首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for the determination of polycyclic aromatic hydrocarbons (PAHs) with 3-7 rings in (I) meat, poultry, fish, and yeast; and (II) oils and fats. The extraction of PAHs from group I is incomplete, and, therefore, group I samples must be dissolved homogeneously by saponification in 2N methanolic potassium hydroxide. The PAHs are concentrated by liquid-liquid extraction (methanol-water-cyclohexane, N,N - dimethylformamide - water-cyclohexane) and by column chromatography on Sephadex LH 20. The PAHs are separated by high-performance gas-liquid chromatography (GLC) with columns containing 5% OV-101 on Gas-Chrom Q and estimated by integration of the flame ionization detector signals in relation to an internal standard (3,6-dimethylphenanthrene and/or benzo(b)chrysene). The sensitivity is significantly higher than that obtained with ultraviolet spectroscopic methods. The reproducibility and margin of error were tested with meat samples fortified with 11 PAHs and with samples of sunflower oil. The method was further applied to meat, smoked fish, yeast, and unrefined sunflower oil. All samples investigated contained more than 100 PAHs (characterized by mass spectrometry) of which only the main components were determined: phenanthrene, anthracene, fluorene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene + benzo (j)fluoranthene + benzo(k) fluoranthene, benzo(e)pyrene, benzo(a)pyrene, perylene, dibenz(a,j)anthracene, dibenz(a,h)anthracene + indeno(1,2,3,-cd)pyrene, benzo(ghi)perylene, anthanthrene, and coronene. In contrast to other methods, the GLC profile analysis allows the recording of known and unknown PAH peaks simultaneously and also allows a compilation of all PAHs.  相似文献   

2.
Samples of Spanish virgin olive oils (VOOs) from different categories, origins, varieties, and commercial brands were analyzed by HPLC with a programmable fluorescence detector to determine the content of nine heavy polycyclic aromatic hydrocarbons (PAHs): benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perilene, and indeno(1,2,3-c,d)pyrene. Samples of olive pomace and crude olive pomace oils were also investigated. Benzo(a)pyrene concentrations were below the allowed limit in the European Union (2 microg/kg) in 97% of the VOO samples. Only those samples coming from contaminated olive fruits or obtained in oil mills with highly polluted environments exceeded this value. High correlation coefficients (<0.99) were obtained between the contents of benzo(a)pyrene and the sum of the nine PAHs for all of the analyzed categories, suggesting that benzo(a)pyrene could be used as a marker of the content of these nine PAHs in olive oils.  相似文献   

3.
A simple, rapid, easily automated method is described for the determination of polycyclic aromatic hydrocarbons (PAHs) in shellfish such as American lobster (Homarus americanus) and blue mussel (Mytilus edulis). PAHs are extracted from small amounts (1-8 g) of tissue by saponification in 1N ethanolic potassium hydroxide followed by partitioning into 2,2,4-trimethylpentane. This solution is evaporated just to dryness by rotary evaporation and the residue is dissolved in cyclohexane-dichloromethane (1 + 1) for gel permeation chromatography (GPC) on Bio-Beads SX-3. The GPC procedure is ideal as a screening method in the range 25-18 000 ng PAHs/g tissue. If individual PAH measurements are required, the appropriate GPC fraction is collected and PAHs are separated by reverse phase liquid chromatography (LC) with fluorometric detection. Individual PAHs at concentrations as low as 0.25-10 ng/g can be determined. Recoveries of added fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[e]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene were quantitative, with relative standard deviations ranging from 0.0 to 16.9%.  相似文献   

4.
An integrated study of the qualitative and quantitative composition of polycyclic aromatic hydrocarbons (PAHs) in the atmospheric precipitation-soil-lysimetric water system was performed using high performance liquid chromatography. It was shown that the accumulation of low-molecular PAHs (phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, and chrysene) in soils is due to the transformation of organic matter and the regional transport and deposition of PAHs with atmospheric precipitation on the underlying surface. High-molecular polyarenes (benz[b]fluoranthene, benz[k]fluoranthene, benz[a]pyrene, dibenz[a,h]anthracene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene) mainly result from the decomposition of soil organic matter.  相似文献   

5.
The composition and accumulation patterns of priority polycyclic aromatic hydrocarbons (PAHs) in soils of Vasilievsky Island in Saint Petersburg were studied. Concentrations of benzo[a]pyrene were found to exceed maximum permissible concentrations in all the samples, and the maximum recorded concentration exceeded the MPC by 50 times. Concentrations of other PAHs also exceeded the background values. The main soil pollutants were found to be fluoranthene, pyrene, benzo[b]fluoranthene, benzo[a]pyrene, and benzo[g, h, i] perylene, the part of which in the total content of PAHs was 65–80%.  相似文献   

6.
The purpose of this study was to determine the degree of PAH contamination and the association of PAHs with metals in urban soil samples from Sevilla (Spain). Fifteen polycyclic aromatic hydrocarbons-PAHs (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, indeno[1,2,3-c,d]pyrene) and seven metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn) have been evaluated in representative urban soil samples. Forty-one top soils (0–10 cm) under different land use (garden, roadside, riverbank and agricultural allotment) were selected. PAHs from soil samples were extracted by sonication using dichloromethane. The simultaneous quantification of 15 different PAH compounds were carried out by HPLC using multiple wavelength shift in the fluorescence detector. For qualitative analysis a photo diode-array detector was used. Metal (pseudo-total) analysis was carried out by digestion of the soils with aqua regia in microwave oven. The mean concentration of each PAH in urban soils of Sevilla showed a wide range, they are not considered highly contaminated. The results of the sum of 15 PAHs in Sevilla soils are in the range 89.5–4004.2 μg kg?1, but there seems not to be a correlation between the concentration of PAHs and the land use. Of the 15 PAHs examined, phenanthrene, fluoranthene and pyrene were present at the highest concentrations, being the sum of these PAHs about 40% of the total content. Although metal content were not especially high in most soils, there are significant hints of moderate pollution in some particular spots. Such spots are mainly related with some gardens within the historic quarters of the city. The associations among metals and PAHs content in the soil samples was checked by principal components analysis (PCA). The largest values both for ‘urban’ metals (Pb, Cu and Zn) and for PAHs were mainly found in sites close to the historic quarters of the city in which a heavy traffic of motor vehicles is suffered from years.  相似文献   

7.
The research comprised of studying the effect composting sewage sludge with sawdust and vermicomposting with earthworm Eisenia fetida has on the degradation of 16 polycyclic aromatic hydrocarbons (PAHs). Raw rural sewage sludge prior composting was more contaminated with PAHs than urban sewage sludge, in both cases exceeding EU cutoff limits of 6 mg/kg established for land application. Dibenzo[a,h]anthracene (DBahAnt), acenaphtylene (Acy) and indeno[1,2,3-c,d]pyrene (IPyr) were predominant in rural sewage sludge, whilst the urban sewage sludge contained the highest concentrations of benzo[b]fluoranthene (BbFl), benzo[k]fluoranthene (BkFl) and indeno[1,2,3-c,d]pyrene (IPyr). Thirty days of composting with sawdust has caused a significant reduction of 16 PAHs on average from 26.07 to 4.01 mg/kg (84.6%). During vermicomposting, total PAH concentration decreased on average from 15.5 to 2.37 mg/kg (84.7%). Vermicomposting caused full degradation of hydrocarbons containing 2 and 6 rings and significant reduction of PAHs with 3 aromatic rings (94.4%) as well as with 5 aromatic rings (83.2%). The lowest rate of degradation (64.4%) was observed for hydrocarbons with 4 aromatic rings such as fluoranthene, benzo(a)anthracene, chrysene and pyrene. On the other hand, the highest level of degradation was determined for PAHs with 2 rings (100%), 3 rings (88%) and 6 aromatic rings in the molecule (86.9%) after composting with sawdust. Acenaphthene and pyrene were found to be the most resistant to biodegradation during both composting methods.  相似文献   

8.
PAHs生物降解程度受多种因素影响。通过筛选驯化PAHs降解菌,研究混合菌对土壤中菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的生物降解性能,并考察污染时间对土壤中PAHs降解效果的影响。结果表明,筛选的混合菌具有很强的PAHs降解能力,缩短了PAHs生物降解的半衰期,且PAHs起始降解速率较快,之后趋于平缓。27d内土壤中的菲、芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽、茚并(1,2,3-cd)芘的平均降解率分别为98.14%、89.97%、88.47%、63.55%、65.24%、60.49%,其中菲在5d之内的降解率高于93%。污染210d的土壤中各PAHs的起始降解速率高于污染50d的土壤,因此污染时间越长,PAHs生物降解的停滞期越短。  相似文献   

9.
湿热灭菌和氯化汞灭菌对双液相体系中PAHs降解的影响   总被引:1,自引:0,他引:1  
A two-liquid-phase(TLP) soil slurry system was employed to quantify the efficiencies of autoclaving and mercuric chloride sterilization in the dissipation of polycyclic aromatic hydrocarbons(PAHs).The fates of 11 PAHs(naphthalene,fluorene,phenanthrene,anthracene,fluoranthene,pyrene,benzo(a)anthracene,benzo(a)pyrene,benzo(b)fluoranthene,benzo(k)fluoranthene,dibenzo(a,h)anthracene) were recorded over 113 days of incubation.No microorganisms were detected in the HgCl 2-sterilized soil slurries during the whole incubation period,indicating very effective sterilization.However,about 2%-36% losses of PAHs were observed in the HgCl 2 sterilized slurry.In contrast to the HgCl 2-sterilized soil slurry,some microorganisms survived in the autoclaved soil slurries.Moreover,significant biodegradation of 6 PAHs(naphthalene,fluorene,phenanthrene,anthracene,fluoranthene and pyrene) was observed in the autoclaved soil slurries.This indicated that biodegradation results of PAHs in the soil slurries,calculated on basis of the autoclaved control,would be underestimated.It could be concluded that the sterilization efficiency and effectiveness of HgCl 2 on soil slurry was much higher than those of autoclaving at 121℃ for 45 min.  相似文献   

10.
采用现场采样及室内测试方法对广州某氮肥厂原料车间和油库区土壤中16种优控多环芳烃(PAHs)的含量进行调查研究,分析了EPAHs含量及其组成特征和垂直分布特征,并在此基础上进行了源解析。结果表明,分析样品中∑PAHs范围在10-7795μg·kg,原料车间土壤中的∑PAHs小于油库区土壤中的,菲、芘、荧蒽、并(b)荧蒽、苯并(a)芘为主要污染物;油库土壤0-40cm的样品中16种PAHs均有检出,∑PAHs和单体分布基本一致;原料车间土壤∑PAHs和单体浓度随着地面深度的增加而减少。通过对单组分比值(菲/蒽,荧蒽/芘)的分析可以看出油库区土壤中PAHs来源于石油和燃烧源,而原料车间污染源主要为燃烧源。  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) were determined by an HPLC method with fluorescence detection in bivalves (Mitylus galloprovincialis), cephalopods (Todarodes sagittatus), crustaceans (Aristeus antennatus), and fish (Mullus surmeletus, Scomber scombrus, Micromesistius poutassou, and Merluccius merluccius) caught in the Gulf of Naples (Tyrrhenian Sea, Italy). Anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, and benzo(k)fluoranthene were detected, at different concentrations, in all of the examined marine organisms, whereas benzo(a)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3-cd)pyrene were found only in Mediterranean mussels. Of mussels collected in winter 71.43% exceeded the maximum residual levels (MRL) fixed for the benzo(a)pyrene in European Regulation 208/2005/EC, whereas all samples collected in summer reported values lower than this limit. In comparison to the other marine organisms, the mussels showed the highest PAH concentrations (p < 0.01). Fish showed total PAH levels lower than those of cephalopods and, in particular, European hake showed the lowest values (6.06 ng/g of fresh weight).  相似文献   

12.
采集南京地区不同有机污染风险区农田表层土壤,用超快速液相色谱仪检测样品中15种EPA优控的多环芳烃(PAHs)含量。结果表明,被检农田土壤多环芳烃总量分布于306.0~1251.3μg kg~(-1)之间,均值682.0μg kg~(-1),四环以上高环多环芳烃占较大比例(80%)。根据欧洲土壤质量标准,所检土壤样本已达污染水平。不同风险污染区农田土壤PAHs的含量由高至低为:钢铁工业区、有机垃圾处理区、化工工业区及炼油工业区。钢铁工业区附近主要的污染物为荧蒽、芘、屈和苯并[a]蒽,分别占到污染物总量的16%、13%、10%和10%。采用荧蒽/(荧蒽+芘)与茚并[1,2,3-cd]芘/(茚并[1,2,3-cd]芘+苯并[g,h,i]苝)比值对各地污染物来源进行分析,结果发现调查区域的PAHs污染物以燃烧源为主,生物质燃料为主要污染物,部分地区同时有石油燃烧污染。  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs), mainly formed by incomplete anthropogenic organic matter combustion, are ubiquitous in the environment. To assess milk PAH contamination sources, milk samples were collected from the tank milk at farms located near potential contaminating emission sources such as cementworks, steelworks, and motorways. PAH analyses were carried out by gas chromatography coupled to mass spectrometry. Eight PAHs were identified in milk: naphthalene, acenaphthylene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, and benzo[a]anthracene. For all potential contaminating sources, these eight PAHs were detected with similar profiles and at low concentrations except for fluorene and naphthalene, for which source-molecule interaction is pointed out.  相似文献   

14.
Airborne concentrations of 8 polycyclic aromatic hydrocarbons (PAHs): fluoranthene, Flt, Pyrene, Pyr, benzo(a)anthracene, BaA, chrysene, Chr, benzo(b)fluoranthene + benzo(k)fluoranthene,B(b + k)F, benzo(a)pyrene, BaP and benzo(g,h,i)perylene, B(ghi)P,were measured in Jinámar, a small town on the island of Gran Canaria (Spain) during a 12 month period (January 1995–December 1995). Concentrations ranged between 0.613 ng m-3 for B(ghi)P and 0.040 and 0.046 ng m-3 for pyrene and chrysene. Except for BaA all PAHs occurred at lower concentrations at temperatures below 20 °C. Relative humidity seems to influence concentrations of pyrene, chrysene, benzo(b + k)fluoranthene and benzo(a)pyrene, also affecting the latter ina different way to the other three hydrocarbons cited.  相似文献   

15.
以常州市某农药厂搬迁土地为研究对象,在监测分析土壤中16种多环芳烃(PAHs)的基础上,对该区域土壤进行健康风险和生态风险评价。结果表明,研究区域土壤中∑PAHs的含量范围为0~1.546mg·kg-1,优势化合物中萘、菲等低环化合物含量大于高环的荧蒽、苯并[k]荧蒽和芘等化合物,且土壤中PAHs可能来源于石油源。健康风险评价结果在可接受的10-6~10-4范围内,而生态风险评价表明,尽管研究区域土壤中的多环芳烃不存在严重的生态风险,但是化合物苊和芴含量超出了风险评价低值(ER-L和ISQV-L),存在着对生物的潜在危害。  相似文献   

16.
Traditional exhaustive extraction methods often overestimate the risk of polycyclic aromatic hydrocarbon(PAH) bioaccessibility to biota. Therefore, reliable assessment methods need to be established. In this study, a composite extraction with hydroxypropyl-β-cyclodextrin(HPCD) and three low-molecular-weight organic acids, oxalic acid(OA), malic acid(MA), and citric acid(CA), was used to predict the PAH bioaccessibility to earthworms, subjecting to two soils(red soil and yellow soil) spiked with selected PAHs,phenanthrene, pyrene, chrysene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene. For both soils,concentrations of PAHs by composite extraction using HPCD-OA(R~2= 0.89–0.92, slope = 1.89–2.03; n = 35), HPCD-MA(R~2=0.92–0.96, slope = 1.43–1.67; n = 35), and HPCD-CA(R~2= 0.92–0.96, slope = 1.26–1.56; n = 35) were significantly correlated with PAH accumulation in the Eisenia fetida earthworms. Moreover, the HPCD-CA-and HPCD-MA-extracted PAH concentrations were closer to the earthworm-accumulated PAH concentration than the extraction using just HPCD. The results indicated that the composite extraction could improve the prediction of PAH bioaccessibility, and therefore can serve as a reliable chemical method to predict PAH bioaccessibility to earthworms in contaminated soils.  相似文献   

17.
长江三角洲地区污泥中多环芳烃的污染研究   总被引:4,自引:0,他引:4  
To ascertain the contaminated conditions of polycyclic aromatic hydrocarbons (PAHs) in sludge and to evaluate the risk of application of this sludge for agricultural purposes, 44 sludge samples obtained from 15 cities in the Yangtze River Delta area of China were investigated using capillary gas chromatography/mass spectrometry (GC/MS) after ultrasonic extraction and silica gel cleanup. PAHs' contents ranged from 0.0167 to 15.4860 mg kg^-1 (dry weight, DW) and averaged 1.376 mg kg^-1, with most samples containing 〈 1.5 mg kg^-1. Pyrene (PY), fluoranthene (FL), benzo[b]fluoranthene (BbF), indeno[1,2,3-cd]pyrene (IND), benzo[a]pyrene (B[a]P), and benzo[g,h,i]perylene (BghiP) were the most dominant compounds, ranging from 0.1582 to 0.2518 mg kg^-1. Single PAH, such as naphthalene (NAP, 2-benzene rings), phenanthrene (PA, 3-benzene rings), PY (4-benzene rings), and FL (3-benzene rings), had high detection rates (76.1%-93.5%). The distribution patterns of PAHs were found to vary with the sludge samples; however, the patterns showed that a few compounds with 2- and 3-benzene rings were commonly found in the samples, whereas those with 4-, 5-, and 6-benzene rings were usually less commonly found. All the 44 sludge samples were within the B[a]P concentration limit for sludge applied to agricultural land in China (〈 3.0 rag kg^-1). The probable sources of PAH contamination in the sludge samples were petroleum, petroleum products, and combustion of liquid and solid fuel. The concentrations and distributions of the 16 PAHs in sludge were related to sludge type, source, and treatment technology, together with the physicochemical properties.  相似文献   

18.
The effect of bacteria represented by indigenous soil microflora or a mixture of soil bacteria Pseudomonas aeruginosa and Rhodococcus erythropolis on fungal growth, extracellular enzyme production and polycyclic aromatic hydrocarbons (PAHs) biodegradation efficiency in soil of white-rot fungi Trametes versicolor and Irpex lacteus was investigated. Both fungi were able to colonize soil. The growth yields measured by ergosterol were about two-fold in I. lacteus after 10 weeks. Laccase was produced in T. versicolor cultures in the presence or absence of bacteria but live bacteria reduced the laccase levels in soil about 5 times. Manganese-dependent peroxidase (MnP) was not detected in T. versicolor cultures. The amounts of MnP and laccase in I. lacteus cultures were not affected by the presence of bacteria. T. versicolor was more efficient in PAH removal for all PAHs tested although its capacity to colonize soil was lower. The removal rates of PAHs by T. versicolor in sterile soil were 1.5-fold, 5.8-fold and 1.8-fold for 2-3-ring, 4-ring and 5-6-ring PAHs, compared to I. lacteus, respectively. I. lacteus showed a low efficiency of removal of pyrene, benzo[a]anthracene and benzo[k]fluoranthene, compared to T. versicolor, whereas chrysene and benzo[b]fluoranthene were degraded by neither fungus. The main effect of the presence of the indigenous microflora or R. erythropolis and P. aeruginosa was a significant decrease of degradation of total PAHs by both T. versicolor and I. lacteus. Weak fungal/bacterial synergistic effects were observed in the case of removal of acenapthylene, benzo[a]pyrene, dibenzo[a,h]anthracene and benzo[g,h,i]perylene by I. lacteus and acenapthylene by T. versicolor. However, the bacterial effects were different in the two fungi. PAH abiotic losses represented 15 and 21% of the total PAHs after 5 and 10 weeks, respectively; naphthalene and acenaphthene were removed from the soil due to volatilization.  相似文献   

19.
The presence of polycyclic aromatic hydrocarbons (PAHs) in coffee has been reported and is suspected to be due to the degradation of coffee compounds during the roasting step. Due to the high toxicity of these compounds, among which benzo[a]pyrene is known to be the most carcinogenic, their presence in the coffee, especially the coffee brew that is directly ingested by the consumer, is of prime importance. However, due to the low solubility of these compounds, their concentrations are expected to be rather low. As a consequence, reliable and sensitive analytical methods are required. The aim of this study was to develop a reliable and fast analytical procedure to determine these organic micropollutants in coffee brew samples. PAHs were retained on a 0.5 g polystyrene-divinylbenzene cartridge before being eluted by a mixture of methanol/tetrahydrofuran (10:90 v/v), concentrated, and directly analyzed by reversed-phase high-performance liquid chromatography coupled to a fluorescence detector. Application to the determination of PAHs in several coffee brew samples is also given, with mean estimated concentrations in the range of 0-100 ng L(-1) for suspected benzo[b]fluoranthene and benzo[a]pyrene, whereas no fluoranthene could be detected. Tentative identification was made on the basis of UV spectra. However, identification of the suspected traces of PAHs could not be achieved due to matrix effects, so that the presence of coeluting compounds may not be excluded.  相似文献   

20.
Polycyclic Aromatic Hydrocarbons in Soils from European High Mountain Areas   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) were analyzed in 70 soils distributed in mountain areas such as Montseny (300?C1,700 m), Pyrenees (1,500?C2,900 m), Alps (1,100?C2,500 m), and Tatras (1,400?C1,960 m). Average total PAH concentrations, excluding retene and perylene, were about 400 ng/g in the Pyrenees and 1,300?C1,600 ng/g in the other mountain ranges. No correlations between PAH concentrations and total organic carbon were observed. Retene was the major PAH in the Pyrenean soils of lower altitude. No altitudinal dependence was found between soil PAH concentrations and elevation for the whole dataset. However, in the Tatra soils a statistically significant correlation with altitude was observed involving higher concentrations at higher altitude. This correlation was due to the statistically significant altitudinal dependence of the more volatile PAHs. Another observed altitudinal trend concerned the benz[a]anthracene/(benz[a]anthracene + chrysene + triphenylene) and the benzo[a]pyrene/(benzo[a]pyrene + benzo[e]pyrene) ratios that exhibited a decrease in the more chemically labile compounds, benz[a]anthracene and benzo[a]pyrene, respectively, in the soils located at higher altitude. This observation is consistent with the expected higher photooxidation at higher mountain altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号