首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Strains of Erwinia amylovora, the bacterium causing the disease fire blight of rosaceous plants, are separated into two groups based on host range: Spiraeoideae and Rubus strains. Spiraeoideae strains have wide host ranges, infecting plants in many rosaceous genera, including apple and pear. In the field, Rubus strains infect the genus Rubus exclusively, which includes raspberry and blackberry. Based on comparisons of limited sequence data from a Rubus and a Spiraeoideae strain, the gene eop1 was identified as unusually divergent, and it was selected as a possible host specificity factor. To test this, eop1 genes from a Rubus strain and a Spiraeoideae strain were cloned and mutated. Expression of the Rubus-strain eop1 reduced the virulence of E. amylovora in immature pear fruit and in apple shoots. Sequencing the orfA-eop1 regions of several strains of E. amylovora confirmed that forms of eop1 are conserved among strains with similar host ranges. This work provides evidence that eop1 from a Rubus-specific strain can function as a determinant of host specificity in E. amylovora.  相似文献   

2.
ABSTRACT While characterizing the agents involved in symptomatology of a variegated mint, Mentha x gracilis 'Variegata', a nursery plant with atypical symptoms was examined. This plant, unlike 'Variegata', did not exhibit yellow vein banding symptoms but instead had distorted and crinkled leaves. Molecular tests for the three viruses found in 'Variegata' clones failed to detect any of these viruses in the plant. Double-stranded RNA was extracted and cloned, disclosing the presence of two unknown viruses. One of the viruses was a novel member of the family Closteroviridae. The complete nucleotide sequence of the virus, designated as Mint virus 1, has been obtained. A detection test was developed, and revealed the presence of the virus in several other mint clones and species. Genomic regions from three additional isolates were examined to investigate the genetic diversity of the virus. Genome and phylogenetic analysis placed Mint virus 1 in the genus Closterovirus and transmission studies have identified the mint aphid, Ovatus crataegarius, as a vector for this new member of the genus Closterovirus.  相似文献   

3.
Raspberry latent virus (RpLV) is a newly characterized reovirus found in commercial raspberry fields in the Pacific Northwest (PNW). Thus far, all members of the plant reoviruses are transmitted in a replicative, persistent manner by several species of leafhoppers or planthoppers. After several failed attempts to transmit RpLV using leafhoppers, the large raspberry aphid, commonly found in the PNW, was tested as a vector of the virus. The virus was transmitted to new, healthy raspberry plants when inoculated with groups of at least 50 viruliferous aphids, suggesting that aphids are vectors of RpLV, albeit inefficient ones. Using absolute and relative quantification methods, it was shown that the virus titer in aphids continued to increase after the acquisition period even when aphids were serially transferred onto fresh, healthy plants on a daily basis. Transmission experiments determined that RpLV has a 6-day latent period in the aphid before it becomes transmissible; however, it was not transmitted transovarially to the next generation. To our knowledge, this is the first report of a plant reovirus transmitted by an aphid. Phylogenetic analyses showed that RpLV is related most closely to but distinct from Rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus. Moreover, the conserved nucleotide termini of the genomic segments of RpLV did not match those of RRSV or other plant reoviruses, allowing us to suggest that RpLV is probably the type member of a new genus in the Reoviridae comprising aphid-transmitted reoviruses.  相似文献   

4.
5.
6.
7.
8.
9.
The causal agent of apple mosaic disease has been previously thought to be solely caused by apple mosaic virus (ApMV). In this study, we report that a novel ilarvirus is also associated with apple mosaic disease. Next-generation sequencing analysis of an apple tree showing mosaic symptoms revealed that the tree was infected with three apple latent viruses (apple stem pitting virus, apple stem grooving virus, and apple chlorotic leaf spot virus) and a novel ilarvirus (given the name apple necrotic mosaic virus (ApNMV)) that is closely related to Prunus necrotic ringspot virus (PNRSV) and ApMV. The genome of ApNMV consists of RNA1 (3378 nt), RNA2 (2767 nt), and RNA3 (1956 nt). A phylogenetic analysis based on the coat protein amino acid sequences indicated that the novel virus belongs to the same subgroup 3 of the genus Ilarvirus as PNRSV and ApMV. The presence of mosaic leaves, which tend to be unevenly distributed in diseased apple trees, was correlated with the internal distribution of ApNMV. RT-PCR detection of mosaic-diseased apple trees in Japan indicated that ApNMV was detected in apple trees introduced from China, whereas ApMV was detected from cultivated apple trees in domestic orchards. Consistent with these findings, a survey of mosaic-diseased apple trees in major apple-producing provinces in China revealed that the majority of apple trees showing mosaic symptoms in China are infected with ApNMV.  相似文献   

10.
 对曹琦和濮祖芹早期分离到的烟草坏死病毒大豆分离物的生物学、血清学和外壳蛋白的序列进行了进一步研究。该分离物能侵染8科29种植物, 除系统侵染大豆和本生烟外, 其余寄主均为局部侵染。电镜下病毒粒子呈球状, 直径约28nm。基因组为单组分RNA, 大小约为3.7 kb, 具有2条亚基因组, 分别约为1.6 kb和1.3 kb。外壳蛋白亚基的分子量约为30 kDa。血清学试验表明, 该分离物与TNV柳树分离物的抗血清呈特异反应, 与同属坏死病毒属(Necrovirus)的烟草坏死病毒D(TNV-D)和甜菜黑色焦枯病毒(BBSV)无血清学关系。利用简并引物通过RT-PCR克隆了该分离物的外壳蛋白基因。序列分析表明, 该分离物与烟草坏死病毒A(TNV-A)、TNV-D和TNV-DH的外壳蛋白分别具有88.77%、45.13%和45.49%的氨基酸序列一致性。因此, 该大豆分离物属于TNV-A的一个新株系, 命名为TNV-AC。  相似文献   

11.
12.
The aims of the present study were to further characterize the causal agent of a new viral disease of aubergines in Israel, first observed in 2003 and tentatively named eggplant mild leaf mottle virus (EMLMV) in a previous work, and to identify the vector responsible for its spread. The disease could be transmitted mechanically from infected source plants to healthy aubergines or laboratory test plants. Transmission electron microscopy (TEM) analysis of purified virus preparations indicated the presence of viral particles with a flexible filamentous morphology (approximately 720 nm long). TEM analysis of ultrathin sections prepared from infected leaf tissue revealed the presence of cytoplasmic inclusion bodies with pinwheel and crystalline structures, typical of those induced by potyviral infection. The viral coat protein subunit was shown to have a molecular weight of 37·5 kDa by SDS‐PAGE analysis. The viral particles reacted positively in western blot analysis with an antiserum against Tomato mild mottle virus (TomMMoV) from Yemen, described as a potyvirus, vectored by the aphid Myzus persicae. The current study describes some biological properties of EMLMV and presents evidence for its transmission by the whitefly Bemisia tabaci, but not by three aphid species. The taxonomic relationship between EMLMV and TomMMoV is discussed based on their biological characteristics and sequence analysis of their genomes. It is suggested that the Israeli EMLMV should be considered a distant strain of TomMMoV, designated TomMMoV‐IL, according to the present rules of Potyviridae molecular taxonomy.  相似文献   

13.
ABSTRACT The Cucumis melo accession TGR-1551 was found to be resistant to Watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae). The resistance resulted in a drastic and significant reduction of virus titer and infected plants were asymptomatic or exhibited mild disease symptoms. The same gene or closely linked genes restricted virus accumulation and ameliorated symptom expression. No effect was observed on virus accumulation in inoculated leaves, which suggested that the initial phases of infection were not affected. The resistance was effective against a range of WMV isolates from Spanish melon production areas. Using aphid inoculations, resistant plants showed a lower propensity for infection by WMV and for serving as virus sources for secondary spread once infected. Resistance was determined to be under recessive genetic control.  相似文献   

14.
We identified Broad bean wilt virus 2 (BBWV-2) in yams based on particle morphology, test plant symptoms, protein features, aphid transmission, and molecular classification using nucleotide sequences of coat protein genes.  相似文献   

15.
 本文从寄主范旧,蚜传特性、病毒颗粒形态、免疫电镜等方面对嫁接获得的甘薯羽状斑驳病毒廊坊分离物(SPFMV-LF)进行了鉴定,并和SPFMV-RC(美国株)进行了实验比较。SPFMV-LF易汁液摩擦传播和嫁接传播,并以蚜虫非持久性传播,SPFMV-LF系统侵染巴西牵牛(Ipomoea setosa)、牵牛(I.nil);不侵染Chenopodium quinoa、C.ama-ranticolor、Nicotiana benthamiana及其它烟草。尚未发现其局部斑寄主。SPFMV-LF及SPFMV-RC感染I.setosa后引起相似的症状,但感染I.nil后症状差别较大。病毒颗粒长860-830nm,经两次蔗糖垫超速离心从SPFMV-LF感染的I.setosa叶片提取病毒并在BALB/C小鼠中制备抗SPFMV-LF的腹水多克隆抗体,免疫电镜表明,SPFMV-LF的抗体和SPFMV-RC株系有反应。上述实验结果表明SPFMV-LE是SPFMV的一个株系,但不同于SPFMV-RC。  相似文献   

16.
An unusual virus was isolated from a Japanese Cucumis melo cv. Prince melon plant showing mild mottling of the leaves. The virus had a broad experimental host range including at least 19 plant species in five families, with most infected plants showing no symptoms on inoculated and uninoculated systemically infected leaves. The virus particles were spherical, approximately 28 nm in diameter, and the coat protein (CP) had an apparent molecular mass of about 55 kDa. The virus possessed a bi-partite genome with two RNA species, of approximately 8,000 and 4,000 nucleotides. Both genome components for the new virus were sequenced. Amino acid sequence identities in CP between the new virus and previously characterized nepoviruses were found to be low (less than 27%); however, in phylogenetic reconstructions the closest relationship was revealed between the new virus and subgroup A nepoviruses. These results suggest that the new virus represents a novel member of the genus Nepovirus. A new name, Melon mild mottle virus, has been proposed for this new virus.  相似文献   

17.
Naoto Yoshida 《Plant pathology》2020,69(7):1379-1389
Carrot motley dwarf (CMD) is caused by mixed infection of carrot red leaf virus (CtRLV) with either carrot mottle virus (CMoV) or carrot mottle mimic virus, and additional infection with CtRLV-associated RNA (CtRLVaRNA). Here, the author investigated the viruses or virus-like RNA isolated from carrots with reddening symptoms in Hokkaido, the northern island of Japan. Three types of infections were mainly detected: single infection with CtRLV, which was most prevalent; double infection with CtRLV and CMoV; and triple infection with CtRLV, CMoV, and CtRLVaRNA. Fields with the three agents were severely affected, with diseased plants showing mottling, whereas in fields where disease incidence was low and sporadic, CtRLV was often found alone in plants with mild symptoms. Inoculation tests using carrot plants showed that CMoV enhanced disease severity, and the RNA accumulation of CtRLV. However, in the presence of CtRLVaRNA (+ CMoV), distinct symptoms such as systemic mottling and stunting developed, while the enhancement of CtRLV accumulation was abolished. These results imply that CtRLVaRNA (+ CMoV) antagonizes CtRLV despite its dependence on CtRLV for aphid transmission, and that mixed infection with CtRLVaRNA is involved in the development of the conspicuous mottling. All agents detected in Hokkaido were very similar to European and American isolates in terms of their genomic sequences and host range. This represents the first report of CMD in Japan, and provides further information on the genetic and biological properties of CMD-associated agents, as well as the aetiology of the disease.  相似文献   

18.
香蕉束顶病毒株系的研究   总被引:3,自引:3,他引:3  
 采自福建各地蕉区的不同香蕉束顶病毒株类型之间致病性和介体蚜虫的传病率有明显的差异,进一步依其在香蕉品种台湾蕉和Williams上的反应、香蕉交脉蚜的传病率、毒株类型之间的交互保护和血清学测定结果等,把香蕉束顶病毒区分为BBTV-S(重型)和BBTV-M(轻型)两个株系。
BBTV-M和BBTV-S均能引致香蕉叶片上的青筋症状,两者在血清学上有密切关系,但BBTV-M仅引致植株产生少量青筋,而BBTV-S除引致香蕉植株上有大量青筋之外,还引致严重矮化、束顶以及轻度黄化,BBTV-M的潜育期较BBTV-S明显长,香蕉交脉蚜对BBTV-S的传病率大大高于对BBTV-M的传病率,BBTV-M对BBTV-S有强的保护作用。  相似文献   

19.
20.
Grapevine Pinot gris Virus (GPGV) is a single stranded RNA of the genus Trichovirus infecting grapevine (Vitis vinifera) and associated with stunting, chlorotic mottling and leaf deformation symptoms. During a monitoring of GPGV infection in vineyards of the Trentino region in Italy, we have detected the virus in the herbaceous plants Silene latifolia subsp. Alba (Mill.) (bladder campion) and Chenopodium album L. (white goosefoot), which showed symptoms of viral infection. The full-length GPGV RNA genome, amplified from these infected hosts, was sequenced and a phylogenetic analysis revealed that its closest relative is the strain SK13, recently isolated in Slovakia. Our results indicate that herbaceous plants can be considered as a reservoir for the GPGV virus. This finding is important for studying the epidemiological aspects of GPGV disease and to formulate appropriate control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号