首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia.  相似文献   

2.
OBJECTIVE: To evaluate the use of xylazine and ketamine for total i.v. anesthesia in horses. ANIMALS: 8 horses. PROCEDURE: Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, i.v.), guaifenesin (75 mg/kg, i.v.), and ketamine (2 mg/kg, i.v.). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (microg/kg/min) and X and K represent xylazine and ketamine, respectively: X35 + K90 with 100% inspired oxygen (O2), X35 + K120-(O2), X35 + K150-(O2), X70 + K90-(O2), K150-(O2), and X35 + K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated. RESULTS: Heart rate and cardiac index were higher and total peripheral resistance lower in K150-(O2) and X35 + K120-air groups. The mean arterial pressure was highest in the X35 + K120-air group and lowest in the K150-(O2) group (125 +/- 6 vs 85 +/- 8 at 20 minutes, respectively). Mean Pa(O2) was lowest in the X35 + K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-(O2) (23 +/- 6 minutes and 33 +/- 8 minutes, respectively) and longest for those receiving X70 + K90-(O2) (58 +/- 28 minutes and 69 +/- 27 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses.  相似文献   

3.
4.
5.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

6.
Halothane produces a concentration related depression of cardiopulmonary function in horses ( Steffey & Howland 1978 ). This study evaluated an infusion of ketamine and guaiphenesin in horses to reduce halothane requirements during surgical anaesthesia.  相似文献   

7.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

8.

Objective

To compare postanesthetic xylazine and dexmedetomidine on recovery characteristics from sevoflurane anesthesia in horses.

Study design

Randomized, crossover study.

Animals

Six geldings, mean ± standard deviation (SD) (range), 17 ± 4 (11–24) years and 527 ± 80 (420–660) kg.

Methods

Horses were anesthetized with sevoflurane for 60 minutes under standardized conditions for a regional limb perfusion study. In recovery, horses were administered either xylazine (200 μg kg?1) or dexmedetomidine (0.875 μg kg?1) intravenously. Recoveries were unassisted and were video-recorded for later evaluation of recovery events and quality by two individuals unaware of treatment allocation. Recovery quality was assessed using a 100 mm visual analog scale (VAS) (0 = poor recovery, 100 = excellent recovery), the Edinburgh Scoring System (ESS) (0–100; 100 = excellent recovery) and the mean attempt interval (MAI) (longer = better). Data are mean ± SD.

Results

All recovery quality assessments (xylazine and dexmedetomidine, respectively: VAS: 71 ± 21 mm, 84 ± 13 mm; ESS: 65 ± 22, 67 ± 30; MAI: 52 ± 24 minutes, 60 ± 32 minutes) and events (first limb movement: 37 ± 8 minutes, 42 ± 10 minutes; first attempt to lift head: 44 ± 12 minutes, 48 ± 9 minutes; first attempt to sternal posture: 57 ± 28 minutes, 50 ± 7 minutes; number of head bangs: 2.0 ± 3.0, 0.5 ± 0.5; time to first attempt to stand: 72 ± 6 minutes, 78 ± 13 minutes; time to standing: 79 ± 14 minutes, 84 ± 13 minutes) did not differ significantly between treatments (p > 0.05).

Conclusions and clinical relevance

Recovery characteristics did not differ significantly between postanesthetic xylazine and dexmedetomidine following 1 hour of sevoflurane anesthesia in horses in this study. Further evaluations in more horses and in younger horses are required to confirm these results.  相似文献   

9.
Objective To test the hypothesis that hypercapnic hyperpnea produced using endotracheal insufflation with 5–10% CO2 in oxygen could be used to shorten anesthetic recovery time in horses, and that recovery from sevoflurane would be faster than from isoflurane. Study design Randomized crossover study design. Animals Eight healthy adult horses. Methods After 2 hours’ administration of constant 1.2 times MAC isoflurane or sevoflurane, horses were disconnected from the anesthetic circuit and administered 0, 5, or 10% CO2 in balance O2 via endotracheal tube insufflation. End‐tidal gas samples were collected to measure anesthetic washout kinetics, and arterial and venous blood samples were collected to measure respiratory gas partial pressures. Horses recovered in padded stalls without assistance, and each recovery was videotaped and evaluated by reviewers who were blinded to the anesthetic agent and insufflation treatment used. Results Compared to isoflurane, sevoflurane caused greater hypoventilation and was associated with longer times until standing recovery. CO2 insufflation significantly decreased anesthetic recovery time compared to insufflation with O2 alone without significantly increasing PaCO2. Pharmacokinetic parameters during recovery from isoflurane with CO2 insufflation were statistically indistinguishable from sevoflurane recovery without CO2. Neither anesthetic agent nor insufflation treatment affected recovery quality from anesthesia. Conclusions and clinical relevance Hypercapnic hyperpnea decreases time to standing without influencing anesthetic recovery quality. Although the lower blood gas solubility of sevoflurane should favor a shorter recovery time compared to isoflurane, this advantage is negated by the greater respiratory depression from sevoflurane in horses.  相似文献   

10.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

11.
12.
Intraocular pressure was measured with a MacKay-Marg tonometer in eight horses following auriculopalpebral nerve block and topical application of lignocaine. Measurements were recorded before and after xylazine, 1.1 mg/kg intravenously, every two minutes for 16 minutes after administration of ketamine, 2.2 mg/kg intravenously, and after recovery from anaesthesia. Before xylazine, intraocular pressure was 17.1 +/- 3.9 and 18.4 +/- 2.2 mm Hg in the left and right eyes, respectively. Intraocular pressure tended to decrease after administration of xylazine and ketamine, with a significant decrease in one eye six minutes after injection of ketamine.  相似文献   

13.
Short term anaesthesia induced with xylazine and ketamine was compared to a combination of xylazine, ketamine and temazepam (a benzodiazepine) in six adult horses. Duration of recumbency was significantly prolonged when temazepam was administered with xylazine and ketamine. No significant differences in heart rate, respiratory rate, blood pressure or arterial pH, pCO2 and pO2 were seen between the xylazine and ketamine combination plus temazepam, and xylazine and ketamine combination only treated horses.  相似文献   

14.
OBJECTIVE: To evaluate the cardiovascular effects of total IV anesthesia with propofol (P-TIVA) or ketamine-medetomidine-propofol (KMP-TIVA) in horses. ANIMALS: 5 Thoroughbreds. PROCEDURES: Horses were anesthetized twice for 4 hours, once with P-TIVA and once with KMP-TIVA. Horses were medicated with medetomidine (0.005 mg/kg, IV) and anesthetized with ketamine (2.5 mg/kg, IV) and midazolam (0.04 mg/kg, IV). After receiving a loading dose of propofol (0.5 mg/kg, IV), anesthesia was maintained with a constant rate infusion of propofol (0.22 mg/kg/min) for P-TIVA or with a constant rate infusion of propofol (0.14 mg/kg/min), ketamine (1 mg/kg/h), and medetomidine (0.00125 mg/kg/h) for KMP-TIVA. Ventilation was artificially controlled throughout anesthesia. Cardiovascular measurements were determined before medication and every 30 minutes during anesthesia, and recovery from anesthesia was scored. RESULTS: Cardiovascular function was maintained within acceptable limits during P-TIVA and KMP-TIVA. Heart rate ranged from 30 to 40 beats/min, and mean arterial blood pressure was > 90 mm Hg in all horses during anesthesia. Heart rate was lower in horses anesthetized with KMP-TIVA, compared with P-TIVA. Cardiac index decreased significantly, reaching minimum values (65% of baseline values) at 90 minutes during KMP-TIVA, whereas cardiac index was maintained between 80% and 90% of baseline values during P-TIVA. Stroke volume and systemic vascular resistance were similarly maintained during both methods of anesthesia. With P-TIVA, some spontaneous limb movements occurred, whereas with KMP-TIVA, no movements were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Cardiovascular measurements remained within acceptable values in artificially ventilated horses during P-TIVA or KMP-TIVA. Decreased cardiac output associated with KMP-TIVA was primarily the result of decreases in heart rate.  相似文献   

15.
16.
To evaluate clinical usefulness of xylazine (1.0 mg/kg)-midazolam (20 microg/kg)-propofol (3.0 mg/kg) anesthesia in horses, 6 adult Thoroughbred horses were examined. The quality of induction varied from poor to excellent and 5 out of 6 horses presented myotonus in the front half of the body. However, paddling immediately after induction observed in other reports of equine propofol anesthesia was not observed. Recovery time was 35.3 +/- 9.3 min and the quality of recovery was calm and smooth in all horses. Respiration rate decreased after induction and hypoxemia was observed during lateral recumbency. Heart rate also decreased after induction, however mean arterial blood pressure was maintained above approximately 100 mmHg.  相似文献   

17.
18.
To investigate an adequate infusion rate of propofol for total intravenous anesthesia (TIVA) in horses, the minimum infusion rate (MIR) comparable to the minimum alveolar anesthetic concentration (MAC) of inhalation anesthetic was determined under constant ventilation condition by intermittent positive pressure ventilation (IPPV). In addition, arterial propofol concentration was measured to determine the concentration corresponding to the MIR (concentration preventing reaction to stimulus in 50% of population, Cp(50)). Further, 95% effective dose (ED(95)) was estimated as infusion rate for acquiring adequate anesthetic depth. Anesthetic depth was judged by the gross purposeful movement response to painful stimulus. MIR and Cp(50) were 0.10 +/- 0.02 mg/kg/min and 5.3 +/- 1.4 microg/ml, respectively. ED(95) was estimated as 0.14 mg/kg/min (1.4MIR).  相似文献   

19.
20.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号