systems, i.e., conventional (CON), integrated (ING), and intensive organic (ORG) farming. Soil samples (0–20 and 20–40 cm depth) were collected in 2002 and 2013 and separated into four particle‐size fractions, i.e., coarse sand (> 250 µm), fine sand (250–53 µm), silt (53–2 µm), and clay (< 2 µm). The SOC contents and δ13C values of the whole soil and the four particle‐size fractions were analyzed. After 11 years of vegetable farming, ORG and ING significantly increased SOC stocks (0–20 cm) by 4008 ± 36.6 and 2880 ± 365 kg C ha?1 y?1, respectively, 8.1‐ and 5.8‐times that of CON (494 ± 42.6 kg C ha?1 y?1). The SOC stock increase in ORG at 20–40 cm depth was 245 ± 66.4 kg C ha?1 y?1, significantly higher than in ING (66 ± 13.4 kg C ha?1 y?1) and CON (109 ± 44.8 kg C ha?1 y?1). Analyses of 13C revealed a significant increase in newly produced SOC in both soil layers in ORG. However, the carbon conversion efficiency (CE: increased organic carbon in soil divided by organic carbon input) was lower in ORG (14.4%–21.7%) than in ING (18.2%–27.4%). Among the four particle‐sizes in the 0–20 cm layer, the silt fraction exhibited the largest proportion of increase in SOC content (57.8% and 55.4% of the SOC increase in ORG and ING, respectively). A similar trend was detected in the 20–40 cm soil layer. Over all, intensive organic (ORG) vegetable production increases soil organic carbon but with a lower carbon conversion efficiency than integrated (ING) management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号