首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
为探究植物次生代谢产物瑞香素对烟草Nicotiana tabacum青枯病的防治效果及其诱导抗性作用,通过室内和田间试验评价瑞香素对烟草青枯病的防治效果,利用高效液相色谱(high performance liquid chromatography,HPLC)和实时荧光定量PCR(real-time quantitative PCR,RT-qPCR)技术分析其对烟草体内酶活性、木质素含量、激素水平和抗性相关基因表达量的影响。结果表明,叶面喷施瑞香素对烟草青枯病有较好的防治效果,其中2.85 mg/L处理的防治效果最佳,其次是5.70 mg/L和11.40 mg/L处理,接种后14 d的相对防效依次为66.93%、42.52%和48.03%。瑞香素处理可显著提高烟草体内过氧化物酶、苯丙氨酸解氨酶和多酚氧化酶的活性,处理后12 h分别较对照显著提高了3.56倍、1.68倍和1.82倍;瑞香素处理后4 d和7 d烟草根部木质素含量分别较对照显著提高了1.33倍和1.54倍;瑞香素处理后6 h烟草体内茉莉酸和脱落酸含量分别较对照显著提高了35.98%和34.55%,而水杨酸含量较对照显著降低了25.56%。同时,叶面喷施2.85 mg/L瑞香素后显著抑制了茉莉酸途径拮抗基因JAZ3的表达,处理后6 h的表达量较对照下调了9.19倍,同时显著促进病程相关基因PR1的表达。提前喷施2.85 mg/L瑞香素能有效控制田间烟草青枯病发生,相对防效达到52.22%~75.54%,显著高于对照药剂苯并噻二唑的相对防效33.50%~53.00%。表明瑞香素能提升烟草体内酶活性和根部木质素含量,促进抗性基因表达,对田间烟草青枯病有稳定的防治效果,具有开发为防治烟草青枯病的植物激活剂的潜力。  相似文献   

2.
无致病力青枯菌株对番茄青枯病的防治效果   总被引:14,自引:0,他引:14  
用紫外诱变法获得的青枯无致病力菌株ATm0 4 4和Asp0 6 1对致病菌没有直接的抑制作用 ;处理番茄后对青枯病产生抗性 ;两菌株可在番茄体内定殖并繁殖 ,移栽浸根是最佳的处理方法。盆栽试验结果表明 ,番茄经ATm0 4 4和Asp0 6 1处理后 ,分别较对照推迟 9和 7d发病 ,2 0d后的防效达 56 .7%和 53.4 %。田间小区试验结果表明 ,经ATm0 4 4和Asp0 6 1菌悬液浸根处理番茄 ,1 5d后对青枯病的防治效果分别为 53.8%和 37.7%。  相似文献   

3.
青枯雷尔氏菌(Ralstonia solanacearum)引起的青枯病严重威胁着番茄的产量和品质。冠菌素(Coronatine, COR)是由丁香假单胞菌(Pseudomonas syringae)产生的化合物,结构类似于茉莉酸异亮氨酸(JA-Ile)。本研究通过观察COR处理番茄后接种R.solanacearum的症状表现,发现COR处理的番茄植株比未处理的对照组青枯病发生症状轻。为进一步探究COR如何影响番茄对青枯病的抗性,对COR处理后接种R.solanacearum 24 h的番茄样品进行转录组测序分析,结果发现,COR处理共诱导了2122个差异表达基因,包括998个上调表达基因和1124个下调表达基因。通过对差异表达基因进行GO和KEGG富集,发现COR主要影响植物-病原菌互作通路及植物激素信号转导途径相关基因的表达。此外,COR还诱导JA合成通路相关基因的上调表达,以及抑制光合作用相关基因的表达。研究结果为深入揭示COR在植物-青枯病原菌互作过程中的作用奠定了理论基础。  相似文献   

4.
番茄细菌性青枯病是由青枯细菌(Ralstoniasolanacearumnov.comb)所引起的世界范围发生的重大病害。本研究通过用紫外诱变法获得的无致病力青枯菌株ATm044和Asp061对有致病力的青枯菌没有直接的抑制作用;处理番茄后对青枯病产生抗性;2菌株可在番茄体内定殖并繁殖,移栽浸根是最佳  相似文献   

5.
通过生物学方法测定3,4,5-三羟基苯甲酸甲酯(MG)防治番茄青枯病的物理作用方式,采用气相色谱-质谱联用方法分析该化合物对番茄根系组织次生代谢物质的影响。结果表明,3,4,5-三羟基苯甲酸甲酯对番茄青枯病有较好的预防作用,持效期较长,施药15d后接种青枯病菌,防效仍达52.12%;该化合物可快速扩散到番茄根系组织内,但其向植株顶部和基部的输导作用弱,对番茄青枯病的治疗效果差。番茄根系中共鉴定出36种次生代谢物质,与对照相比,3,4,5-三羟基苯甲酸甲酯处理对番茄根系次生代谢产物的组成和相对含量有明显影响,其中与抑菌活性相关的物质有香叶醇、豆甾醇、β-谷甾醇和木栓醇等4种,前3种物质在3,4,5-三羟基苯甲酸甲酯处理植株体内表现为含量显著升高,木栓醇则为苗期用3,4,5-三羟基苯甲酸甲酯处理后番茄根系新增的化合物。  相似文献   

6.
测定了侧孢短芽孢杆菌(Brevibacillus laterosporus)B8菌株对蜡状芽孢杆菌(Bacillus cereus)、烟草花叶病毒(Tobacco mosaic virus,TMV)和番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)的抑制作用及对番茄的促生长作用。结果表明,菌株B8及其发酵液能抑制蜡状芽孢杆菌和TMV,发酵液与TMV体外混合后接种心叶烟对TMV的抑制率为87.52%;B8无菌发酵液喷施烟草NC89对其TMV的预防作用和治疗作用分别为62.40%和58.91%。番茄预先喷施无菌发酵液、灌根和种子浸泡处理后接种TYLCV的处理,均能减轻TYLCV的侵染,其中灌根处理对TYLCV的防治效果最好。其抑菌蛋白粗提物与TMV混合后接种心叶烟对TMV的抑制率为42.50%;用发酵液稀释20倍液处理番茄种子能促进种子提早发芽、生根和番茄幼苗生长。菌株B8在培养过程中可分泌吲哚乙酸(IAA)。推测抑菌蛋白和IAA是菌株B8抑制病毒和促进番茄生长的主要原因之一。  相似文献   

7.
本文研究了生防菌ANTI-8098A在番茄植株内的定殖及其对青枯病的生防特性,采用激光共聚焦显微技术观察了GFP标记菌株ANTI-8098A:pCM20在番茄根系的分布.ANTI-8098A及其标记菌株可很好地定殖于番茄植株内,在根内定殖浓度最高,达104~105cfu·g-1,茎部、叶片内次之,达103~104cfu·g-1;ANTI-8098A处理后番茄根系PPO活性显著提高,对番茄叶绿素含量有短期效应;处理后5~15d番茄根际微生物数量略低于对照,其后逐渐与对照趋于一致;ANTI-8098A及其标记菌株对青枯病的防效存在一定差异,平均防效为57.1%~100%.  相似文献   

8.
以番茄品种鑫语为试验材料,在开花盛果期喷施含Ca(NO_3)_2、Ca(H_2PO_4)_2、KSiO_4、Ca(NO_3)_2+KSiO_4及Ca(H_2PO_4)_2+KSiO_4的悬液,探讨钙硅单一及配合施用对设施春茬番茄根系生长、NPK吸收、产量及水分利用率的影响。结果表明:喷施钙硅悬液显著促进番茄根系生长及发育,显著促进根系和果实磷钾吸收;含钙悬液单独喷施处理的根系和果实氮吸收显著高于硅悬液及钙硅复配悬液;两种含钙悬液Ca(NO_3)_2和Ca(H_2PO_4)_2喷施处理取得最佳调控效果,与对照相比,分别使番茄增产9%和7%,水分利用率提升7、5.5 kg·m~(-3),喷施Ca(NO_3)_2+KSiO_4使番茄增产4.7%,水分利用率提升3.8 kg·m~(-3),喷施Ca(H_2PO_4)_2+KSiO_4和KSiO_4未取得显著的调控效果;含钙悬液单独喷施处理增加番茄产量与其促进根系发育及增加植株N吸收密切相关;两种含钙物质与KSiO_4对番茄产量的影响存在显著的交互效应,对产量的贡献呈:含钙物质含钙物质×KSiO_4KSiO_4。含钙悬液喷施技术简单高效,能实现番茄增产及生物节水能力提升。  相似文献   

9.
比较了诱抗剂赤·吲乙·芸薹、壳聚糖、芸薹素内酯、香菇多糖对烟草青枯病、花叶病毒病、黑胫病的诱抗效果及对烟草生长的影响。发现对云烟87喷施上述诱抗剂,均可有效降低3种病害的发生率和病情指数,并促进烟株生长。其中,0.136%赤·吲乙·芸薹可湿性粉剂10 000倍液处理的应用效果较好,对烟草青枯病、花叶病毒病、黑胫病的诱抗效果分别达78.02%、53.48%、61.63%。  相似文献   

10.
室内测定结果表明,先接种放线菌St-145菌株2d后再接种茄青枯雷尔氏菌的植株对番茄青枯病的防治效果为73.83%;先接种病原菌2d后再接种St-145菌株对该病的防效为30.86%.St-145菌株对番茄青枯病的大田防治效果为16.39%.  相似文献   

11.
为探索高密度栽培芝麻青枯病Ralstonia solanacearum的高效防控,分析了江西土壤pH分布与芝麻青枯病发生程度关系,测定了生石灰土壤处理对芝麻的安全性及对青枯病抑制效果,开展了中生菌素喷雾和生石灰土壤处理联合防控芝麻青枯病试验。结果表明,芝麻青枯病发生重的田块土样pH多集中分布在4.5~5.5,pH 4.5~5.5的芝麻田土样占比69.17%。生石灰1125~2250 kg/hm2土壤处理,赣芝5号和豫芝11出苗率与空白对照没有显著性差异,幼苗素质优于空白对照,尤其是茎基部直径显著高于空白对照;现蕾期~成熟期青枯病病情指数均始终低于空白对照,现蕾期~盛花前期病情指数比空白对照降低30%以上。芝麻播种前生石灰1125~2250 kg/hm2土壤处理,芝麻定苗和初花期3%中生菌素可湿性粉剂22.5 g.ai/hm2各喷雾1次,对青枯病的联合防控效果73.46%~74.89%,显著高于中生菌素单用3次的防效(P<0.05),芝麻增产率31.33%~32.49%,增产效果优于中生菌素单用处理。  相似文献   

12.
Application of Rhizobacteria for Induced Resistance   总被引:6,自引:0,他引:6  
This article provides a review of experiments conducted over a six-year period to develop a biological control system for insect-transmitted diseases in vegetables based on induced systemic resistance (ISR) mediated by plant growth-promoting rhizobacteria (PGPR). Initial experiments investigated the factors involved in treatment with PGPR led to ISR to bacterial wilt disease in cucumber caused by Erwinia tracheiphila. Results demonstrated that PGPR-ISR against bacterial wilt and feeding by the cucumber beetle vectors of E. trachiphiela were associated with reduced concentrations of cucurbitacin, a secondary plant metabolite and powerful beetle feeding stimulant. In other experiments, PGPR induced resistance against bacterial wilt in the absence of the beetle vectors, suggesting that PGPR-ISR protects cucumber against bacterial wilt not only by reducing beetle feeding and transmission of the pathogen, but also through the induction of other plant defense mechanisms after the pathogen has been introduced into the plant. Additional greenhouse and field experiments are described in which PGPR strains were selected for ISR against cucumber mosaic virus (CMV) and tomato mottle virus (ToMoV). Although results varied from year to year, field-grown tomatoes treated with PGPR demonstrated a reduction in the development of disease symptoms, and often a reduction in the incidence of viral infection and an increase in tomato yield. Recent efforts on commercial development of PGPR are described in which biological preparations containing industrial formulated spores of PGPR plus chitosan were formulated and evaluated for use in a transplant soil mix system for developing plants that can withstand disease attack after transplanting in the field.  相似文献   

13.
ABSTRACT Tomato wilt, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is effectively controlled by a foliar spray of validamycin A (VMA) or validoxylamine A (VAA) (>/=10 mug/ml); however, neither VMA nor VAA is antifungal in vitro. In pot tests, the effect of a foliar application of VMA or VAA at 100 mug/ml lasted for 64 days. Plants sprayed with VMA or VAA accumulated salicylic acid and had elevated expression of the systemic acquired resistance (SAR) marker genes P4 (PR-1), Tag (PR-2), and NP24 (PR-5). Foliar spray of VMA also controlled late blight and powdery mildew of tomato. The disease control by VMA and VAA lasted up to 64 days after treatment, was broad spectrum, and induced the expression of PR genes, all essential indicators of SAR, suggesting that VMA and VAA are plant activators. The foliar application of plant activators is a novel control method for soilborne diseases and may provide an economically feasible alternative to soil fumigants such as methyl bromide.  相似文献   

14.
In this study, we investigated the ability of DL-3-aminobutyric acid (BABA) to protect tomato against bacterial wilt caused by Ralstonia solanacearum. This was combined with studies of accumulation of total phenolic compounds, free and total salicylic acid (SA), and activity of enzymes related to plant defence, i.e., polyphenol oxidase (PPO) and catalase (CAT). Under greenhouse conditions, tomato plants pre-treated by soil drenching with BABA profoundly reduced disease severity of bacterial wilt compared to plants receiving a soil drench with water. Thus, BABA reduced leaf wilting index by 75.3 % and vascular browning index by 69.9 %, without any in vitro inhibitory activity on the pathogen. BABA treatment significantly reduced the population of R. solanacearum in stems of tomato plants and additionally also significantly increased both fresh and dry weight of roots and shoots of tomato plants compared with the inoculated control. Application of BABA resulted in a high increase in PPO activity both in plants with and without inoculation. Compared to water-treated plants, treatment with BABA also induced a significant increase of total phenolic compounds as well as of free and total SA in leaves of both inoculated and non-inoculated tomato plants at all sampling times. CAT activity decreased in tomato plants treated with BABA in comparison with the water-treated control plants and the decrease in activity correlated with an increasing total SA accumulation. These findings suggest that BABA treatment resulted in induction of resistance to bacterial wilt in tomato.  相似文献   

15.
Different criteria were compared for assessing bacterial wilt resistance in 13 tomato genotypes varying in disease susceptibility. Wilt severity and bacterial invasiveness at collar and midstem were compared in the field under cooler (March to May, 20–28°C) and warmer months (June to August, 23–29°C), which were unfavourable and favourable to wilt symptom expression, respectively. A model was proposed for determining resistance regardless of climatic conditions prevalent during field experimentation. This model was based on an estimate of bacterial invasiveness termed the colonization index. Using a qualitative imprint method we confirmed that the more resistant the genotype, the lower the bacterial colonization of the stem. The colonization index accounted both for wilted plants and for infected asymptomatic plants in which Pseudomonas solanacearum populations failed to produce wilt. The colonization index at midstem was the more useful indicator of resistance under favourable conditions. When environmental conditions were unfavourable to wilt, colonization index at collar level discerned resistant genotypes more clearly. The results formed the basis for a model for predicting the degree and stability of resistance in tomato.  相似文献   

16.
 利用青枯雷尔氏菌(Ralstonia solanacearum)无致病力菌株防治番茄青枯病具有很好的应用潜力。作者通过分离筛选自然弱毒株、60Co辐射诱变和EZ-Tn5插入诱变,分别获得3、12和40株青枯雷尔氏菌无致病力突变菌株。经盆栽番茄苗致病性检测,15 d后均未发病,证实均为无致病力青枯雷尔氏菌。进一步对番茄青枯病的防治试验表明,从番茄青枯病发病田块分离的无致病力突变菌株FJAT1458的防治效果最好,防效达100%。该菌株能定殖番茄植株根系土壤、根部和茎部,定殖数量均表现为“先增后减”的趋势,并且接种浓度越大、苗龄越小,定殖数量越大。从构建的防效模型可以看出,不同接种浓度条件下,植株发病率随时间变化符合的回归方程不同,相关系数R值也不同,接种浓度越大,R值越小。本研究获得的青枯雷尔氏菌无致病力突变菌株FJAT1458对番茄青枯病具有很好的防病效果。  相似文献   

17.
Silicon amendment significantly reduced bacterial wilt incidence expressed as area under disease progress curve for tomato genotypes L390 (susceptible) by 26.8% and King Kong2 (moderately resistant) by 56.1% compared to non-treated plants grown in hydroponic culture. However, wilt incidence in silicon-treated plants of genotype L390 reached 100% at 13 days post-inoculation (dpi), while in genotype King Kong2, plant death was retarded by 6 days, with 20% reduction of final wilt incidence. Bacterial numbers were significantly lower in silicon-treated compared to non-treated plants in King Kong2 at 2 dpi in midstems and in all organs at 5 dpi, and in Hawaii 7998 (resistant) in all organs at 2 dpi. Differences between genotypes were obvious on midstem level (5 dpi), where bacterial populations were generally significantly lower compared to roots. Increased tolerance was observed in genotypes L390 and King Kong2 with silicon treatment.Silicon accumulated in roots and was low in stems and leaves. Inoculation with Ralstonia solanacearum did not significantly affect silicon uptake and distribution. Negative correlations between root silicon content and bacterial numbers of midstems in genotypes Hawaii 7998 and King Kong2 suggested an induced resistance. Indications for an influence of host genotype and silicon treatment on the phenotypic conversion of R. solanacearum strain To-udk2-sb from fluidal to non-fluidal colonies in planta were observed.This is the first report on the effect of silicon on a bacterial disease and in a silicon-non-accumulator plant.  相似文献   

18.
Resistance to bacterial wilt, caused by Ralstonia solanacearum , in tomato lines CRA 66 and Caraïbo is reported to be decreased by root-knot nematode galling and by introduction of the Mi gene for nematode resistance. The Mi gene is located on tomato chromosome 6, which also carries a major quantitative trait locus (QTL) for resistance to bacterial wilt. Bacterial wilt resistance was evaluated in F3-progenies derived from two crosses between near-isogenic lines, Caraïbo × Carmido and CRA 66 × Cranita, differing for small and large introgressions from Lycopersicon peruvianum that carry the Mi gene, respectively. These introgressed regions were mapped using RFLP markers. Plants homozygous Mi+/Mi+ (susceptible to the nematode) and homozygous Mi/Mi (resistant) for the Mi gene were selected in F2 and used to produce F3 progenies. Parents and F3-lines with Mi/Mi had resistance to bacterial wilt reduced by 30% in Caraïbo × Carmido and by 15% in CRA 66 × Cranita. Caraïbo and Carmido were demonstrated to be isolines and the small introgression from L. peruvianum resulted in loss of the QTL for bacterial wilt resistance, which is probably allelic or linked in repulsion to the Mi gene. In contrast, resistance to bacterial wilt segregated in the F3 lines from the cross CRA 66 × Cranita, giving families varying in resistance between the levels shown by the parents. Consequently, two hypotheses were considered: (i) after only four backcrosses, the parents were not isolines and the genes for resistance to bacterial wilt from CRA 66 were still segregating, and (ii) the parents were isolines and variation in resistance to bacterial wilt in F3 was due to recombination events among the large L. peruvianum introgressed chromosome region from Cranita.  相似文献   

19.
Development of sustainable food systems is contingent upon the adoption of land management practices that can mitigate damage from soilborne pests. Five diverse land management practices were studied for their impacts on Fusarium wilt (Fusarium oxysporum f. sp. lycopersici), galling of roots by Meloidogyne spp. and marketable yield of tomato (Solanum lycopersicum) and to identify associations between the severity of pest damage and the corresponding soil microbial community structure. The incidence of Fusarium wilt was >14% when tomato was cultivated following 3 to 4 years of an undisturbed weed fallow or continuous tillage disk fallow rotation and was >4% after 3 to 4 years of bahiagrass (Paspalum notatum) rotation or organic production practices that included soil amendments and cover crops. The incidence of Fusarium wilt under conventional tomato production with soil fumigation varied from 2% in 2003 to 15% in 2004. Repeated tomato cultivation increased Fusarium wilt by 20% or more except when tomato was grown using organic practices, where disease remained less than 3%. The percent of tomato roots with galls from Meloidogyne spp. ranged from 18 to 82% in soil previously subjected to a weed fallow rotation and 7 to 15% in soil managed previously as a bahiagrass pasture. Repeated tomato cultivation increased the severity of root galling in plots previously subjected to a conventional or disk fallow rotation but not in plots managed using organic practices, where the percentage of tomato roots with galls remained below 1%. Marketable yield of tomato exceeded 35 Mg ha(-1) following all land management strategies except the strip-tillage/bahiagrass program. Marketable yield declined by 11, 14, and 19% when tomato was grown in consecutive years following a bahiagrass, weed fallow, and disk rotation. The composition of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA amplicons isolated from soil fungal and bacterial communities corresponded with observed differences in the incidence of Fusarium wilt and severity of root galling from Meloidogyne spp. and provided evidence of an association between the effect of land management practices on soil microbial community structure, severity of root galling from Meloidogyne spp., and the incidence of Fusarium wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号