首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Soybeans in general contain 35-40% protein. Efforts are underway to increase further this protein content, thus enhancing their nutritive value. Even though higher protein is a desirable characteristic, whether such an increase will be accompanied by enhanced protein quality is not known. Soybean protein quality could be significantly improved by increasing the concentration of the sulfur-containing amino acids, cysteine and methionine. To ascertain if a correlation existed between protein quantity and quality, a comparison of the amino acids of soybeans differing in protein content was made. Soybeans with higher protein content had a significantly lower percentage of sulfur amino acids, while those with lower protein exhibited a higher content of cysteine and methionine. Nitrogen application elevated the protein content but lowered that of the sulfur amino acids. Transmission electron microscopy examination of thin sections of low protein soybean seeds revealed several protein storage vacuoles that were partially filled with storage proteins. Fluorescence two-dimensional difference gel electrophoresis of soybean seed proteins revealed that nitrogen application favored the accumulation of the beta-subunit of beta-conglycinin while decreasing the accumulation of Bowman-Birk protease inhibitor (BBI), a protein rich in cysteine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 60% 2-propanol-extracted proteins showed a drastic reduction in the accumulation of BBI with increasing protein content. Northern blot analysis indicated that nitrogen had a negative influence on the expression of the BBI gene. Our results indicate that the negative correlation between total protein and sulfur amino acid content is mostly mediated by the differential accumulation of BBI.  相似文献   

2.
The Bowman-Birk trypsin-chymotrypsin inhibitor (BBI) from soybean has been described as a potential cancer chemopreventive agent. We have compared the effects of BBI with those of two variant recombinant pea (Pisum sativum L.) seed protease inhibitors, rTI1B and rTI2B, homologous to BBI but differing in inhibitory activity, on the growth of human colorectal adenocarcinoma HT29 cells in vitro. A significant and dose-dependent decrease in the growth of HT29 cells was observed using all protease inhibitors, with rTI1B showing the largest decrease (IC50 = 46 microM). Inclusion of the pan-caspase inhibitor, Boc-D-FMK, did not negate the effects of rTI1B or rTI2B in the cell assays. The relative effectiveness of rTI1B and rTI2B may correlate with a variant amino acid sequence within their respective chymotrypsin inhibitory domain, in agreement with a chymotrypsin-like protease as a potential target.  相似文献   

3.
Four-day-old wheat seedling roots were inoculated at specific sites with 3.8 × 105 colony forming units of Pseudomonas fluorescens strain 2–79 Rn10 resistant to rifampin and naladixic acid. Seedlings inoculated at the root apex were transplanted into chambers containing non-sterile soil and harvested 5 h, 2, 4 and 7 days later. Root segments were excised and processed for dilution plating on a selective medium to determine the population distribution of the marked strain in relation to root elongation. Strain 2–79 RN10 was recovered from a localized area near the point of inoculation but was no longer associated with the root apex by day 4. In a subsequent experiment, roots were inoculated approximately 4 cm above the root tip. Water applied to the soil surface and allowed to drain through the soil profile was found to affect the rhizosphere distribution of 2–79 Rn10. The marked strain was recovered 3.5 cm below the point of inoculation after 24 h when water had been added, compared to 0.5 cm below the inoculation site in the absence of added water.  相似文献   

4.
Three months after neutralization concentrations of methylmercury (MeHg) were higher in the water of the limed than in the control basin of a small lake. After two years, the concentrations in the limed basin were somewhat lower than in the control (0.056–2.19 ng L?1 and 0.129–2.65 ng L?1, respectively). The highest concentrations were found in the anoxic hypolimnia. The total amount of MeHg in the water mass of the lake varied from 19 to 68 mg, showing a drop after spring and autumn overturns and a maximum during stratification periods. The total Hg concentrations of fish in L. Iso Valkjärvi varied from 0.06 to 0.14 μg g?1 (ww) in whitefish to 0.1 to 0.7 μg g?1 in perch and to 0.2 to 1.4 μg g?1 in pike. The total amount of MeHg bound in the fish of the lake was quite similar to that in the water column, 43 to 59 mg in 1990–1993, 33 to 47 mg of which was in the perch population.  相似文献   

5.
JianChao  Shi  Yongrui  Yang  Fei  Liu  TingLin  Huang  Qitao  Yi 《Journal of Soils and Sediments》2021,21(10):3300-3309
Journal of Soils and Sediments - Seasonal hypoxia in water bodies can increase levels of reduced chemical species in the hypolimnion as they are released from anoxic bottom sediments. Water-lifting...  相似文献   

6.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

7.
Siratro (Macroptilium atropurpureum), desmodium (Desmodium intortum), and soybean (Glycine max) were grown in pots with or without irrigation for 20 d at the vegetative growth stage in order to examine the effects of water stress on the leaf water potential, stomatal conductance, biomass production, biological nitrogen fixation, and nitrogen accumulation. Whole plant weight decreased under water stress conditions and the decrease was less pronounced in siratro than in desmodium and soybean. Decrease in total leaf area was the largest and dry matter partition to stem and petioles was the highest in siratro. Decrease in leaf water potential was lower in desmodium and soybean than in siratro. Although water stress decreased biological nitrogen fixation in all the species, the decrease was relatively less pronounced in siratro than in desmodium and soybean. Whole plant nitrogen concentration was higher in siratro than in soybean and desmodium. The results indicated that siratro is more tolerant to water stress than soybean and desmodium. This could be partially attributed to the maintenance of a higher water potential and higher biological nitrogen fixation by siratro under water stress conditions.  相似文献   

8.
The pattern of nitrogen assimilation in soybean plants treated with a herbicide that inhibits branched-chain amino acid biosynthesis was evaluated by (15)N isotopic analysis. The herbicide imazethapyr caused a strong decrease in nitrate uptake by roots, partly due to a reduced stomatal conductance. The inhibition of (15)N uptake was accompanied by a decrease in the (15)N content in the plant and, concomitantly, an inhibition of translocation to the shoot. Imazethapyr inhibited nitrate reductase activity in leaves and roots. Among all parameters studied, "de novo" synthesis of proteins was the first parameter of the N assimilation metabolism affected by the herbicide. These results show that this class of herbicides totally damages N metabolism and indicates a regulatory effect on N uptake and translocation that would be mediated by the increase in free amino acid pool provoked by the inhibition of branched-chain amino acid biosynthesis.  相似文献   

9.
In soils, next to nitrogen, phosphorus (P) is the second major growth-limiting factor for plants (Fox 1979). It is probably the most deficient soil-derived plant nutrient in Oxisols, Ultisols, acid Alfisols, and Andisols and the proper development of crops is frequently impossible without the application of P. P deficiency is a major nutritional problem in variable charge soils, especially the Andisols, where applied P is usually converted into an unavailable form. The P added to Andisols in fertilizers is readily sorbed to form noncrystal-line aluminum phosphate materials (Nanzyo 1987). Most uncultivated Andisols also show a very low P fertility and very low recovery of applied P fertilizers by crops (Shoji et al. 1993). In fact, P fixation is one of the growth-limiting factors for crops cultivated in Brazil (Fageria and Filho 1987).  相似文献   

10.
Silibinin has recently received attention as a potential cancer chemopreventive agent because of its antiproliferative and anticarcinogenic effects. A simple and specific reversed-phase high-performance liquid chromatography method was developed and validated for the quantitation of silibinin in human plasma. Sample preparation involved simple protein precipitation, and separation was achieved on a Waters Atlantis C18 column with flow rate of 1.0 mL/min at 40 degrees C and UV detection at 290 nm. Silibinin was detected as two peaks corresponding to trans-diastereoisomers. The peak area was linear over the investigated concentration range (0-5000 ng/mL). The limits of detection were 2 and 1 ng/mL for the two diastereoisomers (d1 and d2), with a recovery of 53-58%. This method was utilized to detect silibinin in plasma of colorectal patients after 7 days of treatment with silipide (silibinin formulated with phosphatidyl choline).  相似文献   

11.
The effect of acetic acid on the dissolution of proteins in rice was studied to elucidate the mechanism for the textural change induced by the acid by chemical and SDS-PAGE analyses of the rice proteins in the soaking solution. More proteins were extracted with 0.2 M acetic acid (pH 2.7) than with water (pH 6.8). The effect of acetic acid on the protein dissolution increased with increasing temperature. Immunoblotting confirmed that, when rice was soaked in acetic acid, glutelin was dissolved into the soaking solution and degraded by aspartic proteinase. Aspartic proteinase degraded glutelin much more than it did albumin and globulin. It was found that the combined amount of albumin and globulin dissolved into the acetic acid solution was much larger than that of glutelin, despite the smaller amounts present of albumin and globulin than of glutelin. Metal ions were extracted more with acetic acid than with water. In addition, carboxypeptidase was activated under the acidic condition and resulted in an increase in the amount of free amino acids. The main effect of acetic acid on the dissolution of rice proteins was enhancement of the solubility of albumin, globulin, and glutelin, the effect of proteases being minor.  相似文献   

12.
Abstract

Soybean (Glycine max L. Merr.) cultivars differ in their root morphology and their nutrient uptake capabilities. The relation between root growth, P and K uptake, and grain yield was investigated using eight cultivars grown in the field on Raub (Aquic Argiudoll) silt loam which received 49 kg P/ha and 93 kg K/ha. Hobbit (maturity group III, determinate) was among the highest in grain yield, P and K uptakes, and root system length. However, this cultivar was intermediate in its relative efficiency to utilize P and K to produce grain yield; among the most efficient cultivars were Asgrow 3127 (maturity group II) and Williams‐79 (maturity group III). The hay cultivar, Wilson‐6, was the least efficient. It was concluded that even though grain yield was correlated with nutrient uptake, selection for higher yields was not necessarily a selection for higher efficiency in utilization of fertilizer for grain production.  相似文献   

13.
A modified version of the Haug and Lantzsch method for rapid photometrical phytate determination was applied for the analysis of phytate in soybean, wheat, and maize meals. In comparison to the original protocol, the amount of the toxic reagent thioglycolic acid is reduced substantially to minimize potential health risks for laboratory personnel. Different extraction conditions for soybean meal were tested, and boiling for at least 30 min was found to be necessary to remove an interfering compound in soybean meal extracts. Phytate contents determined according to the modified Haug and Lantzsch method did not differ from those obtained by measuring total precipitated phosphorus or by sensitive and specific high-performance ion chromatography. Applicability and accuracy of the modified method for phytate analysis in major feed substrates, including soy-based textured vegetable protein, were demonstrated.  相似文献   

14.
In leguminous root nodules, bacteroids are differentiated from rhizobia and are surrounded by a peribacteroid membrane (PBM) forming an intracellular structure designated as symbiosome. Through the peribacteroid space (PBS) between the PBM and bacteroids, metabolic substances and signal compounds are exchanged between two symbionts. In this study, organic compounds with low molecular weight in the PBS were collected from isolated symbiosomes of soybean (Glycine max L.) root nodules, and their composition was analyzed and compared with that of the organic compounds in whole root nodules and bacteroids. Major differences were detected in the molar percentages of amino and organic acids, and sugars, to the total low molecular weight organic compounds among whole root nodules, PBS, and bacteroids. The PBS composition was characterized by abundant sugars and poor amino acids. Also the composition of the amino acids, organic acids, and sugars in the PBS was clearly different from that in whole root nodules and bacteroids. The PBS sugar composition was characterized by the predominance of inositols, especially myo-inositol at the 5th and 7th weeks of the host plant growth stages. Changes in the myo- and D-chiro- inositol balance at the host plant growth stages occurred and a syntony was observed between the PBS and bacteroids. The localization of myo-inositol in the PBS accounted for almost 70% of the total myo-inositol in root nodules. A small difference in the PBS composition between two soybean cultivars was recorded but it varied with the growth stages. It was tentatively concluded that the PBS sugar composition affected the bacteroidal sugar composition in soybean plants, and that inositol utilization in the bacteroids could be a factor controlling the bacteroidal function level which varied with the host plant growth stages.  相似文献   

15.
Deep transport of degradable compounds through soils may occur if the metabolic activity in the soil profile is low; either by natural causes (low temperature during ice melt) or by toxic pollutants. De-icing chemicals (for roads and airports) represents a severe challenge to the soil's purifying capacity; rapid infiltration of contaminated water occurs in near-frozen soil, the contamination includes toxic compounds. Degradation experiments were conducted with toluene, and three compounds frequently used for de-icing; acetate, formate and glycol. The substrates were added to a subsoil (0.93 μmol substrate-carbon (C) g−1 soil, with ample amounts of nitrogen (N) and phosphorous (P)); and their mineralization was monitored in the presence of a toxic compound, benzotriazol (BTA) at various concentrations. BTA is commonly used as an additive in commercial de-icing fluids. A second and third dose of substrate was added after complete degradation of the previous one. The mineralization curves of the three consecutive doses were used to estimate kinetic parameters by fitting to a Monod-model. The model parameters estimated for each substance were the initial biomass C of the organisms growing on each substrate, Cb0, their maximum substrate uptake rates, Vmax, their apparent substrate affinity, KS, and growth yield, Y. The Cb0 values for pristine soil were 4.9, 20.5 and 10 nmol C g−1 soil for formate, glycol and acetate, respectively, and 1-2 orders of magnitude lower for toluene. The KS values were 1.1, 0.6, 2.5 and 0.13 mM for formate, glycol, acetate, and toluene, respectively. The high KS values probably reflect diffusion limitations. The estimated yields (Y) in the absence of BTA were 0.032, 0.53 and 0.42 g biomass-C g−1 substrate-C for growth on formate, glycol and acetate, respectively. BTA invariably reduced the growth yield for organisms growing on the different substrates, and the yield reduction increased with increasing BTA concentrations (more than 50% reduction at 400 mg BTA l−1). The degradation of the four substrates showed major differences in BTA-sensitivity, and there were strikingly weak signs (if any) of increasing BTA tolerance during growth in the presence of BTA (analyses of second and third dose experiments). The modelling of the consecutive substrate doses corroborated previous investigations of BTA effects on mineralization and community PLFA [Jia et al., 2006. Organic compounds that reach subsoil may threaten groundwater quality; effect of benzotriazole on degradation kinetics and microbial community composition. Soil Biology & Biochemistry 38, 2543-2556]. The results and the estimated Monod parameters are useful for predictive modelling of transport and degradation of pollutants as well as natural substances in sub-soils.  相似文献   

16.
三江平原大豆种植的土地适宜性评价   总被引:1,自引:1,他引:1  
受全球气候变化、二氧化碳施肥效应以及市场需求的影响,国内一系列旨在促进大豆种植的政策,可能导致三江平原大豆种植面积的增加。在此大背景下,充分利用当地气候条件和肥厚的土壤资源,促进农业用地的合理配置的关键问题在于对大豆种植进行土地适宜性评价。作者依据FAO/IIASA发布的GAEZ研究框架:首先根据大豆对气候、土壤的需求,对三江平原气象资料进行气候清查,评价大豆种植的气候适宜性;再考虑地形因素对气候条件的影响,使用Fourier指数和坡度条件对评价结果进行修正;然后,进行土壤清查,选取土层厚度、质地、pH、排水级与淹水情况等作为评价指标,对三江平原大豆种植进行土壤适宜性评价,并对含白浆层的各类土壤进行适宜性降级处理;最后,在栅格像元尺度上进行图层叠加,得到三江平原大豆种植的土地适宜性评价结果。另外引入了适宜度指数(S_I),对三江平原23个县市大豆种植的土地适宜度进行了空间上的比较。结果表明:(1)除了坡度大于30%的山区外,三江平原大部地区适宜大豆种植,面积达8.5×10~4 km~2,约占总面积的78.75%;(2)沿松花江、倭肯河、穆棱河等两岸的平缓(2%~5%)和微起伏(5%~8%)地区,土壤质地和排水状况良好,最适宜大豆种植;(3)勃利、依兰、汤原、佳木斯、集贤、桦川、友谊、绥滨和富锦9个县市,适宜度指数均超过70%;其次是同江、桦南、虎林、宝清、抚远、七台河、萝北、鸡东、饶河和双鸭山10个县市;鹤岗、密山、鸡西、穆棱4县市,适宜度一般;(4)GAEZ模型流程化评价方法能够在区域尺度上有效实现大豆种植适宜性的空间差异分析,为土地资源的合理配置提供科学依据。  相似文献   

17.
Morphologic and hydrologic properties of head-cut gullies formed in meandering bends of a gravel-bed river in northern Japan were examined to investigate their topographic development. head-cut gullies had incised to 2 m below the floodplain surface and had perennial seepage outflows. Because no surface runoff was observed across the meandering necks, we hypothesized that hyporheic flow erosion cutting into the down-river edge of the meandering necks is one factor for the development of head-cut gullies. Several topographic features caused by sapping and piping erosion were observed within the head-cut gullies. A tracer experiment and examination of the water table, water chemistry, and water table responses in wells on the floodplain and within the head-cut gully revealed that significant preferential hyporheic flow occurred between coarse cobble and fine sediment layers of the floodplain materials. During a storm event, water tables around the head-cut gully quickly responded to changes in the water table of the stream channel; this result also suggests that hyporheic flow occurred across the meandering bends. Hyporheic flow around the head-cut gullies had higher hydraulic conductivities and preferential flow paths that may relate to buried beds of paleochannels. An erosion model suggests that it is unlikely that hyporheic flow alone had enough energy to account for all the soil erosion. Thus, a combination of hyporheic flow (sapping erosion) and channel erosion (bank erosion) appeared to contribute to the formation of the head-cut gullies. Hyporheic flow is an important component in the geomorphic evolution of channels and the floodplain in a gravel-bed river.  相似文献   

18.
Abstract. Nitrous oxide (N2O) from animal excreta in grazed pasture systems makes up a significant component (c. 10%) of New Zealand's total greenhouse gas inventory. We report an effective method to decrease N2O emissions from animal urine patches by treating the soil with the nitrification inhibitor dicyandiamide (DCD), in a simulated grazed dairy pasture system under spray irrigation. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). By treating the soil with DCD, N2O emissions were decreased by 76% following urine application in the autumn, from 26.7 kg N2O-N ha−1 without DCD to an average of 6.4 kg N2O-N ha−1 with DCD over the 6-month experimental period. N2O flux was decreased by 78% following urine application in the spring, from 18 kg N2O-N ha−1 without DCD to 3.9 kg N2O-N ha−1 with the application of DCD over the 3-month period. A single application of DCD immediately after urine was sufficient to effectively mitigate N2O emissions from the urine. The results showed that repeated applications of DCD after urine application, or mixing DCD with urine, offered no advantage over a single application of DCD immediately after urine deposition.  相似文献   

19.
A strain of Botrytis fabae isolated from faba bean (Vicia faba L.) plants displaying clear chocolate spot disease symptoms produced phytotoxic metabolites in vitro. The phytotoxins isolated from the culture filtrate organic extract were characterized by spectroscopic and optical methods. A new naphthalenone pentaketide, named botrytone, was isolated and characterized as (4R)-3,4-dihydro-4,5,8-trihydroxy-1(2H)-naphthalenone together with other well-known closely related naphthalenones such as regiolone and cis- and trans-3,4-dihydro-2,4,8-trihydroxynaphthalen-1(2H)-ones. When tested on leaves of the host plant, with the cis- and trans-3,4-dihydro-2,4,8-trihydroxynaphthalen-1(2H)-ones assayed in mixture, regiolone demonstrated the highest level of phytotoxicity together with cis- and trans-3,4-dihydro-2,4,8-trihydroxynaphthalen-1(2H)-ones. Botrytone showed moderate phytotoxic activity at 1 mg/mL and was still phytotoxic at 0.5 mg/mL.  相似文献   

20.
In the present study, sufu, an oriental fermented product of soybeans, was prepared by ripening the tofu cubes in Aspergillus oryzae fermented rice-soybean koji mash for 16 days at 37 °C. The sufu product was further kept at room temperature for another 30 days. Examining the changes in the sugar content revealed that stachyose, raffinose, and sucrose contents of tofu and rice-soybean koji granules decreased while levels of glucose and fructose increased during the ripening period and after storage. Glucose was the most abundant sugar detected. Four organic acids, including oxalic, lactic, acetic, and citric acid, were detected in the sufu product and koji granules after ripening. Generally, the contents of these organic acid increased as the ripening period was extended. Among them, acetic acid was the most highly detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号