首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ERS卫星反演数据在黄土高原近地表土壤水分中的应用研究   总被引:2,自引:0,他引:2  
焦俏  王飞  李锐  张文帅 《土壤学报》2014,51(6):1388-1397
将黄土高原地区1992—2000年欧洲遥感卫星(European Remote Sensing Satellites,ERS)风散射计获取的土壤水分指数(Soil Water Index,SWI)与农田实测土壤水分数据进行对比,并分析降雨、植被、土地利用和人工灌溉对反演数据的影响;探讨其在近地表土壤水分时空变化中的应用情况。结果表明,遥感反演的土壤水分数据SWI较好地反映了黄土高原地区土壤水分的时空变化规律,总体上表现出南多北少、东高西低的空间特点和夏秋偏高、春季较低的季节变化趋势;其次,根据SWI转换得到的土壤体积含水量数据Wswi与0~10 cm农田实测土壤水分呈极显著相关,表明该ERS反演土壤水分数据接近表层土壤水分实际情况,可用于估测研究区表层土壤水分含量;在农业集中的平原地区,Wswi与农田表层实测土壤水分相关性较高;而在农业、林业、牧业用地复合交叉地区其相关性较差。研究结果还发现,在相对干旱季节农田实测水分普遍较卫星反演结果高,主要是由于灌溉增加了农田水分含量。这说明在应用卫星遥感数据估算土壤水分时,除了考虑气候、地貌、土壤、植被等自然因素,同时也应充分考虑人为因素的影响。  相似文献   

2.
利用多时相Sentinel-1 SAR数据反演农田地表土壤水分   总被引:12,自引:5,他引:7  
土壤水分是陆面生态系统水分和能量循环的重要变量,在农田干旱监测、作物长势监测和作物估产等应用研究中具有重要的作用。该文结合基于变化检测的Alpha近似模型,利用Sentinel-1卫星获取的多时相C波段合成孔径雷达(synthetic aperture radar,SAR)数据,实现了农田地表土壤水分的反演。该文首先利用微波辐射传输模型验证了Alpha近似模型在土壤水分反演中的合理性。研究发现,对于土壤散射占主导的区域,Alpha近似模型对辐射传输模型有较好的近似,能够有效地消除地表粗糙度和植被对雷达后向散射系数的影响。在此基础上,结合怀来研究区多时相Sentinel-1 SAR数据,利用Alpha近似模型构建了土壤水分观测方程组,通过求解方程组得到了农田地表土壤水分。地面验证结果表明,土壤水分反演的均方根误差(root mean square error,RMSE)为0.06 cm3/cm3,平均偏差为0.01 cm3/cm3,精度较好。该文研究为利用高重访周期、多时相的Sentinel-1 SAR数据获取农田地表土壤水分提供了参考。  相似文献   

3.
双极化雷达反演裸露地表土壤水分   总被引:3,自引:2,他引:1  
陈晶  贾毅  余凡 《农业工程学报》2013,29(10):109-115
为了快速高效地获取大面积地表土壤水分,本文提出一种适用于双极化SAR(synthetic aperture rader)的裸露地表土壤水分反演经验模型。首先通过AIEM(advanced integral equation model)模型数值模拟和回归分析,提出一种新的粗糙度参数,将2个传统的粗糙度参数简化为1个参数;然后模拟地表土壤水分与雷达后向散射系数的关系,从而建立裸露地表的经验散射模型,模型的未知参数仅为粗糙度参数和土壤体积含水量,通过双极化的雷达数据即可实现土壤水分的反演。通过2008年甘肃张掖黑河流域实测数据对模型进行了初步验证,发现在入射角大于25°时,模型反演值与实测值有着良好的相关关系(相关系数为0.745)。该模型仅需双极化的雷达数据就能实现土壤水分的反演,无需测量地面粗糙度,尤其适用于大面积干旱区域的地表土壤水分的获取。  相似文献   

4.
那曲东部土壤水分MODIS遥感反演研究   总被引:3,自引:0,他引:3  
陈涛  卓嘎  拉巴 《土壤通报》2017,(2):298-303
利用那曲东部2014年8月至2015年7月土壤水分观测资料与同期MODIS数据建立了研究区土壤水分遥感监测模型。表观热惯量法(ATI)反演土壤水分结果不理想,基于MODIS 8天合成数据以及晴空数据拟合结果的决定系数分别为0.4503和0.3753,晴空条件下ATI方法监测效果较差。基于单窗方法建立的四种模型中,三次多项式模型拟合效果较好,决定系数为0.5475,分析认为排除冬季数据后建模效果更好。结论:基于单窗方法的三次多项式模型能较好的反演研究区土壤水分,不足之处为对天气要求较高,若无晴空遥感数据,将影响土壤水分监测工作的开展。  相似文献   

5.
蔡庆空  李二俊  陶亮亮  潘洁晨  陈超  王果 《土壤》2020,52(4):846-852
本文提出一种改进作物散射模型反演麦田土壤水分,该模型根据冬小麦等低矮植被的散射特性,在原模型的基础上保留植被层直接散射部分以及植被与地表相互耦合作用的信息,同时加入裸土地表的直接散射部分,并根据经验权重将两部分信息分离开,构建出适用于冬小麦等低矮植被的后向散射模型,并结合RADARSAT-2雷达数据以及陕西杨凌农田试验区的地面实测数据,计算得到改进模型的经验参数,进而对模型进行验证分析。研究结果表明:改进作物散射模型的模拟精度相对于未改进的作物散射模型有显著的提高,R2在HH和VV极化下都达到80%以上。为了验证改进的作物散射模型算法及土壤水分反演的有效性,本研究将改进作物散射模型与TVDI光学指数模型、简化的MIMICS模型的土壤水分反演结果进行对比分析,改进的作物散射模型反演精度比TVDI和简化的MIMICS模型要好,R2达到84.3%,均方根误差为0.028 cm3/cm3,简化的MIMICS模型反演结果比TVDI要好,但是精度不高,R2为66.9%,均方根误差为0.043 cm3<...  相似文献   

6.
土壤水分是影响水文、生态和气候等环境过程的重要参数,而微波遥感是农田地表土壤水分测量的重要手段之一。针对微波遥感反演农田地表土壤水分受植被覆盖影响较大的问题,该文基于Sentinel-1和Sentinel-2多源遥感数据,利用Oh模型、支持向量回归(support vector regression,SVR)和广义神经网络(generalized regression neural Network,GRNN)模型对土壤水分进行定量反演,以减小植被影响,提高反演精度。结果表明:通过水云模型去除植被影响后的Oh模型反演精度有所提高。加入不同植被指数的SVR和GRNN模型的反演效果总体优于Oh模型,基于SVR模型的多特征参数组合(双极化雷达后向散射系数、海拔高度、局部入射角、修改型土壤调整植被指数)反演效果最优,其测试集相关系数和均方根误差分别达到了0.903和0.015 cm~3/cm~3,为利用多源遥感数据反演农田地表土壤水分提供了参考。  相似文献   

7.
土壤水分反演的特征变量选择研究综述   总被引:4,自引:1,他引:3  
土壤水分是水、能量和生物地球化学循环中不可忽略的组成部分,土壤水分信息对水资源管理、农业生产以及气候变化等相关研究有着重要意义。基于遥感数据的土壤水分反演算法是获取土壤水分信息的重要手段,通过对影响土壤水分反演的因素进行梳理,将影响因素抽象为包括土壤特征,植被特征,以及气象特征在内的特征变量,并以此为主线对土壤水分的反演研究进行回顾与梳理。分析了利用不同特征变量反演土壤水分时存在的问题和发展趋势,指出土壤水分反演过程中存在特征变量理论研究不足、综合应用不深的问题,强调耦合使用各类特征变量以提高水分反演精度是未来的研究热点。  相似文献   

8.
杨苑璋 《土壤》2000,32(6):336-336
土壤负压计是以测定土壤基质势为理论依据的一种测水仪器,土壤基质势的大小决定着土壤水分运动的能量与状态,因此土壤负压计也叫土壤湿度计.  相似文献   

9.
不同利用方式下土壤水分循环规律的比较研究   总被引:8,自引:1,他引:8  
根据1992-1994年的定位观测资料,对晋西北黄土后陵沟壑区砂壤土在3种利用情况下的土壤有效水分变化规律、土壤水分循环的特点,类型及其补偿,消耗规律等进行了研究。  相似文献   

10.
土壤水分是地表水文过程研究的一个重要参数,是众多环境因子综合作用的结果,科学判定土壤水分对环境因子的响应特性,对在蒙古高原地区开展干旱监测预警,调整农业生产结构,改善区域生态环境具有重要意义。本研究基于AMSR-2观测亮温、SPOT-NDVI数据,利用微波辐射传输模型及粗糙地表发射率Qp模型,构建适合蒙古高原的土壤水分反演方程,同时将模型应用于2013年蒙古高原植被生长期土壤水分反演。在此基础上,结合TRMM 3B43降雨量及气象站点气温数据,探讨了蒙古高原土壤水分对气象因子及植被的响应特性。结果表明:1)构建的蒙古高原表层土壤水分反演模型精度较高,土壤水分反演值与实测值的判定系数为0.680 6,均方根误差(RMSE)达0.031 6 cm3·cm-3,反演结果明显优于JAXA提供的AMSR-2土壤水分产品数据(RMSE=0.044 1 cm3·cm-3)。2)TRMM 3B43降雨数据与实测降雨量线性拟合,其判定系数为0.859 8,直线拟合斜率K=0.941 5,在数值上较站点实测值略微偏低,表明TRMM 3B43数据精度较高,在蒙古高原具有很好的适用性。3)蒙古高原植被生长期土壤水分、植被指数及降水量在空间格局上均表现出由北向南、由东北向西南逐渐减少的趋势。干旱区,土壤水分对气温变化最敏感,二者表现出显著正相关关系,其次为降水和植被;半干旱区,植被是影响土壤水分的关键因子,而气温与降水对土壤水分影响呈现出季节性变化;半湿润区3个因子对土壤水分的影响程度表现为植被降水气温。总之,利用土壤水分对气象因子和植被的响应特性,可以采取适当措施降低蒙古高原灾害发生风险,为区域生态环境建设提供科学依据。  相似文献   

11.
毛乌素沙地土壤水分的遥感监测   总被引:7,自引:3,他引:4  
利用毛乌素沙地腹地——乌审旗1982-1993年间的AVHRR遥感数据、常规气象数据和土壤水分观测资料,建立基于条件温度植被指数的0~50 cm土壤水分遥感估算模型,并计算出0~50 cm土体各层土壤水分。结果表明:乌审旗多年平均土壤水分的变化量约为-3.47mm,逐年土壤水分变化量Δw在-118~82 mm之间。乌审旗土壤水分的年际变化不大,基本在±50 mm之间变动。除1986、1987、1991以及1993年外,其余年份乌审旗土壤水分变化量Δw都为正。乌审旗土壤水分的年内波动也不大,基本在±10 mm之间。通过误差分析可知,遥感反演土壤水分的平均绝对百分比误差为14.77%,均方差为77.54 mm。基于条件温度植被指数的土壤水分遥感估算模型是可行的。  相似文献   

12.
基于双时相ASAR影像的土壤湿度反演研究   总被引:2,自引:1,他引:1  
地表粗糙度和湿度是影响裸地后向散射系数的重要因素,为了探求ENVISAT-ASAR 数据监测土壤湿度在国内的应用,该文以ASAR影像数据为基础,利用ZSribi-Dechambre(2002)经验模型研究了中国科学院南皮农业生态试验站附近一裸地的表面粗糙度和地表湿度.对雷达入射角进行归一化处理使之满足模型需求,反演结果表明该区地表粗糙度主要分布0.05~0.50 cm之间,土壤体积含水率大多分布存10%~34%之间,局部区域由于一些积水沟渠,使得土壤体积含水率较高,这与调查的实际情况相符合.反演的土壤湿度用地面实测值验证,结果发现模拟值和实测值具有较好的一致性,其RMSE误差为3.7%.该文介绍了在没有地表先验知识的情况下,利用扣除掉土壤粗糙度影响的后向散射反演模型获取土壤湿度的方法.该法仅需要两景相邻近时相并且不同入射角的HH同极化雷达影像,根据其后向散射系数的差值△"'即σ°可估算出粗糙度和土壤湿度参数,从而方便快捷地监测局部区域的土壤湿度状况.  相似文献   

13.
含水量对黑土光谱特征影响的定量分析   总被引:4,自引:0,他引:4  
Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitative relationship between soil reflectance and its moisture, especially in the case of black soils in northeast China. A new moisture adjusting method was developed to obtain soil reflectance with a smaller moisture interval to describe the quantitative relationship between soil reflectance and moisture. For the soil samples with moisture contents ranging from air-dry to saturated, the changes in soil reflectance with soil moisture can be depicted using a cubic equation. Both moisture threshold (MT) and moisture inflexion (MI) of soil reflectance can also be determined by the equation. When the moisture range was smaller than MT, soil reflectance can be simulated with a linear model. However, for samples with different soil organic matter (OM), the parameters of the linear model varied regularly with the OM content. Based on their relationship, the soil moisture can be estimated from soil reflectance in the black soil region.  相似文献   

14.
基于试验反射光谱数据的土壤含水率遥感反演   总被引:1,自引:2,他引:1  
杨曦光  于颖 《农业工程学报》2017,33(22):195-199
土壤含水率是土壤水循环研究中不可或缺的参数,已广泛应用于土壤水分的监测。土壤光谱特性的研究是土壤含水率光学遥感定量反演的基础。该研究首先通过野外调查收集土样;然后,在实验室条件下制备不同水分梯度的土壤样品,并利用便携式地物光谱仪采集不同水分梯度土壤样品的反射光谱;最后,通过试验光谱数据分析建立一个基于指数函数的土壤含水率遥感反演模型,并对结果进行精度评价。结果表明,基于指数函数的土壤含水率反演模型可以较好的反演土壤水分特征,在640 nm处土壤含水率的估计值与真实值之间的决定系数为0.7062,RMSE为3.49%。相关研究为表层土壤含水量的遥感监测提供新方法和新思路。  相似文献   

15.
盐渍化土壤水分微波雷达反演与验证   总被引:2,自引:1,他引:1  
土壤介电常数是微波遥感进行土壤含水率测量的物理基础,尤其介电常数实部是必须解决的问题,土壤介电特性的研究显得尤为重要。该文目的是试验与评价C波段RADARSAT-2 SAR(synthetic aperture radar)数据模拟土壤介电特性,进而反演土壤水分的性能。以受盐渍化影响较严重的内蒙古河套灌区解放闸灌域为试验区,首先回归分析了介电常数实部与SAR四极化后向散射系数、地表粗糙度的复杂关系,并与Oh经验模型对照,其决定系数R2为0.859 7,模拟精度较高;然后验证常用的2个介电常数模型,Dobson半经验模型、Hallikainen简化实部经验模型模拟的介电常数实部与实测值的决定系数R~2分别为0.935 9、0.869,表明2个模型均能模拟地表土壤水分与介电常数实部的密切关系;最后构建了Dobson模型、Hallikainen简化实部模型反演土壤含水率的模型,并与统计回归模型比照,其模拟数值与土壤实测值的决定系数R2分别为0.803 8、0.737 4、0.842 1,均方根误差RMSE分别为5.2%、5.7%、5%。Dobson模型与统计回归模型反演结果与实地土壤墒情分布较为吻合,具有良好的精度和适用性,从而建立了一个较为完整的土壤介电特性研究体系,为微波遥感监测土壤水分奠定了基础。  相似文献   

16.
黄对  王文 《农业工程学报》2014,30(19):182-190
为研究基于粗糙度定标的模型进行土壤含水率反演的可行性,该文利用2幅不同时相的高级合成孔径雷达ASAR影像,以经验相关长度(lopt)代替相关长度l,实现对积分方程模型IEM(integral equation model)的粗糙度定标,以改进IEM模型对后向散射系数的模拟。在此基础上模拟了后向散射系数与土壤体积含水率(Mv)、lopt、均方根高度(hRMS)的关系,以组合粗糙度Zs(hRMS2/lopt)代替lopt与hRMS,建立土壤含水率反演的经验与半经验方法。对比2个不同时相的土壤含水率反演值与实测站点观测数据表明,经验方法下应用2004年8月18日、2004年8月24日2个时相的反演值与实测值的相关系数分别为0.785、0.837,半经验方法下则分别为0.900、0.863,表明半经验方法精度更好。该研究为利用两幅不同时相的ASAR影像获取两幅土壤含水率数据提供依据。  相似文献   

17.
区域蒸散和表层土壤含水量遥感模拟及影响因子   总被引:6,自引:2,他引:4  
以甘肃省武威市为研究区域,应用灌溉前后两景Landsat TM-5卫星遥感数据,采用SEBAL模型进行了区域蒸散估算,综合应用归一化植被指数(NDVI)和地表温度(Ts),计算了该区域的条件植被温度指数(VTCI),并估算了表层土壤含水量(0~20 cm)。在获得区域净辐射通量、地表温度以及植被覆盖度空间分布的基础上,进一步对灌溉前后两景影像中日蒸散和表层土壤含水量的影响因素进行了分析。结果表明,区域蒸散和表层土壤含水量的遥感估算与地面同步观测值比较,能较好地反映研究区域的蒸散和地表含水量的空间变异特征。当土壤较干时,区域蒸散的空间分布变异较大,而表层土壤含水量的空间变异较小。在灌溉前后两景影像中,日蒸散与净辐射通量、地表温度和覆盖度之间都有极显著的相关性,决定系数均在0.90以上,而日蒸散量与表层土壤含水量的相关性以灌溉后较高。此外,表层土壤含水量与地表温度、覆盖度都呈显著的相关性,但比较而言,地表温度指数关系的离散性较小,相关系数也大。但地表温度、覆盖度与表层土壤含水量的相关性都依赖于土壤干湿程度,通常土壤越湿,相关性也越高。  相似文献   

18.
在利用被动微波遥感技术进行裸露地表土壤含水率(Soil Moisture Content,SMC)的反演中,土壤粗糙度是制约反演精度的最关键因素。该研究利用改进的积分方程模型(Advanced Integral Equation Model,AIEM)进行地表多角度微波发射率的模拟,探索地表微波辐射多角度信息用于提高地表SMC反演精度的可行性。基于不同SMC和不同粗糙度地表多角度V极化发射率数据的变化趋势提取土壤介质布儒斯特角,结果表明,土壤布儒斯特角对SMC具有较高的敏感性,C波段(6.6 GHz)不同含水率土壤的布儒斯特角分布在60°~80°范围内。基于AIEM模拟数据的分析发现,土壤布儒斯特角正切值与SMC具有较好的线性关系,线性拟合决定系数为0.94,均方根误差为0.027 cm3/cm3,并得到了基于布儒斯特角的裸露地表SMC反演算法。基于模拟数据的算法验证结果表明,算法的SMC预测值与理论值的决定系数为0.95,均方根误差为0.024 cm3/cm3。算法在不同土壤粗糙度自相关函数下均表现出稳健的特性,SMC预测精度最大均方根误差为0.027 cm3/cm3,最小为0.023 cm3/cm3。基于布儒斯特角的SMC反演算法利用的是多角度土壤发射率的相对变化而非其绝对数值,该研究为SMC的多角度被动微波遥感提供了一种不同的研究思路。  相似文献   

19.
传统上依赖改进型垂直干旱指数(modified perpendicular dryness index,MPDI)进行土壤水分反演时每个时期的影像反演都需要依赖于地面实测数据进行校准。为降低土壤含水率反演对实测数据的依赖,该研究利用2020—2021年间的哨兵2号卫星数据,分析了近红外与红光波段特征空间中土壤线斜率的变化及其影响因素。并推导了土壤线斜率变化对土壤含水率反演的影响,揭示了MPDI反演土壤含水率时每期都依赖实测数据校准的根本原因,最终提出了一种土壤线一致性修正方法。基于这种修正,该研究构建了一个能够多时相比较的再修正干旱指数(re-modified perpendicular drought index,RPDI)。结果表明,经过统一率定的RPDI与土壤含水率的回归方程在不同时相的影像上均适用,反演结果显示了良好的精度,率定集决定系数R2为0.49,无偏均方根误差为2.88%,验证集决定系数R2为0.54,无偏均方根误差为3.05%,与MPDI每期单独构建回归方程反演相比,RPDI基于统一方程反演与其保持了相近的精度水平,极大减少了在遥感土壤含水率估算中对地面实测数据的依赖,有效提升了遥感技术在土壤水分监测中的应用价值。研究可为光学遥感数据在大范围连续土壤水分反演领域的应用研究提供参考。  相似文献   

20.
去除水分影响提高土壤有机质含量高光谱估测精度   总被引:9,自引:5,他引:4  
土壤水分的影响是当前采用光谱分析法预测土壤养分含量的关键问题,该文旨在探索去除土壤水分影响、提高有机质高光谱定量估测精度的方法。首先采用地物光谱仪进行湿土和过筛干土的高光谱测试,并进行一阶导数变换;然后,采用奇异值分解(singular value decomposition,SVD)结合相关分析筛选土壤水分特征光谱,构建去除水分因素的修正系数,形成湿土光谱的校正光谱;最后基于校正前后湿土光谱,应用偏最小二乘(partial least squares,PLS)回归构建土壤有机质含量的估测模型,并对模型进行验证和比较,分析评价校正前后光谱的预测精度。结果显示:按土壤水分含量梯度划分的2组和全部棕壤及褐土土样共4组样本校正后建模决定系数和均方根误差分别为0.85、0.82、0.74、0.76和0.19%、0.20%、0.23%、0.19%,决定系数提高了0.02~0.09,均方根误差降低了0.01~0.03百分点,验证决定系数、均方根误差和相对分析误差分别为0.78、0.77、0.72、0.76,0.21%、0.15%、0.21%、0.15%和2.03、2.02、1.86、1.98,决定系数提高了0.06~0.15,均方根误差除褐土土样提高0.02百分点外,其他样本组降低了0.01~0.08百分点,相对分析误差提高了0.17~0.43,模型决定系数和相对分析误差得到显著提升;尤其对于土壤水分含量变异系数较小的3组土样,模型从待改进级别提高到性能良好级别,对土壤有机质含量具有较好的预测准确性。说明该方法用于去除土壤水分因素影响和提高有机质含量高光谱估测精度的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号