首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
灌木林优化配置格局对土壤风蚀的影响   总被引:2,自引:0,他引:2  
低覆盖度时,灌木林的水平配置格局成为制约土壤风蚀的重要因素。以宁夏盐池县风沙区人工灌木林基地为试验区,研究了不同下垫面类型和不同配置格局的灌木沙障对风速、近地表输沙率和地表粗糙度的影响。结果表明:灌木林的防治土壤风蚀能力与灌木林的种类、高度和配置格局有直接关系:行带式配置能显著提高灌木林的防风效果,其中以沙柳林效果最佳;三行一带、平均高1.5m、行距1.5m、插深0.5m配置规格的沙柳沙障对地表土壤风蚀的控制效果最好,但防护范围限15倍带高以内;在行数一定的情况下,沙障高度越低,控制土壤风蚀能力越强。  相似文献   

2.
The rapid desertification of grasslands in Inner Mongolia of China poses a significant ecological threaten to northern China. The combined effects of anthropogenic disturbances(e.g., overgrazing) and biophysical processes(e.g., soil erosion) have led to vegetation degradation and the consequent acceleration of regional desertification. Thus, mitigating the accelerated wind erosion, a cause and effect of grassland desertification, is critical for the sustainable management of grasslands. Here, a combination of mobile wind tunnel experiments and wind erosion model was used to explore the effects of different levels of vegetation coverage, soil moisture and wind speed on wind erosion at different positions of a slope inside an enclosed desert steppe in the Xilamuren grassland of Inner Mongolia. The results indicated a significant spatial difference in wind erosion intensities depending on the vegetation coverage, with a strong decreasing trend from the top to the base of the slope. Increasing vegetation coverage resulted in a rapid decrease in wind erosion as explained by a power function correlation. Vegetation coverage was found to be a dominant control on wind erosion by increasing the surface roughness and by lowering the threshold wind velocity for erosion. The critical vegetation coverage required for effectively controlling wind erosion was found to be higher than 60%. Further, the wind erosion rates were negatively correlated with surface soil moisture and the mass flux in aeolian sand transport increased with increasing wind speed. We developed a mathematical model of wind erosion based on the results of an orthogonal array design. The results from the model simulation indicated that the standardized regression coefficients of the main effects of the three factors(vegetation coverage, soil moisture and wind speed) on the mass flux in aeolian sand transport were in the following order: wind speedvegetation coveragesoil moisture. These three factors had different levels of interactive effects on the mass flux in aeolian sand transport. Our results will improve the understanding of the interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in desert steppes, and will be helpful for the design of desertification control programs in future.  相似文献   

3.
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia.  相似文献   

4.
选取影响准东地区土壤风蚀的4个敏感性因子(风场强度、植被覆盖度、地形起伏度、土壤干燥度),结合GIS空间分析技术,将4个因子的敏感性划分为极敏感、高度敏感、中度敏感、低度敏感和不敏感5个等级,利用层次分析法(AHP)确定敏感性因子权重,最后确定准东地区土壤风蚀综合敏感性分级及其分布规律,并对准东地区进行区划研究。结果表明:准东地区土壤风蚀敏感性在空间分布上存在显著差异,总体呈现为北高南低,西高东低的分布态势;极敏感区、高度敏感区、中度敏感区、低度敏感区和不敏感区分别占准东地区总面积的15.27%、17.20%、22.66%、19.49%和25.38%。通过对准东地区土壤风蚀敏感性分级研究,并提出其分区保护与建设措施,以期为准东地区经济发展与环境保护提供科学参考。  相似文献   

5.
耕作地表土块状况及其对近地表风场的影响   总被引:5,自引:0,他引:5  
为深入理解非可蚀性土块吸收风能、降低侵蚀力的机制,利用野外风速资料,对半干旱区农田传统耕作模式下犁耕、耙耱及抹平等的地表土块大小、土壤表面粗糙度、近地表风速及空气动力学特征进行了研究。结果表明,犁耕后农田土块长、宽、高均在15 cm以上,盖度为27.67%,耙耱、抹平后土块大小和盖度显著降低,抹平地表土块盖度仅为2.13%;土块的破碎导致土壤表面粗糙度降低,近地表风速增大;与犁耕地表比较,耙耱后土壤表面粗糙度降低34%~64%,抹平后降低幅度甚至在90%以上;耙耱抹平后地表以上0.5 m高度内风速显著增大,空气动力学粗糙度由1.1 cm降低至0.05 cm,侵蚀力增强。因此认为,合理选择犁耕、耙耱和抹平的时间对农田风蚀防治有实际意义。  相似文献   

6.
The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil. It is an independent factor influencing soil wind erosion. The factors related to wind erosivity, known as submodels, mainly include the weather factor(WF) in revised wind erosion equation(RWEQ), the erosion submodel(ES) in wind erosion prediction system(WEPS), as well as the drift potential(DP) in wind energy environmental assessment. However, the essential factors of WF and ES contain wind, soil characteristics and surface coverings, which therefore results in the interdependence between WF or ES and other factors(e.g., soil erodible factor) in soil erosion models. Considering that DP is a relative indicator of the wind energy environment and does not have the value of expressing wind to induce shear stress on the surface. Therefore, a new factor is needed to express accurately wind erosivity. Based on the theoretical basis that the soil loss by wind erosion(Q) is proportional to the shear stress of the wind on the soil surface, a new model of wind driving force(WDF) was established, which expresses the potential capacity of wind to drive soil mass in per unit area and a period of time. Through the calculations in the typical area, the WDF, WF and DP are compared and analyzed from the theoretical basis, construction goal, problem-solving ability and typical area application; the spatial distribution of soil wind erosion intensity was concurrently compared with the spatial distributions of the WDF, WF and DP values in the typical area. The results indicate that the WDF is better to reflect the potential capacity of wind erosivity than WF and DP, and that the WDF model is a good model with universal applicability and can be logically incorporated into the soil wind erosion models.  相似文献   

7.
北京平原土壤机械组成和抗风蚀能力的分析   总被引:10,自引:0,他引:10  
土壤遇风起沙是风沙活动产生的最根本原因,它的基本点有二:一是具有足以使砂粒产生运动的一定强度的起沙风;二是土壤颗粒小、质地干燥疏松,具有遇风起沙产生运动的属性。本文分析了北京土壤的机械组成特征和结构性能等。叙述了在永定河边部一些地块的野外风沙观测和沙风洞试验,证实土壤结构性、干松程度、植被覆盖状况是决定土壤抗风蚀性能的三要素。最后,试用不易蚀因子含量评价北京平原土壤的抗风蚀能力。  相似文献   

8.
土壤风蚀量随风速的变化规律研究   总被引:16,自引:1,他引:16  
使用野外风洞作为风蚀研究的试验手段,通过农田土壤、沙及生土的风洞试验研究发现,农田土壤的风蚀量随风速呈指数函数变化,沙及生土的风蚀量随风速呈幂函数变化。试验研究还表明,农田土壤的风蚀量与表土层(3cm)的含水量呈显著负相关,沙的风蚀量与含水量的相关性不显著。风蚀导致土壤中的细颗粒成分大量损失,这是土壤颗粒粗化的原因所在。  相似文献   

9.
HE Qian 《干旱区科学》2020,12(5):865-886
Soil erosion in the Three-River Headwaters Region (TRHR) of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment. Vegetation and precipitation are considered to be the main factors for the variation in soil erosion. However, it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale. To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015, we employed the Revised Universal Soil Loss Equation (RUSLE) model to evaluate soil erosion in the TRHR, and then developed a method using the Logarithmic Mean Divisia Index model (LMDI) which can exponentially decompose the influencing factors, to calculate the contribution values of the vegetation cover factor (C factor) and the rainfall erosivity factor (R factor) to the variation of soil erosion from the pixel scale. In general, soil erosion in the TRHR was alleviated from 2005 to 2015, of which about 54.95% of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor, and 41.31% was caused by the change in the R factor. There were relatively few areas with increased soil erosion modulus, of which 64.10% of the area where soil erosion increased was caused by the change in the C factor, and 23.88% was caused by the combined effects of the C factor and the R factor. Therefore, the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion, while the C factor was the dominant factor for the increase of soil erosion. The area with decreased soil erosion caused by the C factor (12.10×103 km2) was larger than the area with increased soil erosion caused by the C factor (8.30×103 km2), which indicated that vegetation had a positive effect on soil erosion. This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion, and also provided a scientific basis for the regional control of soil erosion.  相似文献   

10.
YAN Ping 《干旱区科学》2022,14(9):1009-1021
The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion. In this study, three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region, China and placed in a wind tunnel where they were subjected to six different wind speeds (10, 15, 17, 20, 25, and 30 m/s) to simulate wind erosion in the wind tunnel. After each test, the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model (DEM), and the changes in wind erosion mass and microtopography were quantified. Based on this, we performed further analysis of wind erosion-controlling factors. The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23% for the three undisturbed soil samples. With increasing wind speed, the microtopography on the undisturbed soil surface first became smooth, and then fine stripes and pits gradually developed. In the initial stage of wind erosion processes, the ability of the soil to resist wind erosion was mainly affected by the soil hardness. In the late stage of wind erosion processes, the degree of soil erosion was mainly affected by soil organic matter and CaCO3 content. The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring.  相似文献   

11.
旱地保护性耕作土壤风蚀模型研究   总被引:1,自引:0,他引:1  
在分析国外风蚀模型资料的基础上,建立了适用于保护性耕作的风蚀模型。该模型以小时为步长,根据气象数据、地表土壤水分、秸秆残茬覆盖率及地表粗糙度,模拟不同耕作体系下农田土壤风蚀流失量情况;针对保护性耕作的特点,考虑到残茬覆盖对土壤含水量和地表粗糙度的影响;通过田间风蚀测定数据的验证,证明所建立的保护性耕作风蚀模型的模拟值与实测值比较吻合。  相似文献   

12.
基于毛乌素沙地的野外观测资料,对毛乌素沙地典型地形断面土壤水分动态进行分析。结果表明,土壤水分季节变化可划分为土壤水积聚期、消耗期和稳定期;根据土壤水分垂直变化可把土壤剖面划分为土壤水分易变层、利用层和调节层;沿着坡度减小的方向,各地形断面对应层次的土壤水分含量逐渐升高,丘间地土壤水分含量明显高于该断面上其余各点。  相似文献   

13.
土壤风蚀量随残茬高度的变化规律研究   总被引:7,自引:1,他引:7  
在内蒙古自治区武川县建立农田土壤风蚀试验区,采用内蒙古农业大学研制的移动式风蚀风洞和旋风分离式集沙仪,直接在农田上观测不同残茬高度条件下的农田风蚀土壤损失情况。试验结果表明:土壤风蚀量和扬起沙尘的高度随风速的增加而增加,随着作物秸秆残茬高度的增加而降低,且输沙量与高度变化符合指数函数关系,土壤颗粒主要集中在近地表层内运动。保护性耕作可明显地提高启沙风速,减少农田土壤损失,当秸秆高度为30 cm时,风蚀量仅为传统耕地的1/4左右。  相似文献   

14.
Wind erosion is one of the main drivers of soil loss in the world, which affects 20 million hectare land of Iran. Besides the soil loss, wind erosion contributes to carbon dioxide emission from the soil into the atmosphere. The objective of this study is to evaluate monthly and seasonal changes in carbon dioxide emission in four classes i.e., low, moderate, severe and very severe soil erosion and the interactions between air temperature and wind erosion in relation to carbon dioxide emission in the Bordekhun region, Boushehr Province, southwestern Iran. Wind erosion intensities were evaluated using IRIFR (Iran Research Institute of Forests and Ranges) model, in which four classes of soil erosion were identified. Afterward, we measured carbon dioxide emission on a monthly basis and for a period of one year using alkali traps in each class of soil erosion. Data on emission levels and erosion classes were analyzed as a factorial experiment in a completely randomized design with twelve replications in each treatment. The highest rate of emission occurred in July (4.490 g CO2/(m2?d)) in severely eroded lands and the least in January (0.086 g CO2/(m2?d)) in low eroded lands. Therefore, it is resulted that increasing erosion intensity causes an increase in soil carbon dioxide emission rate at severe erosion intensity. Moreover, the maximum amount of carbon dioxide emission happened in summer and the minimum in winter. Soil carbon dioxide emission was just related to air temperature without any relationship with soil moisture content; since changes of soil moisture in the wet and dry seasons were not high enough to affect soil microorganisms and respiration in dry areas. In general, there are complex and multiple relationships between various factors associated with soil erosion and carbon dioxide emission. Global warming causes events that lead to more erosion, which in turn increases greenhouse gas emission, and rising greenhouse gases will cause more global warming. The result of this study demonstrated the synergistic effect of wind erosion and global climate warming towards carbon dioxide emission into the atmosphere.  相似文献   

15.
残茬高度对土壤风蚀量影响的试验研究   总被引:5,自引:0,他引:5  
在内蒙古自治区武川县建立农田土壤风蚀试验区,采用内蒙古农业大学研制的移动式风蚀风洞和旋风分离式集沙仪,观测不同残茬高度条件下农田土壤的风蚀情况.试验结果表明:土壤风蚀量和扬起沙尘的高度随风速的增加而增加,随着作物秸秆残茬高度的增加而降低,且风蚀量与高度变化符合指数函数关系,土壤颗粒主要集中在近地表层内运动.保护性耕作可明显地提高起沙风速,减少农田土壤损失,当秸秆高度为30 cm时,风蚀量仅为传统耕地的1/4左右.  相似文献   

16.
呼伦贝尔沙质草原风蚀坑表层土壤粒度特征   总被引:3,自引:1,他引:2  
以呼伦贝尔沙质草原北部沙带中段陈巴尔虎旗完工镇境内风蚀坑环境为研究对象,选取不同发育形态的典型风蚀坑类型,通过系统的风蚀坑形态测量和风蚀坑表面沉积物粒度分析,研究沙质草原风蚀坑表层土壤粒度特征。结果表明:各风蚀坑沙物质总体结构以细砂为主,其次是中砂,极细砂和粉粒含量很少,且除了未风蚀草原表土含极粗砂,其他风蚀阶段皆不含;不同阶段风蚀坑的土壤粒径频率曲线,除消亡阶段为极负偏外,其他阶段均表现为负偏,峰态变化趋势与分选性一致,砂粒分布集中程度依次为:未风蚀草地消亡阶段固定阶段裸地沙斑活跃发展活化阶段,按照分级标准峰态均为中等范围;研究区沉积物粒度组成比较均一,各发育阶段风蚀坑表层颗粒分布曲线型式基本一致,由于风蚀强度的增加,曲线偏向粗颗粒一侧,风蚀活动强度加大及植被破坏程度加剧引起风蚀坑表层砂粒粗化。  相似文献   

17.
吕萍  董治宝  李芳 《干旱区研究》2006,23(1):98-103
为了深入理解土壤风蚀发生机制,利用风洞实验风速廓线资料,采用空气动力学方法,计算了干旱、半干旱地区不同类型地表近地层湍流输送随风速以及地表性质的变化特征.结果表明:地表越粗糙,风速越大,湍流输送越强,且湍流输送强度与地面粗糙元密度有关.  相似文献   

18.
本文探讨了在特定半干旱条件下土壤侵蚀过程的特点,即以不同时空尺度相交织的“风、水两相土壤侵蚀”过程的机制;编绘了研究区典型地段风、水两相土壤侵蚀现状图;分析和讨论了两相侵蚀过程在内蒙古半干旱地区国土整治,特别是水土保持工程中的理论和实践意义。  相似文献   

19.
An experimental study on the influences of wind erosion on water erosion   总被引:1,自引:0,他引:1  
In semi-arid regions, complex erosion resulted from a combination of wind and water actions has led to a massive soil loss and a comprehensive understanding of its mechanism is the first step toward prevention of the erosion. However, the mutual influences between wind erosion and water erosion have not been fully understood. This research used a wind tunnel and two rainfall simulators and simulated two rounds of alternations between wind erosion and water erosion(i.e., 1~(st) wind erosion–1~(st) water erosion and 2~(nd) wind erosion–2~(nd) water erosion) on three slopes(5°, 10°, and 15°) with six wind speeds(0, 9, 11, 13, 15, and 20 m/s) and five rainfall intensities(0, 30, 45, 60, and 75 mm/h). The objective was to analyze the influences of wind erosion on succeeding water erosion. Results showed that the effects of wind erosion on water erosion were not the same in the two rounds of tests. In the 1~(st) round of tests, wind erosion first restrained and then intensified water erosion mostly because the blocking effect of wind-sculpted micro-topography on surface flow was weakened with the increase in slope. In the 2~(nd) round of tests, wind erosion intensified water erosion on beds with no rills at gentle slopes and low rainfall intensities or with large-size rills at steep slopes and high rainfall intensities. Wind erosion restrained water erosion on beds with small rills at moderate slopes and moderate rainfall intensities. The effects were mainly related to the fine grain layer, rills and slope of the original bed in the 2~(nd) round of tests. The findings can deepen our understanding of complex erosion resulted from a combination of wind and water actions and provide scientific references to regional soil and water conservation.  相似文献   

20.
The farming–pastoral ecotone in northern China is an extremely fragile ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号