首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
–  • Previous studies on competitive interactions among silver birch, Scots pine, and Siberian larch have not addressed the direct importance of the species identity of nearby competitors.  相似文献   

2.
We determined fine root biomass and production of 15-, 35- and 100-year-old Scots pine (Pinus sylvestris L.) stands during three growing seasons. Fine roots were sampled by the soil core method. Mean (+/- SE) annual fine root biomass of Scots pine in the 15-, 35- and 100-year-old stands was 220 +/- 25, 357 +/- 21 and 259 +/- 26 g m(-2), respectively. Fine root biomass of the understory vegetation was 159 +/- 54 g m(-2), 244 +/- 30 and 408 +/- 81 g m(-2), and fine root necromass was 500 +/- 112, 1,047 +/- 452 and 1,895 +/- 607 g m(-2) in the sapling, pole stage and mature stands, respectively. Both understory and Scots pine fine root production increased with stand age. Mean annual Scots pine fine root production was 165 +/- 131, 775 +/- 339 and 860 +/- 348 g m(-2) year(-1) in the sapling, pole stage and mature stand, respectively. The respective mean annual production of all fine roots (Scots pine and understory) was 181 +/- 129, 1,039 +/- 497 and 1,360 +/- 869 g m(-2) year(-1). The Scots pine and understory fine root biomass, necromass and production varied in relation to stand age, although the variation was not statistically significant.  相似文献   

3.
Scots pine is a highly diverse species, extended across Europe from Scandinavia to Spain, Italy, Greece and Turkey. It is also a valuable species, used in many commercial monoculture plantations in Great Britain and particularly in Scotland. Because of the diversity of growing environments and its commercial importance, it is necessary to identify the combination of significant factors affecting the observed variability of growth. Temperature, mainly during the growing season, is quite commonly considered as the most important factor in knowledge-based or empirical models. However, in highly oceanic climates like that of Scotland, the impact of temperature may have a less significant impact on growth. Here we argue that other factors, such as incoming winter solar radiation, frost, drought and management also have a significant effect on the growth of Scots pine. In addition, we argue that the already developed Ecological Site Classification knowledge-based model, used as a forest management tool in Great Britain, should be updated to incorporate our findings. Furthermore, we discuss the need to include management impact and possibly more physiological based components in its growth modelling routines, as these would allow the introduction of the effect of winter solar radiation.  相似文献   

4.
To gain insight into the question of which vegetation characteristics have the most influence on avian assemblages in late-successional forests, the habitat preferences of bird-guilds in old-growth endemic forests of Macedonian pine were studied over 3 years in the Pirin National Park, Bulgaria. Bird–habitat relationships were investigated by comparing vegetation characteristics, and bird species richness, diversity, abundance, and guild structure of birds (determined according to food type, foraging and nesting sites) between mature (60–100 years old) and over-mature (>120 years old) Macedonian pine forest stands. Studied forest age-classes differed mainly by the density, height and diameter of trees, and the amount of dead wood. The first one of these parameters decreased and the latter two parameters increased with the forest succession. The difference in the vegetation structure affected the abundance of bird-guilds and thus, the overall bird abundance and the structure of avian assemblages within Macedonian pine forests. There was no significant difference in bird diversity among studied forest age-classes, but the overall bird abundance increased with forest maturation. Analyzed by study plots, species richness was higher in over-mature forests, but at cluster level, there was no significant difference between mature and over-mature forest age-classes. Half of the studied (insectivorous, hole- and ground-nesters, bark- and canopy-foraging bird species) guilds were more abundant in over-mature forests, while there was no bird-guild exhibiting a preference for mature forest stands. The abundances of bird-guilds were correlated with tree height, diameter at breast height and the amount of dead wood between the studied forest age-classes and this might explain their preferences for over-mature pine forests. Therefore, for future sustainable management of these endemic forests and the conservation of their avifauna, efforts should focus on protecting the remaining native old-growth forest stands and the importance of the structure of Macedonian pine forests on their bird assemblages should be considered in forestry practices.  相似文献   

5.
Different multiple linear regression models of maximum leaf area index (LAImax) based on stand characteristics, site quality, meteorological variables and their combinations were constructed and cross-validated for three economically important tree species in Flanders, Belgium: European beech (Fagus sylvatica L.), Pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.). The models were successfully tested on similar datasets of experimental sites across Europe. For each species, ten homogeneous and mature stands were selected, covering the species’ entire stand productivity range based on an a priori site index classification. LAImax was derived from measurements of leaf area index (LAI) made by means of hemispherical digital photography over the whole growing season (mid-April till end October 2008). Species-specific models of LAImax for beech and oak were mostly driven by management practice affecting stand characteristics and tree growth. Tree density and dominant height were main predictors for beech, while stand age and tree-ring growth were important in the oak models. Scots pine models were more affected by site quality and meteorological variables. The beech meteorological model showed very good agreement with LAI at several European sites. Scots pine’s stand model predicted well LAI across Europe. Since the species-specific models did not share common predictors, generic models of LAImax were developed for the 30 studied sites. Dominant height was found to be the best predictor in those generic models. As expected, they showed a lower predictive performance than species-specific ones.  相似文献   

6.
冀北山地油松林净生产力与相关立地因子关系模型的研究   总被引:1,自引:0,他引:1  
为推测林分生产力,提高森林经营水平,在对冀北山地油松林标准地进行调查的基础上,建立树高随林龄的增长而变化的导向曲线模型,通过模型给出各标准地的立地指数;建立油松单株生物量与单株胸径树高关系模型,导出各标准地林分生物量;建立林分生物量与林分密度、林龄及立地指数关系模型,进而建立林分净生产力与林分密度、林龄及立地指数关系模型。  相似文献   

7.
Nutrient dynamics of an Aleppo pine (Pinus halepensis, Mill.) ecosystem located in the Kassandra peninsula, Central Macedonia, Northern Greece, were studied using a chronosequence approach. The nutrient composition of the Aleppo pine trees, the understory evergreen broadleaves and forest floor in adjacent stands of 23, 48, 70 and over 100 years old was determined to estimate postfire nutrient losses. The concentration of nutrients in the Aleppo pine trees, except of Ca, was reduced with increasing stand age. Ca was the most abundant nutrient in the aboveground vegetation and in forest litter, followed by N, K, Mg and P. The accumulation of nutrients in the aboveground biomass was positively related to stand age. For younger stands nutrient accumulation was considerably larger in the understory vegetation as compared to the pines, due to substantial enhancement of the understory biomass and the number of understory species present. In middle-aged stands, however, nutrient accumulation in the understory and overstory vegetation reached a balance. In addition, considerable quantities of nutrients have been accumulated in the forest floor particularly in stands of 48 years old. Therefore, any destruction during the period of maximum nutrient accumulation in the forest floor will cause degradation of the ecosystem. It is postulated that the competition for nutrients between overstory and understory vegetation may be as important as competition in soil. Forest management practices leading to the direct conversion of the understory biomass into littermass would be of great significance for the sustainability of the Aleppo pine ecosystem.  相似文献   

8.
Prescribed fire is an important tool in the management of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forests, yet effects on bark beetle (Coleoptera: Curculionidae, Scolytinae) activity and tree mortality are poorly understood in the southwestern U.S. We compared bark beetle attacks and tree mortality between paired prescribed-burned and unburned stands at each of four sites in Arizona and New Mexico for three growing seasons after burning (2004–2006). Prescribed burns increased bark beetle attacks on ponderosa pine over the first three post-fire years from 1.5 to 13% of all trees, increased successful, lethal attacks on ponderosa pine from 0.4 to 7.6%, increased mortality of ponderosa pine from all causes from 0.6 to 8.4%, and increased mortality of all tree species with diameter at breast height >13 cm from 0.6 to 9.6%. On a per year basis, prescribed burns increased ponderosa pine mortality from 0.2% per year in unburned stands to 2.8% per year in burned stands. Mortality of ponderosa pine 3 years after burning was best described by a logistic regression model with total crown damage (crown scorch + crown consumption) and bark beetle attack rating (no, partial, or mass attack by bark beetles) as independent variables. Attacks by Dendroctonus spp. did not differ significantly over bole heights, whereas attacks by Ips spp. were greater on the upper bole compared with the lower bole. Three previously published logistic regression models of tree mortality, developed from fires in 1995–1996 in northern Arizona, were moderately successful in predicting broad patterns of tree mortality in our data. The influence of bark beetle attack rating on tree mortality was stronger for our data than for data from the 1995–1996 fires. Our results highlight canopy damage from fire as a strong and consistent predictor of post-fire mortality of ponderosa pine, and bark beetle attacks and bole char rating as less consistent predictors because of temporal variability in their relationship to mortality. The small increase in tree mortality and bark beetle attacks caused by prescribed burning should be acceptable to many forest managers and the public given the resulting reduction in surface fuel and risk of severe wildfire.  相似文献   

9.
Variations in fine root biomass of trees and understory in 16 stands throughout Finland were examined and relationships to site and stand characteristics determined. Norway spruce fine root biomass varied between 184 and 370 g m(-2), and that of Scots pine ranged between 149 and 386 g m(-2). In northern Finland, understory roots and rhizomes (< 2 mm diameter) accounted for up to 50% of the stand total fine root biomass. Therefore, the fine root biomass of trees plus understory was larger in northern Finland in stands of both tree species, resulting in a negative relationship between fine root biomass and the temperature sum and a positive relationship between fine root biomass and the carbon:nitrogen ratio of the soil organic layer. The foliage:fine root ratio varied between 2.1 and 6.4 for Norway spruce and between 0.8 and 2.2 for Scots pine. The ratio decreased for both Norway spruce and Scots pine from south to north, as well as from fertile to more infertile site types. The foliage:fine root ratio of Norway spruce was related to basal area and stem surface area. The strong positive correlations of these three parameters with fine root nitrogen concentration implies that more fine roots are needed to maintain a certain amount of foliage when nutrient availability is low. No significant relationships were found between stand parameters and fine root biomass at the stand level, but the relationships considerably improved when both fine root biomass and stand parameters were calculated for the mean tree in the stand. When the northern and southern sites were analyzed separately, fine root biomass per tree of both species was significantly correlated with basal area and stem surface area per tree. Basal area, stem surface area and stand density can be estimated accurately and easily. Thus, our results may have value in predicting fine root biomass at the tree and stand level in boreal Norway spruce and Scots pine forests.  相似文献   

10.
The production and allocation of aboveground biomass and the characteristics of tree architecture were examined in eight-year-old Scots pine (Pinus sylvestris L.). Considerable among-tree variation existed in tree architecture, total aboveground dry mass production, and dry mass partitioning among tree parts. A linear relationship existed between needle and branch mass. Stem mass was directly proportional to tree height, which in turn was directly proportional to the allocation ratio between stem mass and total needle + branch mass production. The architectural characteristics that were related to a high proportional allocation to stem and high stemwood production were a large mean shoot volume, large mean number of branches per whorl, long needle retention and a high crown length/crown width ratio. Individual trees were found that combined high stemwood production with both high harvest index and high stemwood specific gravity.  相似文献   

11.
12.
13.
14.
This study focuses on two rarely studied aspects of oak decline: relations with site characteristics and effects on tree growth. The study was carried out in a 5.5 ha stand in Hungary which is strongly affected by oak decline. The nearly pure sessile oak (Quercus petraea) stand of mostly coppice origin was 90 years old at the beginning of the study. Within-stand site heterogeneity was described by the herbaceous vegetation. Four ecological site types were distinguished by the species composition of herbs, and characterized by the ecological indicator values of the species. Tree growth between 1987 and 1993 was measured, and tree vigour was estimated from visual characteristics five times between 1987 and 1993. Potential volume increment of declining trees was estimated with the growth rates of healthy trees of the same size. Volume increment loss caused by oak decline was also assessed. Significant positive relationships were found between tree vigour and tree size and between tree vigour and tree growth. The growth of seriously declining trees dropped to almost one-half of that of healthy ones. Growth reduction of living trees at the stand level amounted to 5.4%, whereas growth reduction of all trees, including those that died during the observation period, amounted to 19.9% of the potential growth. Tree size and growth were greater on better sites. A strong relationship was also found between tree vigour and site type, but sessile oak was more susceptible to decline at better sites.  相似文献   

15.
《林业研究》2020,31(5)
Biotic and abiotic factors control aboveground biomass(AGB) and the structure of forest ecosystems. This study analyses the variation of AGB and stand structure of evergreen broadleaved forests among six ecoregions of Vietnam. A data set of 173 1-ha plots from 52 locations in undisturbed old-growth forests was developed. The results indicate that basal area and AGB are closely correlatedwith annual precipitation, but not with annual temperature,evaporation or hours of sunshine. Basal area and AGB are positively correlated with trees [ 30 cm DBH. Most areas surveyed(52.6%) in these old-growth forests had AGB of100–200 Mg ha~(-1); 5.2% had AGB of 400–500 Mg ha~(-1),and 0.6% had AGB of [ 800 Mg ha~(-1). Seventy percent of the areas surveyed had stand densities of 300–600 ind.ha~(-1), and 64% had basal areas of 20–40 m~2 ha~(-1). Precipitation is an important factor influencing the AGB of old-growth, evergreen broadleaved forests in Vietnam.Disturbances causing the loss of large-diameter trees(e.g.,[ 100 cm DBH) affects AGB but may not seriously affect stand density.  相似文献   

16.
  • ? Stand structure indices would appear to be good surrogate measures for biodiversity in forest ecosystems.
  • ? The vertical structure of Pinus sylvestris L. stands in Central Spain was analysed in order to evaluate their structural diversity. A comparison between two forests with similar ecological conditions but managed under different silvicultural systems was conducted in order to analyse changes in diversity at different stages of stand development. Height diversity was quantified using two non-spatially explicit indices (Shannon’s index and STVI) as well as two spatially explicit indices (Gadow’s differentiation index and the Structure complexity index). A new diversity index was then proposed, based on the sum of square roots of height differences (SQRI).
  • ? Correlations between all vertical structure indices were highly significant. All indices showed that height diversity was greater in the forest with the longer regeneration period and where less intensive thinnings were applied throughout the rotation. Diversity was highest in uneven-aged stands and in the period between the regeneration stage and the first thinning. Thinning from below accounted for the decrease in vertical structure complexity throughout the rotation in even-aged stands.
  • ? The results show that height distribution along with successional stage data enhance the analysis of vertical diversity since structural complexity is highly related to the silvicultural practices that are carried out at different ages.
  •   相似文献   

    17.
    lNTRODUCTIONTherhythInofKorcanpinegrowingandtrpearchitectUreissubjectedtoitsownl1crcd-ityandforeststructUre.Tl1cil11portantefTcctsofgapdynamicsarethereasonsthatmaketl1cKoreanpinetrceformhighqualityoftimbcr.Whilecurrentn1anagemcntofKoreanpincforestmainlyfocusesonpurestand,thccco-logicalrelationshipsbetWcenKoreanpineandothcrsPecicsinaconununityareneglected,thcprimitivebiologicalconditionislost.TheKo-reanpinetrecsinplantationcasilydivergeonthctOpofmainsten1,thesescverelyaITectthcgrOedqu…  相似文献   

    18.

    Key message

    A climate-sensitive aboveground biomass (AGB) equation, in combination with nonlinear mixed-effects modeling and dummy variable approach, was developed to examine how climate change may affect the allometric relationships between tree diameter and biomass. We showed that such changes in allometry need to be taken into account for estimating tree AGB in Masson pine.

    Context

    As a native species and being widely distributed in subtropical China, Masson pine (Pinus massoniana Lamb.) forests play a pivotal role in maintaining forest ecosystem functions and mitigation of carbon concentration increase at the atmosphere. Traditional biomass allometric equations do not account for a potential effect of climate on the diameter–biomass relationships. The amplitude of such an effect remains poorly documented.

    Aims

    We presented a novel method for detecting the long-term (2041–2080) effects of climate change on the diameter–biomass relationships and the potential consequences for long-term changes of biomass accumulation for Masson pine.

    Methods

    Our approach was based on a climate-sensitive AGB model developed using a combined nonlinear mixed-effects model and dummy variable approach. Various climate-related variables were evaluated for their contributions to model improvement. Heteroscedasticity was accounted for by three residual variance functions: exponential function, power function, and constant plus function.

    Results

    The results showed that diameter at breast height, together with the long-term average of growing season temperature, total growing season precipitation, mean temperature of wettest quarter, and precipitation of wettest quarter, had significant effects on values of AGB. Excessive rain during the growing season and high mean temperature in the wettest quarter reduced the AGB, while a warm growing season and abundant precipitation in the wettest quarter increased the AGB.

    Conclusion

    Climate change significantly affected the allometric scale of biomass equation. The new climate-sensitive allometric model developed in this study may improve biomass predictions compared with the traditional model without climate effects. Our findings suggested that the AGB of Masson pine trees with the same diameter at breast height under three climate scenarios including representative concentration pathway (RCP) 2.6, RCP 4.5, and RCP 8.5 in the future period 2041–2080 would increase by 24.8 ± 32.7% (mean ± standard deviation), 27.0 ± 33.4%, and 27.7 ± 33.8% compared with the constant climate (1950–2000), respectively. As a consequence, we may expect a significant regional variability and uncertainty in biomass estimates under climate change.
      相似文献   

    19.
    The effect of uncertainty on the cost-effectiveness of alternative chains of stand establishment in northern Finland was examined. The data were from a reforestation study of Scots pine (Pinus sylvestris L.) consisting of 288 sample plots, which were measured with respect to regeneration success. The study design included four site-preparation methods (patch scarification, ploughing, prescribed burning and disk trenching) combined with three reforestation methods (sowing, planting with containerized seedlings and planting with bare-rooted transplants). Initial reforestation density was 2,500 spots or seedlings per hectare, and the regeneration success was modeled as probability with two thresholds, namely 500 and 1,100 saplings. On formerly spruce-dominated as well as pine-dominated sites the most cost-effective chain was ploughing and planting with containerized seedlings, when threshold was 1,100 saplings per hectare. However, with threshold of 500 saplings the best performer was ploughing and direct sowing on both sites.  相似文献   

    20.
    Time series of carbon fluxes in individual Scots pine (Pinus sylvestris L.) trees were constructed based on biomass measurements and information about component-specific turnover and respiration rates. Foliage, branch, stem sapwood, heartwood and bark components of aboveground biomass were measured in 117 trees sampled from 17 stands varying in age, density and site fertility. A subsample of 32 trees was measured for belowground biomass excluding fine roots. Biomass of fine roots was estimated from the results of an earlier study. Statistical models were constructed to predict dry mass (DW) of components from tree height and basal area, and time derivatives of these models were used to estimate biomass increments from height growth and basal area growth. Biomass growth (G) was estimated by adding estimated biomass turnover rates to increments, and gross photosynthetic production (P) was estimated by adding estimated component respiration rates to growth. The method, which predicts the time course of G, P and biomass increment in individual trees as functions of height growth and basal area growth, was applied to eight example trees representing different dominance positions and site fertilities. Estimated G and P of the example trees varied with competition, site fertility and tree height, reaching maximum values of 22 and 43 kg(DW) year(-1), respectively. The site types did not show marked differences in productivity of trees of the same height, although height growth was greater on the fertile site. The G:P ratio decreased with tree height from 65 to 45%. Growth allocation to needles and branches increased with increasing dominance, whereas growth allocation to the stem decreased. Growth allocation to branches decreased and growth allocation to coarse roots increased with increasing tree size. Trees at the poor site allocated 49% more to fine roots than trees at the fertile site. The belowground parts accounted for 25 to 55% of annual G, increasing with tree size and decreasing with site fertility. Annual G and P per unit needle mass varied over the ranges 1.9-2.4 and 3.5-4.0 kg(DW) kg(-1), respectively. The relationship between P and needle mass in the example trees was linear and relatively independent of competition, site fertility and age.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号