首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The spatial distribution of major soil horizons and layers of pyroclastic deposits in Kamchatka was analyzed with the use of GIS technologies. For this purpose, the attribute soil database and the computer-supported cartographic database were developed. Their analysis with the help of GIS technologies made it possible to study the dependence of the morphology of soil profiles on the bioclimatic conditions and on the stratification of ash layers in the particular areas of Kamchatka and to develop the cartographic model of the areas of soil horizons. The concept of tephra stratotypes—the particular combinations of ash layers in the profiles of volcanic soils—was verified on the basis of factual materials. It was shown that tephra stratotypes affect many important soil properties and specify the direction of soil formation in Kamchatka. Several major tephra stratotypes differing in their morphology and environmentally important features were distinguished in Central Kamchatka. The method of soil mapping on the basis of the concept of tephra stratotypes with due account for the specificity of surface organic horizons of soils was developed. It is argued that this method makes it possible to reflect the specificity of soil formation in volcanic regions.  相似文献   

2.
There are few pedological studies in Japan of fresh volcanic ash. Fundamental information of the material from which Japanese volcanic-ash soils have developed, is of importance to obtain a better understanding of pedogenesis of such soils. The present paper deals with the mechanical. mmeralogical, and chemical characteristics of fresh ash ejected from the Sakurajima and Aso volcanoes which are among the most active in Japan.  相似文献   

3.
Texture is one of the major criterions in soil classification, probably because it has a decisive influence on soil properties. This is particularly true for volcanic ash soils. Most ashes are largely composed of sand and silt particles with little clay (11, 15). The ash weathers very rapidly (1), and clay site particles less than 2 microns in diameter occur even within a few months, as shown by Ishii at the authors' laboratory. Those clay size particles produced in the early stage of weathering are slightly weathered ones (2), and are still subject to rapid weathering, losing bases and silica under humid and well drained conditions. In consequence the clay fraction of volcanic ash soils is composed of particles which vary in degree of weathering from slightly altered glass and feldspar to true clay mineraloids and minerals. The clay fraction of younger soils as a whole is less and that of older ones is more weathered. Weathering brings a remarkable change in the properties of volcanic ash soils; for example, an inerease in soil acidity, lowering of base saturation and bulk density, or accumlation of organic matter. These changes must exert a great influence on soil fertility directly or indirectly.  相似文献   

4.
Soils found on fan surfaces in the Kokoda Valley are derived from both volcanic ash and river alluvium. The alluvium is variable, some of it being mixed with volcanic ash. The main differences in the micromorphology of the soils appear to be related to the relative amounts of volcanic ash present in the soil profile. The plasma of soils formed on volcanic ash is isotropic in thin section. The plasma of alluvial soils exhibits increasing birefringence with decreasing amounts of volcanic ash. It is suggested that random structures in the clay fraction of the volcanic ash may account for its isotropic nature.  相似文献   

5.
The clay mineralogical composition of soils on volcanic ashes from Mashū and Kamuinupuri-dake volcanoes, Hokkaido, which are rich in cristobalite, was determined using petrological, X-ray diffraction, differential thermal, and selective dissolution and differential infrared spectroscopic methods.

The cristobalite occurred in abundance in every size of fraction from coarse sand to clay and every soli from approximately 1,700 to 8,400 years old, and was concluded to be of igneous origin. The major clay minerals were allophanelike constituents and allophane with some layer silicates as the minor clay mineral, being similar to those of andesitic ash soils and different from those of volcanic ash soils containing abundant quartz. The quartz of volcanic ashes was presumed to bederived from the groundmass-equivalent portion of the ashes which had been formed from magma at a low temperature.  相似文献   

6.
It has been reported by many workers that various soil properties influence the retention of boron added to soils, but there is little infomration on the relative importance of these properties to boron retention and there is something controversial in the published results regarding the effects of different soil properties such as organic matter content, soil reaction, available calcium content and texture on boron retention (15). The present study was undertaken to obtain more detailed informations on the relationships between boron adsorption and different properties of soils, and on comparative contribution of soil constituents such as organic matter, sesquioxides and inorganic colloids to boron adsorption of soils. In Japan, boron deficiency symptoms of crops often appear in the fields of volcanic ash soils, and many experiments on boron application have been conducted to amend the boron deficiencies of the soils. It is considered that volcanic ash soils may have special characteristics concerning boron retention in comparison with nonvolcanic ash soils. In the present study, therefore, some volcanic ash soils were also taken as samples in addition to non-volcanic ash soils to confirm their speciality to boron retention.  相似文献   

7.
Under conditions of active volcanism, the soils on different geomorphic positions (from high-mountain landscapes to river valleys) are formed under the impact of periodic ashfalls. The exogenous processes affect the redistribution of volcanic ashes by the elements of the relief, so that the soils of different altitudinal zones have their own morphological specificity. It is suggested that two additional types of volcanic soils should be included in the new Russian soil classification: the type of alluvial volcanic soils in the order of volcanic soils and the type of volcanic lithozems in the order of lithozems. These soils can be considered intergrades between volcanic and alluvial soils and between volcanic soils and lithozems, respectively.  相似文献   

8.
The physical, chemical, and mineralogical properties as well as the micromorphology of five indurated volcanic ash soils in Kyushu, Japan were investigated. The indurated soils were divided into two types based on the physical and chemical properties. Type 1 was not indurated in its moist state, but shrank and became very hard by air-drying. Type 1 included the buried volcanic ash soils whose physical and chemical properties were similar to those of other buried volcanic ash soils except for the property of induration by air-drying. The mechanism of the induration is still unknown, although it is considered to have occurred during the long period after the deposition of tephra under the influence of soil formation processes. Type 2 included the tephra layers that were indurated in both moist and air-dried states. The carbon and clay contents of type 2 were remarkably lower than those of type 1. Type 2 had not been affected by the soil formation process but had undergone induration soon after the deposition of the tephra. Neither type 1 nor type 2 could be classified into any indurated horizons that are defined in the present soil classification system. For the improvement of soil productivity, type 1 should be harrowed thoroughly soon after its exposure to the surface, and type 2 should be harrowed or removed using farm machinery.  相似文献   

9.
The high Andes region of south Ecuador is characterised by intense land use changes. These changes affect particularly the páramo, which is a collection of high altitudinal grassland ecosystems. In this region, the interaction between airborne volcanic ashes and the cold and wet climate results in very typical soils, with an elevated organic C contents. The physical soil properties are closely related to the high and reliable base flow in rivers descending from the páramo, which makes them important for the socio-economic development of the region. In this study, we analyse the regional variability of the soils in the south Ecuadorian rio Paute basin. In a first part of the study, data from soil profiles along north–south transects are used to determine the soil properties, and to relate the spatial variability of these properties to the major trends in parent material, volcanic ash deposits and climate. The profiles are Histic Andosols and Dystric Histosols devoid of allophane, with very high amounts of organic matter. Significant differences between the western and central mountain range are observed, as well as a general decrease in Andic properties from north to south, coinciding with the decrease in volcanic influence. Finally, the impact of human activities on the soil properties is assessed in a case study in the Machangara valley. Data from 5 profiles, located in an area with natural grass vegetation and a low degree of human impact are compared with 4 profiles in a heavily disturbed, intensively drained cultivated area. Despite the intensity of the land use, very few significant differences are found.  相似文献   

10.
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.  相似文献   

11.
Our knowledge of effects of land use changes and soil types on the storage and stability of different soil organic carbon (SOC) fractions in the tropics is limited. We analysed the effect of land use (natural forest, pasture, secondary forest) on SOC storage (depth 0–0.1 m) in density fractions of soils developed on marine Tertiary sediments and on volcanic ashes in the humid tropics of northwest Ecuador. The origin of organic carbon stored in free light (< 1.6 g cm?3) fractions, and in two light fractions (LF) occluded within aggregates of different stability, was determined by means of δ13C natural abundance. Light occluded organic matter was isolated in a first step after aggregate disruption by shaking aggregates with glass pearls (occluded I LF) and in a subsequent step by manual destruction of the most stable microaggregates that survived the first step (occluded II LF). SOC storage in LFs was greater in volcanic ash soils (7.6 ± 0.6 Mg C ha?1) than in sedimentary soils (4.3 ± 0.3 Mg C ha?1). The contribution of the LFs to SOC storage was greater in natural forest (19.2 ± 1.2%) and secondary forest (16.6 ± 1.0%) than in pasture soils (12.8 ± 1.0%), independent of soil parent material. The amount of SOC stored in the occluded I LF material increased with increasing silt + clay content (sedimentary soils, r = 0.73; volcanic ash soils, r = 0.58) and aggregation (sedimentary soils, r = 0.52; volcanic ash soils, r = 0.45). SOC associated with occluded I LF, had the smallest proportion of new, pasture‐derived carbon, indicating the stabilizing effect of aggregation. Fast turnover of the occluded II LF material, which was separated from highly stable microaggregates, strongly suggested that this fraction is important in the initial process of aggregate formation. No pasture‐derived carbon could be detected in any density fractions of volcanic ash soils under secondary forest, indicating fast turnover of these fractions in tropical volcanic ash soils.  相似文献   

12.
3-(3′,4′-Dihydroxyphenyl)-L-alanine (L-DOPA), which is a component of velvetbean (Mucuna pruriens), displays a high inhibitory activity to plant growth. The inhibitory activity is influenced by the presence of soils, because L-DOPA is eliminated in soils. In the present study, the effect of several soil types (volcanic ash, calcareous, and alluvial soils) on the L-DOPA disappearance was investigated at constant equilibrium pH values. In the presence of soils, L-DOPA disappeared with the reaction time, and the disappearance was associated with three reactions: adsorption reaction (characterized by fast and sudden disappearance of L-DOPA within the initial 8 h period), catalytic transformation reaction (constant L-DOPA disappearance throughout the reaction period), and biotransformation caused by microbial activity (accelerated L-DOPA disappearance observed after 72 h of reaction time). The adsorption and transformation reactions consisted of physicochemical reactions mediated by the presence of soils. The amount of L-DOPA adsorbed was largest in the presence of volcanic ash soil among the three soil types. It is likely that the mechanism of L-DOPA adsorption includes a ligand exchange reaction. In the presence of soils, L-DOPA transformation was observed at equilibrium pH values higher than 4 and it increased with increasing equilibrium pH values. In the absence of soil, however, L-DOPA transformation did not occur at an equilibrium pH value lower than 6.0, indicating that L-DOPA transformation was accelerated by the presence of soil. The rate of L-DOPA transformation mediated by soils at constant equilibrium pH value was in the following order: alluvial soil > calcareous soil > volcanic ash soil. The plant-growth-inhibitory activity of L-DOPA was also reduced by the presence of soils, and the reduction in the case of L-DOPA was more obvious than in the case of 2,4-dichlorophenoxyacetic acid (2,4-D). Based on the reduction effect of soils on the plant-growth-inhibitory activity of L-DOPA (without pH-adjustment), calcareous soil ranked first, followed by volcanic ash soil, then alluvial soil. This was because the calcareous soil showed the highest soil pH value (7.8), and thereby the L-DOPA transformation reaction was accelerated. In soils with high pH values, the plant-growth-inhibitory activity of L-DOPA could therefore not be detected.  相似文献   

13.
It is essential to analyze chemical properties including the amount of various materials and the soil colloid characteristics in forest soils to forecast wood production and the distribution of and variations in the environmental functions of forest soils, such as conservation of stream water and carbon sequestration. Approximately 70% of the forest soils in Japan consists of Brown Forest Soils (BFS), which are considered to be typical zonal soils under the humid-temperate and warm-temperate regime of Japan. BFS were subclassifled into several groups according to the soil moisture environment along the slope and morphological properties. However, even the same type of soil may display different properties depending on the climatic conditions, parent materials and vegetation types. In the present study, the variations in the carbon content, nitrogen content, cation exchange capacity and some properties depending on the parent materials, were clarified by using 34 sola of BFS, and 3 sola of black soils (BLS) for comparison, which were distributed in the submontane zone of the Kanto and Chubu districts in central Japan under the same climatic conditions. We observed differences in the pH, cation exchange capacity, base saturation and clay content among BFS samples derived from various parent materials. The BFS derived from volcanic ash contained obviously larger amounts of carbon and nitrogen than the BFS derived from other parent materials. However, the BFS derived from volcanic ash differed from the BLS derived from volcanic ash in the vertical distribution pattern of carbon and nitrogen. Thus, even in the submontane zone of the Kanto and Chubu districts, the chemical properties of BFS varied considerably with the parent materials. It was concluded that the classification of BFS by the parent materials was useful for evaluating the ability of the BFS, that cover 70% of the forests in Japan, to store various materials.  相似文献   

14.
In this paper, the results of observations of soil profiles and the investigations of movements of free oxides in two soil types of dry paddy fields Which carry barley or wheat in the period of winter crops are set forth. Their parent materials are charty somewhat accompanied with shales and granite, and in Soil A and B a small quantity of volcanic ash is contained. The structure develops Well in all the soils.  相似文献   

15.
Abstract

The objective of the present study was to clarify the influence of volcanic ash addition on soil carbon stocks and the carbon accumulation process in brown forest soils (BFS) in Japan. The degree of volcanic ash addition to the soil was estimated according to the acid ammonium oxalate extractable aluminum (Alox) and lithic fragment contents, and their vertical distribution patterns. The BFS was classified in order of increasing volcanic ash influence on the soil into the following types: high Alox content with no gravel (H-Alox-NGv), high Alox with a high gravel content (H-Alox-Gv), moderate Alox (M-Alox), and low Alox (L-Alox), and then analyzed for carbon content, carbon amount, carbon stock, Alox amount and pyrophosphate extractable aluminum (Alpy) amount. The correlation between the carbon and Alpy amounts and the relationship between the Alpy and Alox amounts in the BFS samples indicated that the amount of carbon is determined by Al—humus complex formation, which is defined by the active Al generated from additional volcanic ash in BFS soil samples of BFS. Therefore, soils with thicker horizons and greater amounts of Alox had higher carbon levels in deeper horizons. For this reason, soil carbon stocks at depths of 0–30 cm and 0–100 cm, and in the effective soil depth of BFS, were larger and followed the order H-Alox-NGv = H-Alox-Gv > M-Alox > L-Alox. Furthermore, successive accumulations of volcanic ash on the soil surface promoted soil carbon accumulation as a result of the development of the surface horizon in H-Alox-NGv BFS. Our results suggest that volcanic ash additions control the soil carbon accumulation of forest soil in Japan.  相似文献   

16.
Accurate quantification of soil gas diffusion is essential to understand the gas transport mechanism in soils, especially for soil greenhouse gas emissions. To date, the performance of soil gas diffusivity (Dp/D0, where Dp is the soil gas diffusion coefficient and D0 is the diffusion coefficient in free air) models has seldom been evaluated for no-tilled and tilled volcanic ash soils. In the present study, six commonly used models were evaluated for volcanic ash soils under two treatments by comparing the predicted and measured soil gas diffusivities at water potentials of pF 1.3–3. The Buckingham-Burdine-Campbell (BBC), soil-water-characteristic-dependent (SWC-dependent), and two-region extended Archie’s Law (2EAL) models showed better performance for both no-tilled and tilled volcanic ash soils, which is likely because porosity and pore size parameters of bimodal soils were taken into consideration in these models. Since the BBC model showed better accuracy than the SWC-dependent and 2EAL models and required fewer, more easily measurable parameters, this study recommends the BBC model for predicting soil gas diffusivity of volcanic ash soil under different tillage managements. In future studies, the BBC model should be further tested at water potentials of pF > 3, and may be improved by including the parameters of pore continuity and saturation.  相似文献   

17.
The influence of mean annual rainfall and soil texture on the 137Cs vertical distribution in soils from southern Chile The influence of mean annual rainfall and soil texture on the vertical distribution of 137Cs from global fallout was studied in undisturbed volcanic ash soils from southern Chile. The areal concentration and translocation depth increase with the mean annual precipitation. In spite of the high rainfall at the sampled area (970 - 2500 mm a?1), the highest 137Cs contamination was found in the upper 10 cm layer. The vertical migration is reduced by the high adsorption capacity of these volcanic ash soils, but on the other side increased in soils with high large-pore volumen. The translocation depth reaches only up to 26 cm in the clay soils, 35 cm in the silty soils and 70 cm in the sandy soil.  相似文献   

18.
Abstract

Surface soils from ten soil series representing five great groups were collected from Alaska. These soils were selected from the important agricultural areas covering a wide geographic distribution. These soils can be divided into two distinct groups based on their parent material: loess and volcanic ash. Phosphorus sorption maxima were calculated based on the Langmuir isotherms. The volcanic ash soils (Cryandept and Cryorthods) showed an average P‐sorption maxima of 10,122 mg/kg and loess soils averaged 3,934 mg/kg. Both groups have similar portions of phosphorus in the organic form (19%) and occluded form (8 to 9%). The nonoccluded‐P in the volcanic ash soils and the loess soils was 68% and 43% respectively, and the Calcium‐P was 4% and 29% respectively.

Regression analysis indicated that aluminum and iron are primarily responsible for P‐sorption. The dithionite extractable Al is responsible for P‐sorption in volcanic ash soils, while oxalate extractable Al is responsible for P‐sorption in loess soils. Dithionite and oxalate extractable Fe probably play a secondary role in P‐sorption. The sorption isotherm, regression analysis and the P‐fractionation data provide the agronomist with useful information to estimate P requirement of newly cleared soils.  相似文献   

19.
For the past ten years much work has been carried out on clay minerals of volcanic ash soils. Most investigators have reported that allophane is dominant among clay minerals of volcanic ash soils and crystallizes to halloysite or meta-halloysite with the advance of weathering (1–8). On the other hand, UCHIYAMA, MASUI and ONIKURA (1960) found that montmorillonite predominates in the clay fraction of volcanic ash soil in Kawatabi (9). Furthermore, MASUI, SHOJI and UCHIYAMA (1966) showed that the major crystalline clay minerals of volcanic ash soils in the Tohoku district are montmorillonite, vermiculite, intergradient montmorillonite-vermiculite and chlorite (10). They also showed that these minerals increase with the advance of weathering and that kaolin minerals are minor constituents.  相似文献   

20.
In the previous paper (1), liming an acid humus volcanic ash soil resulted in the formation of humic acids combined with calcium, but had no significant effect on acid brown forest soils containing humic acids of a lower degree of humification. Subsequently, the authors examined the humus composition of the soils treated with calcium acetate, and conducted some experiments on the combination reaction between humic acid and calcium ions. The results obtained are presented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号