首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively.  相似文献   

2.
ABSTRACT The monophyletic origin of host-specific taxa in the plant-pathogenic Fusarium oxysporum complex was tested by constructing nuclear and mitochondrial gene genealogies and amplified fragment length polymorphism (AFLP)-based phylogenies for 89 strains representing the known genetic and pathogenic diversity in 8 formae speciales associated with wilt diseases and root and bulb rot. We included strains from clonal lineages of F. oxysporum f. spp. asparagi, dianthi, gladioli, lilii, lini, opuntiarum, spinaciae, and tulipae. Putatively nonpathogenic strains from carnation and lily were included and a reference strain from each of the three main clades identified previously in the F. oxysporum complex; sequences from related species were used as outgroups. DNA sequences from the nuclear translation elongation factor 1alpha and the mitochondrial small subunit (mtSSU) ribosomal RNA genes were combined for phylogenetic analysis. Strains in vegetative compatibility groups (VCGs) shared identical sequences and AFLP profiles, supporting the monophyly of the two single-VCG formae speciales, lilii and tulipae. Identical genotypes were also found for the three VCGs in F. oxysporum f. sp. spinaciae. In contrast, multiple evolutionary origins were apparent for F. oxysporum f. spp. asparagi, dianthi, gladioli, lini, and opuntiarum, although different VCGs within each of these formae speciales often clustered close together or shared identical EF-1alpha and mtSSU rDNA haplotypes. Kishino-Hasegawa analyses of constraints forcing the monophyly of these formae speciales supported the exclusive origin of F. oxysporum f. sp. opuntiarum but not the monophyly of F. oxysporum f. spp. asparagi, dianthi, gladioli, and lini. Most of the putatively nonpathogenic strains from carnation and lily, representing unique VCGs, were unrelated to F. oxysporum f. spp. dianthi and lilii, respectively. Putatively nonpathogenic or rot-inducing strains did not form exclusive groups within the molecular phylogeny. Parsimony analyses of AFLP fingerprint data supported the gene genealogy-based phylogram; however, AFLP-based phylogenies were considerably more homoplasious than the gene genealogies. The predictive value of the forma specialis naming system within the F. oxysporum complex is questioned.  相似文献   

3.
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of fusarium wilt of chickpea, consists of two pathotypes (yellowing and wilting) and eight races (races 0, 1B/C, 1A and 2–6) of diverse geographical distribution. Six Foc isolates, one each of races 0, 1B/C, 1A, 4, 5 and 6, representing the two pathotypes and the geographical range of the pathogen, showed identical sequences in introns of the genes for translation elongation factor 1α ( EF1 α), β-tubulin, histone 3, actin and calmodulin. Eleven additional Foc isolates representative of all races, pathotypes and geographical range, and three isolates of F. oxysporum (Fo) nonpathogenic to chickpea were further analysed for sequence variation in the EF1 α gene. All isolates pathogenic to chickpeas shared an identical EF1 α gene sequence, which differed from that shared by the three Fo isolates nonpathogenic to chickpea. EF1 α gene sequences from the 17 Foc isolates and the three Fo isolates were compared with 24 EF1 α gene sequences in GenBank from isolates of 11 formae speciales of F. oxysporum by parsimony analysis. Foc isolates formed a grouping distinct from other formae speciales and nonpathogenic isolates. These results indicate that F. oxysporum f. sp. ciceris is monophyletic.  相似文献   

4.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

5.
甘肃定西地区甘蓝枯萎病病原菌的分离与鉴定   总被引:2,自引:0,他引:2  
自2009年起,甘肃定西地区出现了甘蓝植株矮化、叶片黄化、枯萎甚至死亡的现象。2015年8月,我们采集了田间病株样本,使用常规组织分离法对病原菌进行了分离和纯化,依据柯赫氏法则进行了病原菌确认,并通过形态学和分子生物学方法对病原菌进行了鉴定。结果表明病原菌的形态学特征与尖孢镰刀菌Fusarium oxysporum一致,其rDNA-ITS、rDNA-IGS以及EF-1α序列与尖孢镰刀菌F.oxysporum相似性达99%,基于病原菌及尖孢镰刀菌各代表专化型EF-1α序列构建的系统发育树将该菌与尖孢镰刀菌黏团专化型F.oxysporum f.sp.conglutinans聚为一类,故引致甘肃定西地区甘蓝枯萎病的病原菌为尖孢镰刀菌黏团专化型F.oxysporum f.sp.conglutinans。  相似文献   

6.
ABSTRACT The evolutionary relationships of fungi in the Fusarium redolens-F. hostae clade were investigated by constructing nuclear and mitochondrial gene genealogies for 37 isolates representing the known genetic and pathogenic diversity of this lineage, together with 15 isolates from putative sister groups that include the Gibberella fujikuroi and F. oxysporum species complexes and related species. Included in the analyses were 29 isolates of F. redolens from Asparagus, Convallaria, Dianthus, Fritillaria, Hebe, Helleborus, Hordeum, Linum, Pisum, Pseudotsuga, and Zea spp., and from soil. Isolates of F. hostae analyzed included two reference isolates from Hosta spp. and six isolates from Hyacinthus spp. that originally were classified as F. oxysporum f. sp. hyacinthi. DNA sequences from a portion of the nuclear translation elongation factor 1alpha (EF-1alpha) gene and the mitochondrial small subunit (mtSSU) ribosomal RNA (rRNA) were analyzed individually and as a combined data set based on results of the nonparametric Wilcoxon signed ranks Templeton combinability test. Maximum parsimony analysis of the combined data set identified the F. redolens-F. hostae clade as a sister group to a phylogenetically diverse clade in which the G. fujikuroi species complex formed the most basal lineage. Also included in this latter clade were two unnamed Fusarium spp. that are morphologically similar to F. oxysporum and putative sister taxa comprising the F. oxysporum complex and a F. nisikadoi-F. miscanthi clade. Phylogenetic diversity in F. redolens was small; all isolates were represented by only three EF-1alpha and two mtSSU rDNA haplotypes. Both the isolates of F. redolens f. sp. asparagi and those of F. redolens f. sp. dianthi were nearly evenly distributed in the combined molecular phylogeny between the two major subclades within F. redolens.  相似文献   

7.
ABSTRACT Fusarium wilt of lettuce, caused worldwide by Fusarium oxysporum f. sp. lactucae, is an emerging seed-transmitted disease on Lactuca sativa. In order to develop a molecular diagnostic tool for identifying race 1 (VCG0300) of the pathogen on vegetable samples, an effective technique is presented. Inter-retrotransposon amplified polymorphism polymerase chain reaction (PCR), a technique based on the amplification of genomic regions between long terminal repeats, was applied. It was shown to be useful for grouping F. oxysporum f. sp. lactucae race 1 isolates. Inter-retrotransposon sequence-characterized amplified regions (IR-SCAR) was used to develop a specific set of PCR primers to be utilized for differentiating F. oxysporum f. sp. lactucae isolates from other F. oxysporum isolates. The specific primers were able to uniquely amplify fungal genomic DNA from race 1 isolates obtained in Italy, Portugal, the United States, Japan, and Taiwan. The primers also were specific to pathogen DNA obtained from artificially infected lettuce seed and naturally and artificially infected plants.  相似文献   

8.
One hundred and sixteen isolates of Fusarium oxysporum f. sp. lactucae obtained from 85 fields in three crisphead lettuce-producing areas in Nagano Prefecture, Japan were typed for races using differential cultivars Patriot, Banchu Red Fire and Costa Rica No. 4. They were also grouped into vegetative compatibility groups (VCGs) using complementation tests with nitrate non-utilizing (nit) mutants. Two California strains reported as F. oxysporum f. sp. lactucum, a type culture of F. oxysporum f. sp. lactucae, and 28 avirulent isolates of F. oxysporum obtained from crisphead lettuce were included for comparison. Among Nagano isolates, 66 isolates were identified as race 1, and 50 as race 2. Race 1 strains derived from Shiojiri and Komoro cities and race 2 from Kawakami village and Komoro city. All isolates of race 2 were biotin auxotrophs, and the race could be distinguished based on its requirement for biotin on minimal nitrate agar medium (MM). Pathogenic isolates were classified into two VCGs and three heterokaryon self-incompatible isolates. Strong correlations were found between race and VCG. All the race 1 strains were assigned to VCG 1 except self-incompatible isolates, and all the race 2 strains to VCG 2. The 28 avirulent isolates of F. oxysporum were incompatible with VCG 1 and VCG 2. California strains was vegetatively compatible with VCG 1, and they were assigned to race 1. Based on vegetative compatibility, these two races of F. oxysporum f. sp. lactucae may be genetically distinct, and F. oxysporum f. sp. lactucae race 1 is identical to F. oxysporum f. sp. lactucum. Received 7 May 2002/ Accepted in revised form 6 September 2002  相似文献   

9.
ABSTRACT Thirty-nine isolates of Fusarium oxysporum were collected from tomato plants displaying wilt symptoms in a field in California 2 years after F. oxysporum f. sp. lycopersici race 3 was first observed at that location. These and other isolates of F. oxysporum f. sp. lycopersici were characterized by pathogenicity, race, and vegetative compatibility group (VCG). Of the 39 California isolates, 22 were in VCG 0030, 11 in VCG 0031, and six in the newly described VCG 0035. Among the isolates in VCG 0030, 13 were race 3, and nine were race 2. Of the isolates in VCG 0031, seven were race 2, one was race 1, and three were nonpathogenic to tomato. All six isolates in VCG 0035 were race 2. Restriction fragment length polymorphisms (RFLPs) and sequencing of the intergenic spacer (IGS) region of rDNA identified five IGS RFLP haplotypes, which coincided with VCGs, among 60 isolates of F. oxysporum from tomato. Five race 3 isolates from California were of the same genomic DNA RFLP haplotype as a race 2 isolate from the same location, and all 13 race 3 isolates clustered together into a subgroup in the neighbor joining tree. Collective evidence suggests that race 3 in California originated from the local race 2 population.  相似文献   

10.
ABSTRACT Specific primers and polymerase chain reaction (PCR) assays that identify Fusarium oxysporum f. sp. ciceris and each of the F. oxysporum f. sp. ciceris pathogenic races 0, 1A, 5, and 6 were developed. F. oxysporum f. sp. ciceris- and race-specific random amplified polymorphic DNA (RAPD) markers identified in a previous study were cloned and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. Each cloned RAPD marker was characterized by Southern hybridization analysis of Eco RI-digested genomic DNA of a subset of F. oxysporum f. sp. ciceris and nonpathogenic F. oxysporum isolates. All except two cloned RAPD markers consisted of DNA sequences that were found highly repetitive in the genome of all F. oxysporum f. sp. ciceris races. F. oxysporum f. sp. ciceris isolates representing eight reported races from a wide geographic range, nonpathogenic F. oxysporum isolates, isolates of F. oxysporum f. spp. lycopersici, melonis, niveum, phaseoli, and pisi, and isolates of 47 different Fusarium spp. were tested using the SCAR markers developed. The specific primer pairs amplified a single 1,503-bp product from all F. oxysporum f. sp. ciceris isolates; and single 900- and 1,000-bp products were selectively amplified from race 0 and race 6 isolates, respectively. The specificity of these amplifications was confirmed by hybridization analysis of the PCR products. A race 5-specific identification assay was developed using a touchdown-PCR procedure. A joint use of race 0- and race 6-specific SCAR primers in a single-PCR reaction together with a PCR assay using the race 6-specific primer pair correctly identified race 1A isolates for which no RAPD marker had been found previously. All the PCR assays described herein detected up to 0.1 ng of fungal genomic DNA. The specific SCAR primers and PCR assays developed in this study clearly identify and differentiate isolates of F. oxysporum f. sp. ciceris and of each of its pathogenic races 0, 1A, 5, and 6.  相似文献   

11.
In 1995, Fusarium root rot of crisp head lettuce, caused by Fusarium oxysporum f. sp. lactucae, was simultaneously found in the Shiojiri and Kawakami areas of Nagano Prefecture, Japan. The Shiojiri and Kawakami isolates differed in pathogenicity to lettuce cultivars. Because of this distinct physiological specialization, these Shiojiri and Kawakami isolates should be designated as race 1 and race 2, respectively, using lines VP1010 (highly resistant to race 1), VP1013 (highly resistant to race 2) and variety Patriot (highly susceptible to both races) as differential varieties. This is the first report of races of Fusarium oxysporum f. sp. lactucae, Received 21 September 2000/ Accepted in revised form 21 March 2001  相似文献   

12.
Auxotrophic mutants were used to determine vegetative relatedness among isolates of Fusarium oxysporum f.sp. dianthi (F.o.d.) , the vascular wilt pathogen of carnation. At the first stage, different nitrate-non-utilizing (nit) mutants were produced from 11 isolates of F.o.d. collected in Israel. Complementation (heterokaryon) tests showed that all the isolates belonged to a single vegetative compatibility group (VCG), and two mutants were chosen as its testers. Additional isolates of Fusarium from carnation, collected during 1986-88, were analysed for pathogenicity and vegetative compatibility with the testers. A total of 170 Fusarium isolates, obtained from 42 cultivars at 40 sites, were tested. All the nit mutants of all the 132 pathogenic isolates formed heterokaryons with the testers, indicating that they belonged to the same VCG. None of the 38 non-pathogenic isolates was vegetatively compatible with the testers. The nit mutants retained pathogenicity to carnation. The F.o.d. testers were not compatible with testers of five other formae speciales of F. oxysporum. Thus, F.o.d. appears to constitute a distinct genetic population within the F. oxysporum complex.  相似文献   

13.
尖孢镰刀菌的遗传多态性   总被引:13,自引:0,他引:13  
 尖孢镰刀菌是重要的植物维管束病原真菌。近年来,有关该菌的遗传多态性研究报道很多,本文着重综述了利用营养体亲和群、DNA多态性技术研究尖孢镰刀菌专化型、小种及其相互关系等方面的进展,同时介绍了对棉花枯萎病菌、瓜类枯萎病菌及尖孢镰刀菌小种起源等的研究概况。  相似文献   

14.
A severe root and stem rot disease of melon was observed during the 2001 growing season on four glasshouse crops in Heraklio, Greece. A total of 43 isolates of F. oxysporum , obtained in Crete from glasshouse-grown melon and showing fusarium wilt or root and stem rot symptoms, were characterized by pathogenicity and vegetative compatibility. The majority of these isolates was also fingerprinted via amplified fragment length polymorphic (AFLP) analysis. Of the total number of isolates, 22 were identified by pathogenicity tests as F. oxysporum f. sp. melonis , 20 as F. oxysporum f. sp. radicis-cucumerinum , while one isolate was nonpathogenic on cucumber, melon, sponge gourd and pumpkin. All 22 isolates of F. oxysporum f. sp. melonis were assigned to vegetative compatibility group (VCG) 0134, and all 20 isolates of F. oxysporum f. sp. radicis-cucumerinum to VCG 0260. Isolates of F. oxysporum f. sp. radicis-cucumerinum were incompatible with isolates of F. oxysporum f. sp. melonis. AFLP fingerprinting allowed for the clustering of the isolates of the two formae speciales of F. oxysporum along two separate phenetic groups: f. sp. melonis to AFLP major haplotype I, and f. sp. radicis-cucumerinum to AFLP major haplotype II. Overall, pathogenicity, vegetative compatibility grouping and AFLP analysis were correlated and effectively distinguished isolates of F. oxysporum from melon. This appears to be the first report of natural infection of melon by F. oxysporum f. sp. radicis-cucumerinum worldwide.  相似文献   

15.
 对尖孢镰刀菌10个专化型18个菌株进行分析发现,在尖孢镰刀菌大豆专化型Fusarium oxysporum f.sp.Glycines 1193-31中存在双链RNA,由6种成分组成,其大小分别为3.8kb,3.0kb,2.4kb,0.48kb,0.43kb和0.21kb,该菌株气生菌丝少,形成大量的粉红色分生孢子堆,并发生角变。  相似文献   

16.
Thirty-six isolates of Fusarium oxysporum originated from Eruca vesicaria and Diplotaxis tenuifolia together with eight reference strains belonging to the formae speciales raphani, matthioli and conglutinans, typical on the Brassicaceae family, were tested for pathogenicity on two species of rocket plants (E. vesicaria L., syn. E. sativa, cv. ‘Rucola coltivata’; and D. tenuifolia cv. ‘Winter’) cultivated in the glasshouse. The results showed that different isolates were slightly, moderately or highly virulent. The strains were examined for differences in the nucleotide sequence of the ribosomal DNA (rDNA) intergenic spacer (IGS) region, about 2.5 kb long. The phylogenetic (neighbor-joining) analysis performed on the isolates enabled identification of four different groups, named I, II, III and IV. Thirty-one isolates out of 36 clustered in group I and were genetically similar to F. oxysporum f.sp. raphani. By considering the pathogenicity of the strains included in Group I, a partial host specialization could be observed: the average disease index of the isolates from D. tenuifolia was higher on wild rocket, whereas the average disease index of the isolates from E. vesicaria was higher on cultivated rocket. Moreover, isolates from cultivated rocket showed, on average, a higher degree of aggressiveness than the isolates from wild rocket. Concerning Group I, the sequence analysis confirmed the homogeneity of the population, with only five parsimony-informative SNPs and five haplotypes. Twenty-six out of 31 isolates belonged to haplotype 1. Groups II and III were genetically similar to strains of F. oxysporum f.sp. matthioli. Three other strains, not pathogenic or with a medium level of virulence, clustered together in Group 4, but their sequence was distant from that of other formae speciales. The pathogenicity and IGS analysis confirmed the presence of virulence variation and genetic diversity among the F. oxysporum isolates studied. To our knowledge, this is the first report of differentiation of formae speciales of F. oxysporum on rocket plants by IGS analysis.  相似文献   

17.
ABSTRACT In order to elucidate the origin of Fusarium oxysporum f. sp. dianthi in Argentina, the genetic diversity among pathogenic isolates together with co-occurring nonpathogenic isolates on carnation was investigated. In all, 151 isolates of F. oxysporum were obtained from soils and carnation plants from several horticultural farms in Argentina. The isolates were characterized using vegetative compatibility group (VCG), intergenic spacer (IGS) typing, and pathogenicity tests on carnation. Seven reference strains of F. oxysporum f. sp. dianthi also were analyzed and assigned to six different IGS types and six VCGs. Twenty-two Argentinean isolates were pathogenic on carnation, had the same IGS type (50), and belonged to a single VCG (0021). The 129 remaining isolates were nonpathogenic on carnation and sorted into 23 IGS types and 97 VCGs. The same VCG never occurred in different IGS types. Our results suggest that the pathogen did not originate in the local populations of F. oxysporum but, rather, that it was introduced into Argentina. Given the genetic homogeneity within Argentinean isolates of F. oxysporum f. sp. dianthi, either IGS type or VCG can be used for the identification of the forma specialis dianthi currently in Argentina.  相似文献   

18.
Fusarium wilt of melon caused by Fusarium oxysporum f. sp. melonis is a destructive fungal disease in melon growing regions. Isolates of F. oxysporum obtained from six major melon producing provinces in Iran, from melons and other hosts, were characterized based on pathogenicity to melon, vegetative compatibility groups (VCGs) and nuclear ribosomal DNA intergenic spacer (IGS) sequencing. Thirty-four of 41 isolates from Iran in this study were identified as race 1,2 which belonged to either VCG 0134 or an unassigned VCG, which based on IGS sequencing grouped with the VCG 0135 tester isolate. The seven remaining isolates were identified as nonpathogenic to melon belonging to two undescribed VCGs. Based on sequence analyses of the IGS region of Iranian and foreign isolates, nine lineages were identified, each including one VCG. The separation of VCGs into distinct lineages based on IGS sequences is mostly consistent with Repetitive extragenic palindromic PCR (Rep-PCR) results. Exceptions are VCGs 0130 and 0131, which could be differentiated with IGS sequences, but not with Rep-PCR. Different races from the USA, France and Iran associated with VCG 0134 grouped into one IGS lineage but could be differentiated with Rep-PCR, suggesting that this VCG is more diverse than previously thought. Given the long history of melon cultivation in Iran and the Rep-PCR diversity of isolates belonging to this VCG, it could be speculated that VCG 0134 perhaps evolved in Iran.  相似文献   

19.
By random amplified polymorphic DNA (RAPD) analysis of the representative isolates of each race of Fusarium oxysporum f. sp. lactucae, RAPD fragments of 0.6, 1.6, and 2.9kb were obtained. The 0.6-kb RAPD fragment was common to the representative isolates of all three races. Amplification of the 1.6- and 2.9-kb fragments were unique to the isolates of races 1 and 2, respectively. Sequence tagged site (STS) marker FLA0001, FLA0101, and FLA0201 were generated from the 0.6-, 1.6-, and 2.9-kb RAPD fragments, respectively. Polymerase chain reaction (PCR) analysis showed that FLA0001 was common to all 49 isolates of F. oxysporum f. sp. lactucae. FLA0101 was specifically generated from all 23 isolates of race 1 but not from races 2 or 3. FLA0201 was specifically amplified from all 12 isolates of race 2 but not from races 1 or 3. In two isolates of F. oxysporum f. sp. lactucum, PCR amplified FLA0001 and FLA0101 but not FLA0201. On the other hand, these STS markers were not detected from isolates of five other formae speciales. Because these STS markers were not generated from isolates of other plant pathogenic fungi, bacteria, or plant materials examined in this study, PCR analysis combined with the three STS markers should be a useful means for rapid identification of races of F. oxysporum f. sp. lactucae.  相似文献   

20.
Phosphonate (0.1 mM) significantly reduced growth of Fusarium oxysporum f. sp. cubense (Foc) race 4 grown at an optimal phosphate concentration of 0.3 mM in vitro. At higher phosphate concentrations, closer to physiological conditions within the plant, the sensitivity of Foc race 4 to phosphonate was greatly reduced, with 25 mM phosphonate required to reduce growth by 50% at 1 mM phosphate. Two isolates of Fusarium oxysporum f. sp. dianthi and another race of Foc, race 1, were shown to be similar to Foc race 4 in their sensitivity to phosphonate, while another species of Fusarium, F. avenaceum , was more sensitive to phosphonate in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号