首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Fungal interactions of Fusarium verticillioides and F. graminearum in maize ears and the impact on fungal development and toxin accumulation were investigated in a 2‐year field study at two locations in France. Maize ears were inoculated either with a spore mixture of F. graminearum and F. verticillioides or using a sequential inoculation procedure consisting of a first inoculation with F. graminearum followed by a second with F. verticillioides 1 week later. Toxin and fungal biomass were assessed on mature kernels, using HPLC and quantitative PCR. Correlation between the levels of DNA and toxin was high concerning F. graminearum DNA and deoxynivalenol (R² = 0·73) and moderate for F. verticillioides DNA and fumonisin (R² = 0·44). Fusarium graminearum DNA either decreased in mixed inoculations or was not influenced by subsequent inoculations with F. verticillioides, compared to single inoculations. In contrast, F. verticillioides DNA either significantly increased or was not affected in mixed and sequential inoculations. In two of the replicates, it can be assumed that natural contamination by F. verticillioides was favoured by previous contamination with F. graminearum. Overall, the results suggest that F. verticillioides has competitive advantages over the F. graminearum strains. Additionally, the data provide, for the first time, key evidence that previous contamination by F. graminearum in maize ears can facilitate subsequent infections by F. verticillioides.  相似文献   

2.
玉米穗腐病和茎基腐病镰孢菌间相关性的RAPD分析   总被引:2,自引:0,他引:2  
 利用随机扩增多态性DNA (RAPD)技术对玉米穗腐病和茎基腐病镰孢菌之间的相互关系进行了研究,证实了引起2种病害的串珠镰孢菌同源性很高,在遗传上具有较高的相似性,病菌不易受地域或环境和寄生部位选择作用的影响,同一类型的串珠镰孢菌可以是穗腐病和茎腐病的共同病原菌。禾谷镰孢菌间的遗传变异性很强,易受地域、环境和寄生部位选择作用的影响,出现明显的分化现象,穗腐病和茎基腐病可以由同一禾谷镰孢菌分化类型侵染所致,也可由不同分化类型侵染所致。  相似文献   

3.
4.
High occurrence of Fusarium poae (FP) and Fusarium langsethiae (FL) and their mycotoxins nivalenol (NIV) and T-2/HT-2 have been observed in Swiss oats. Early prediction of mycotoxin levels is important for farmers and the cereal industry to minimize the risk of contaminated food and feed. Therefore, climate chamber experiments were conducted to investigate the influence of different temperatures (10, 15, 20 °C) and durations (4, 8, 12 h) at 99% relative humidity (RH) on the infection of oats with FP and FL. In addition, to discover the most susceptible period of oats, artificial FL inoculations were conducted at different growth stages. Field experiments were performed to observe the dispersal of these fungal species within the field and to investigate the weather conditions that influence the dispersal. The climate chamber experiments revealed higher contamination with NIV and T-2/HT-2 in the 10 °C treatments and with a prolonged humidity duration of 12 h 99% RH. Inoculations of oat plants at early (DC 61) and mid (DC 65) anthesis, led to higher FL infection and T-2/HT-2 accumulation in the grains compared with treatments at earlier growth stages, which might be due to an increased susceptibility during anthesis. No indication for spore dispersal was observed in the field experiments. The results obtained, together with the cropping factors that influence infection and mycotoxin production, could be used as a first step in developing forecasting models to predict the contamination of oats with the mycotoxins NIV and T-2/HT-2.  相似文献   

5.
Despite technological advances in global agriculture in recent years, the problem of pathogenic fungi in the production of cereal crops continues to be an issue. Currently, the high variability of weather factors that are considered unusual for specific locations affect the growth and physiology of pathogens attacking cereal crops. One of the most common plant protection methods is the use of synthetic pesticides; however, there is growing controversy over this approach due to the build-up of pesticides in the environment and the presence of their residues in food. The purpose of this literature review is to explore the current state of knowledge regarding the potential of using Trichoderma species as a biostimulator and for the biological protection of cereal crops against pathogenic fungi. Trichoderma fungi—through mycoparasitism, antibiosis and competition for space and nutrients—help to inhibit the growth of pathogens and have a positive impact on the growth of plants, including their root system, which is considered a desirable effect during drought episodes. It has also been demonstrated that Trichoderma fungi can convert Fusarium toxins into new metabolites that can be of lower toxicity. However, the highly limited number of in vivo studies investigating the use of these fungi for biocontrol in cereal crops remains an obstacle to the commercialization of Trichoderma fungi. It appears that the determination of their effectiveness in the biocontrol of cereal crops under variable weather and climate conditions presents a considerable challenge.  相似文献   

6.
Fusarium graminearum is a major fungal pathogen of cereals worldwide, causing seedling, stem base and floral diseases, including Fusarium head blight (FHB). In addition to yield and quality losses, FHB contaminates cereal grain with mycotoxins, including deoxynivalenol, which are harmful to human, animal and ecosystem health. Currently, FHB control is only partially effective due to several intractable problems. RNA interference (RNAi) is a natural mechanism that regulates gene expression. RNAi has been exploited in the development of new genomic tools that allow the targeted silencing of genes of interest in many eukaryotes. Host‐induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes in planta during attempted infection and thereby reduces disease levels. HIGS relies on the host plant's ability to produce mobile small interfering RNA molecules, generated from long double‐stranded RNA, which are complementary to targeted fungal genes. These molecules are transferred from the plant to invading fungi via an uncharacterised mechanism, to cause gene silencing. Here, we describe recent advances in RNAi‐mediated control of plant pathogenic fungi, highlighting the key advantages and disadvantages. We then discuss the developments and implications of combining HIGS with other methods of disease control. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

7.
A total of 59 bacteria of the Bacillus genus were isolated from different components of a maize agroecosystem and their antifungal activity against Aspergillus section Flavi was evaluated. Thirty-three and 46% of these bacteria were able to inhibit Aspergillus flavus Link and A. parasiticus Speare respectively at water activity (a(w)) 0.982; however, when a(w) was 0.955, these percentages were decreased and only three isolates were able to inhibit Aspergillus section Flavi. The majority of bacilli acted as contact antagonists, while a small number of isolates were able to form inhibition zones. In maize meal extract agar, Aspergillus section Flavi growth rate and aflatoxin B(1) (AFB(1)) production were significantly reduced when these strains were paired at a(w) 0.982 with bacilli at all inoculum levels studied. However, two bacilli isolated were able to reduce growth rate and aflatoxin production when a(w) was 0.955. Lag phase increase followed the same general pattern as growth rate reduction. When Aspergillus section Flavi was grown in sterile maize in the presence of three Bacillus strains at a(w) 0.982, the reduction in count (colony-forming units (cfu) g(-1) maize) was less than 30%, except when Aspergillus section Flavi grew with Bacillus amyloliquefaciens UNRCLR. However, levels of detectable AFB(1) were significantly reduced in these interactions at a(w) 0.982.  相似文献   

8.
When infested with Fusarium sp., the cereals Triticum aestivum L. emend. Fiori et Paol. cv. ‘Bombona’, Avena sativa L. cv. ‘Deresz’, and Hordeum vulgare L. cv. ‘Rastik’ can emit volatile organic compounds (VOCs). The VOCs differ both qualitatively and quantitatively from those emitted by non-infested wheat, oat, and barley plants. We detected increased amounts of VOCs released by green leaves (green leaf volatiles – GLVs): (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, (Z)-3-hexen-1-yl acetate, 1-hexyl acetate as well as the other VOCs like (Z)-ocimen, linalol, linaloloxide, benzyl acetate, indole, and β-caryophyllene. The lipoxygenase pathway resulted in the highest release of GLVs in comparison to the other biochemical pathways of volatile production. As a result of Fusarium infestation, the amounts of VOCs varied between tested cereals. We also subjected uninfested wheat, barley, and oat plants to infested wheat plants, and found that these cereals released larger amounts of VOCs compared to control plants. Emitted amounts of VOCs were significantly higher the shorter the distance between uninfested and infested plants.  相似文献   

9.
为实现对田间土壤中禾谷镰孢Fusarium graminearum的定量检测,本研究构建了土壤含菌量与玉米苗枯病病情指数的回归模型。基于禾谷镰孢甾醇14α-去甲基化酶基因CYP51C序列,设计特异性引物HQ1-F/HQ1-R,利用引物建立实时荧光定量PCR(RT-q PCR)体系,选取4个玉米自交系品种进行室内苗枯病接种试验,调查其病情指数,利用RT-qPCR体系检测土壤禾谷镰孢含菌量,并对病情指数和土壤禾谷镰孢含菌量进行回归。结果表明,仅禾谷镰孢扩增出目的条带并且可从多种病原菌土壤中检测出。RT-qPCR的熔解曲线具有单一吸收峰,扩增曲线的循环阈值与模板浓度呈良好的线性关系,扩增效率为104.7%,标准曲线为y=-3.2137x+34.9560(R~2=0.9968),最低可检测到1 pg/μL的DNA。随着土壤禾谷镰孢接菌量的增加,单位土壤禾谷镰孢含菌量呈线性增加,即y=13.603x-85.370(R~2=0.9998)。4个玉米品种的病情指数与土壤禾谷镰孢含菌量的回归曲线分别为y=0.0789x+22.0590(R~2=0.7949)、y=0.0304x+7.8686(R~2=0.9579)、y=0.0458x+23.7540(R~2=0.5420)、y=0.0471x+32.0760(R~2=0.6753)。  相似文献   

10.
赵欣  郝林 《植物保护学报》2020,47(2):273-282
为探讨解淀粉芽胞杆菌Bacillus amyloliquefaciens菌株HRH317对感染串珠镰孢菌Fusarium moniliforme玉米幼苗产生伏马毒素B_1(FB_1)的影响,采用牛津杯法测定菌株HRH317对串珠镰孢菌的抑制活性,并通过浸种处理进行盆栽试验,应用高效液相色谱技术对生长至3叶期后不同时间玉米幼苗叶片中FB_1含量进行测定,同时于室内测定玉米幼苗叶片防御酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)的活性。结果表明:解淀粉芽胞杆菌菌株HRH317能明显抑制串珠镰孢菌生长,抑菌圈直径平均可达33.31 mm;玉米幼苗生长至3叶期后1~6 d,菌株HRH317能有效抑制玉米植株体内FB_1含量,经串珠镰孢菌分生孢子悬浮液与菌株HRH317菌悬液1∶1混合液处理玉米种子后,对幼苗中FB_1的抑制率为59.20%~75.70%;而玉米种子先接种菌株HRH317菌悬液后接种串珠镰孢菌分生孢子悬浮液处理对幼苗中FB_1的抑制率为76.77%~88.10%。且这2种处理中幼苗叶片的SOD、CAT、PAL和POD活性均较对照有不同程度提高,其峰值是对照的1.24~5.45倍。表明解淀粉芽胞杆菌菌株HRH317可通过抑制FB_1产生来降低串珠镰孢菌对玉米幼苗的侵害,同时能诱导玉米植株体内防御酶活性的表达而增强其系统抗性,在防治玉米穗腐病方面具有潜在的应用价值。  相似文献   

11.
为评价东北地区玉米主推品种对禾谷镰孢根腐病的抗性水平,探究根腐病发生与苗势、产量损失间的关系,采用人工接种方法鉴定东北地区117个玉米主推品种对禾谷镰孢根腐病的抗性水平,应用室内盆栽试验分析自交系LN810在施用氮、磷、钾及复合肥后对禾谷镰孢根腐病发生和苗势的影响,在田间对先玉335接种禾谷镰孢菌Fusarium graminearum后探究根腐病发生程度对其苗势及产量的影响。结果显示,117个玉米品种对禾谷镰孢根腐病的抗性差异明显,鉴定出高抗品种14个,抗病品种44个,中抗品种47个,感病品种12个,其中表现中抗以上的品种占89.74%,且中早熟材料均表现为抗性。与未施肥相比,施用磷钾肥后玉米禾谷镰孢根腐病发生率最低,为22.03%。按照禾谷镰孢根腐病发生程度从轻到重将先玉335群体划分为一、二、三类苗,级别越高苗势越弱,产量测定发现二、三类苗的平均产量较一类苗的平均产量分别下降了39.97%和76.39%。表明东北地区主推玉米品种大部分对禾谷镰孢根腐病表现出抗性,但仍有部分品种存在较大感病风险,且该病害的发生程度与幼苗长势和产量呈负相关,施用磷钾肥可降低该病害的发生率。  相似文献   

12.
13.
为挖掘新型药剂的潜在靶标,利用靶向基因敲除和互补技术研究赤霉病病原菌禾谷镰刀菌Fusarium graminearum中必需氨基酸亮氨酸合成酶编码基因FgLEU1的功能,并测定禾谷镰刀菌的生物学表型。结果表明,FgLEU1编码亮氨酸合成途径中的3-异丙基苹果酸脱水酶,其敲除突变体表现亮氨酸营养缺陷。生物学表型测定结果显示,与野生型菌株相比,FgLEU1敲除突变体的产孢量和孢子萌发率显著下降,产孢量仅为野生型菌株的20.96%,培养4 h后孢子萌发率下降了49.45%,且合成脱氧雪腐镰刀烯醇(呕吐毒素)能力丧失,在麦穗上的致病力下降,仅能侵染接种小穗,赤霉病症状不能扩展。外源添加一定量的亮氨酸、FgLeu1催化产物或导入含启动子的全长FgLEU1基因可以恢复敲除突变体表型缺陷。表明FgLEU1基因在禾谷镰刀菌亮氨酸合成、菌丝孢子形成及产毒致病过程中发挥着重要作用,可作为新型安全杀菌剂的潜在研发靶标,用于持续有效控制麦类赤霉病和镰刀菌毒素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号