首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The persistence of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), [14C]dicamba (3,6-dichloro-2-methoxybenzoic-7-14C acid) and propanil [N-(3,4-dichlorophenyl)propionamide] at rates equivalent to 1 kg ha?1, were studied under laboratory conditions in a clay loam, a heavy clay and a sandy loam at 85% of field capacity and at 20±1°C, both singly and in the presence of herbicides normally applied with these chemicals as tank-mix or split-mix components. The degradation of bromoxynil was rapid with over 90% breakdown occurring within a week in the heavy clay and sandy-loam soils, while in the clay-loam approximately 80% of the bromoxynil had broken down after 7 days. In all three soils degradation was unaffected by the presence of asulam, diclofop-methyl, flamprop-methyl, MCPA, metribuzin or propanil. Propanil underwent rapid degradation in all soil treatments, with over 95% of the applied propanil being dissipated within 7 days. There were no noticeable effects on propanil degradation resulting from applications of asulam, barban, bromoxynil, dicamba, MCPA, MCPB, metribuzin or 2,4-D. The breakdown of [14C]dicamba in a particular soil was unaffected by being applied alone or in the presence of diclofop-methyl, flampropmethyl, MCPA, metribuzin, propanil or 2,4-D. The times for 50% of the applied dicamba to be degraded were approximately 16 days in both the clay loam and sandy loam, and about 50 days in the heavy clay.  相似文献   

2.
The persistence of [14C] 2,4-D at a rate equivalent to 1 kg/ha was compared under laboratory conditions in samples of heavy clay, sandy loam, and clay loam at 85% of field capacity moisture and 20 ± 1°C which had either received no pre-treatment, or had been pre-treated for 7 days at the 2 μg/g level with the herbicides benzoylprop-ethyl, diclofop-methyl, dinitramine, flamprop-methyl, nitrofen, picloram, tri-allate, trifluralin, and a combination of tri-allate and trifluralin. The breakdown of [14C] 2,4-D was also studied in the same soils that had similarly received pre-treatments of 2 μg/g of the cereal seed dressing Vitaflo-DB, the insecticide, malathion, and a combination of Vitaflo-DB and malathion. In each soil type, the half-life of the 2,4-D was similar regardless of whether the soil had, or had not, received any pre-treatment, indicating that none of the chemicals investigated adversely affected the soil degradation of 2,4-D.  相似文献   

3.
The persistence of [14C]2,4-D at a rate equivalent to 1 kg/ha was studied in the laboratory on a heavy clay and a sandy loam at 85%of field capacity and 20°C both alone and in the presence of 1 kg/ha dicamba, dichlorprop, difenzoquat, TCA, and 2,4,5-T. The persistence of 2,4,5-T was also monitored in both soils under the same conditions in the presence and absence of [14C]2,4-D. All soils were extracted at weekly intervals using aqueous acidic acetonitrile and analysed for [14C]2,4-D remainining radiochemical techniques. The extracts containing 2,4.5-T were additionally analysed gas chromatographically for that herbicide. In each soil type the half-life of the 2,4-D was similar regardless of whether applied singly or in combination with the five herbicides tested. Similarly, [14C]2,4-D did not affect the breakdown of 2,4,5-T in either soil type. The persistence of tri-allate (1·5 kg/ha) and trifluralin (0·75 kg/ha) both singly and in combination were compared using small field plots at two locations in Saskatchewan. Applications were made during May of 1977 and 1978 and the plots were sampled and analysed for herbicide(s) remaining after 10 and 20 weeks, respectively. The results indicate that within experimental error the loss of both tri-allate and trifluralin from the plots treated with the mixture was the same as from plots treated with the individual compounds.  相似文献   

4.
The degradation and formation of major chlorinated metabolites of terbuthylazine and atrazine in three soils (loamy clay, calcareous clay and high clay) were studied in laboratory experiments using molecules labelled with 14C on the s-triazine ring. Soil microcosms were treated with the equivalent of 1 kg ha-1 of herbicide and incubated in the dark for 45 days at 20(±1)°C. The quantity of [14C]carbon dioxide evolved in the soils treated with atrazine was negligible and could not be attributed to mineralization of the parent molecule. The mineralization of terbuthylazine accounted for 0·9–1·2% of the initial radioactivity. In the soils studied, the extrapolated half-lives varied from 88 to 116 days for terbuthylazine and 66 to 105 days for atrazine, with no significant differences for the three soils and the two molecules. The deethyl metabolites of the two s-triazines and the deisopropyl-atrazine metabolite appeared during the incubation in the three soils. The completely dealkylated metabolite was not detected in any of the soils. After 45 days of incubation, the non-extractable soil residues for the high clay, loamy clay and calcareous clay soils represented for terbuthylazine, 33·5, 38·3 and 43·1% and for atrazine, 19·8, 20·8 and 22·3% of the initial radioactivity. © 1997 SCI.  相似文献   

5.
The β-D -glucoside conjugate of [14C]‘hydroxymonolinuron’, [phenyl-14C]-3-(4- chlorophenyl)-1-(hydroxymethyl)-1-methoxyurea-β-D -glucoside (HM-β-G) and its soil-bound residues, prepared as described, were used to estimate its bioavailability to earthworms and ryegrass plants. The results demonstrate that these bound residues were available to both earthworms and ryegrass. The concentration in the earthworms, expressed on a dry weight basis after 42 days of exposure, was equal to the surrounding soil. The earth worms were found to be more efficient in remobilising and absorbing soil-bound residues than ryegrass plants after 59 days of cultivation. Fractionation of the soil-bound residues showed that 29% of the radiocarbon was associated with fulvic acid, 20% with humic acid and 9% with the humin fraction. 4-Chlorophenylurea, a metabolite of HM-β-G proved to be a key compound in the formation of soil-bound residues. The amount of radioactivity (bound residues), recovered from soil through solubilisation by means of 0.5M -acid and alkali, seems to be a criterion for predicting the bioavailability of bound phenylurea residues. The half-life of soil-bound residues was estimated to be about 4.6 years.  相似文献   

6.
[14C]Diflubenzuron is readily degraded in various agricultural soils and in hydro-soil; 50% of the applied dose of 1 mg kg−1 was metabolised in 2 days or less. The chief products of hydrolysis were identified as 4-chlorophenylurea and 2, 6-difluorobenzoic acid. A part of the radioactivity, increasing with incubation time, could not be extracted. Release from the soil of [14C]carbon dioxide, derived from both labelled phenyl rings, points to the ultimate mineralisation of diflubenzuron.  相似文献   

7.
The fate of 4-chlorophenylurea in soils was studied with two preparations: one labelled with 14C in the phenyl ring and the other in the carbonyl group. The initial dose of 1 mg kg?1 decreased to 50% in about 5 weeks in aerobic sandy clay and in about 16 weeks in anaerobic hydrosoil. Soil treatment with each of the preparations resulted in the release of [14C]carbon dioxide, pointing to decarbonylation and ring opening. The fraction of non-extractable (soil-bound) radioactivity increased during incubation. Quantities of ring-14C-labelled and carbonyl-14C-labelled bound residues differed strongly in the aerobic soil but only slightly in the anaerobic hydrosoil. It is assumed that two sorts of bound residues are formed from 4-chlorophenylurea: one is fairly stable and might consist of bound 4-chloroaniline or its transformation products, whereas the other is presumed to be a degradable derivative of 4-chlorophenylurea.  相似文献   

8.
2,6-Difluorobenzoic acid, one of the two primary diflubenzuron metabolites, is rapidly and completely degraded in soil. Times to 50% disappearance were 9 and 12 days in two agricultural soils. [14C]Carbon dioxide was an ultimate product of the ring-14C-labelled compound. A part of the radioactivity, increasing with time to one third of the applied dose of 1 mg kg?1, could not be extracted from the soil.  相似文献   

9.
A laboratory study was conducted to determine the degradation rates and identify major metabolites of the herbicide metsulfuron-methyl in sterile and non-sterile aerobic soils in the dark at 20°C. Both [phenyl-U-14C]- and [triazine-2-14C]metsulfuron-methyl were used. The soil was treated with [14C]metsulfuron-methyl (0.1 mg kg−1) and incubated in flow-through systems for one year. The degradation rate constants, DT50, and DT90 were obtained based on the first-order and biphasic models. The DT50 (time required for 50% of applied chemical to degrade) for metsulfuron-methyl, estimated using a biphasic model, was approximately 10 days (9–11 days, 95% confidence limits) in the non-sterile soil and 20 days (12–32 days, 95% confidence limits) in the sterile soil. One-year cumulative carbon dioxide accounted for approximately 48% and 23% of the applied radioactivity in the [phenyl-U-14C] and [triazine-2-14C]metsulfuron-methyl systems, respectively. Seven metabolites were identified by HPLC or LC/MS with synthetic standards. The degradation pathways included O-demethylation, cleavage of the sulfonylurea bridge, and triazine ring opening. The triazine ring-opened products were methyl 2-[[[[[[[(acetylamino)carbohyl]amino]carbonyl]amino] carbonyl]-amino]sulfonyl]benzoate in the sterile soil and methyl 2-[[[[[amino[(aminocarbonyl)imino]methyl] amino]carbonyl]amino]sulfonyl]benzoate in the non-sterile soil, indicating that different pathways were operable. © 1999 Society of Chemical Industry  相似文献   

10.
The antagonism of haloxyfop-ethoxyethyl (HE) by selected phenoxy herbicides was evaluated through studies of the foliar absorption and translocation of 14C]HE in oat (Avena sativa L.). Uptake of [14C]HE, from simultaneous application in mixture with a phenoxy herbicide, was inhibited by the latter in the order MCPB MCPA2,4-D. In mixtures, the foliar absorption of [14C]HE was reduced more by salts of the phenoxy herbicides than by the corresponding butyl esters. 2,4-D-butyl enhanced uptake of [14C]HE. The application rate of phenoxy herbicides (from 0.5 to 1.5 kg a.e. ha?1) did not affect the uptake of [14]HE, but did influence translocation. Movement of [14C]herbicide out of the treated leaf was less than 5% of the total 14C applied; translocation was significantly reduced by all phenoxy herbicides and was antagonized most by 2,4-D-salt and least by MCPB-butyl. Phenoxy salts invariably reduced [14C]HE translocation more than the corresponding butyl esters. Prior application of phenoxy salts reduced uptake of [14C]HE, but this antagonism was reduced as the time interval between spray applications increased. Translocation of 14C out of the treated leaf was antagonized most by prior application of 2,4-D, and by phenoxy salt formulations. When applied up to 2 days after HE, phenoxy salts reduced uptake, but translocation of 14C was generally unaffected. Les effets antagonistes du 2,4-D, du MCPA et du MCPB sur la pénétration et la migration de l'haloxyfop-éthoxyéthyl dans l'avoine (Avena sativa L.) L'effet antagoniste de plusieurs herbicides de type phénoxy à l'égard de l'haloxyfopéthoxyéthyl (HE) a étéétudié dans des études de pénétration foliaire et de migration du [14C]HE chez l'avoine (Avena sativa L.) Lorsqu'il est appliqué en mélange avec un herbicide phénoxy, la pénétration du [14C]HE est inhibée dans l'ordre suivant: MCPB MCPA 2,4-D. La pénétration foliaire du [14C]HE était davantage réduite par les sels d'herbicides phénoxys que par les esters butyles correspondants. Le 2,4-D butyle augmentait la pénétration du [14C]HE. La dose d'herbicides phénoxys (de 0,5 à 1,5 kg m.a. ha?1) n'affectait pas la pénétration de [14C]HE mais modifiait sa migration. La migration d'herbicide 14C hors de la feuille traitée était inférieure à 5 % de la radioactivité appliquée. Elle était significativement réduite par tous les herbicides phénoxys, le plus par le sel de 2,4-D et le moins par le MCPB-butyle. Les phénoxys sous forme de sels diminuaient toujours la migration du [14C]HE davantage que les esters butyles correspondants. Si l'application de phénoxys sous forme de sel précédait celle de [14C]HE, sa pénétration était réduite mais cet antagonisme était réduit lorsque l'intervalle de temps entre les deux applications était augmenté. La migration de 14C hors de la feuille traitée était le plus diminuée par le 2,4-D et par les phénoxys sous forme de sels. Quand ils étaient appliqués jusqu'à deux jours après [14C]HE, les phénoxys sous forme de sel réduisaient sa pénétration, mais la migration de 14C n'était généralement pas affectée. Antagonistische Wirkung von 2,4-D, MCPA und MCPB auf die Aufnahme und Translokation von Haloxyfop-ethoxyethyl in Hafer (Avena sativa L.) Die antagonistische Beeinflussung von Haloxyfop-ethoxyethyl (HE) durch ausgewählte Phenoxy-Herbizide wurde anhand der Blattaufnahme und Translokation von [14C]HE in Hafer (Avena sativa L.) untersucht. Die Aufnahme von [14C]HE bei gleichzeitiger Anwendung in Mischung mit einem Phenoxy-Herbizid wurde durch die letztgenannten Stoffe in der Reihenfolge MCPB MCPA 2,4-D gehemmt, wobei die Salz-Verbindungen stärker wirkten als die entsprechenden Butylester. 2,4-D-butyl förderte die Aufnahme von [14C]HE. Die Aufwandmenge der Phenoxy-Herbizide (0,5 bis 1,5 kg AS ha?1) blieb ohne Einflus auf die Aufnahme von [14C]HE, beeinflußte aber die Translokation. Aus den behandelten Blättern wurde weniger als 5 % der gesamten [14C]Menge transloziert; die Translokation wurde durch alle PhenoxyHerbizide signifikant reduziert, am meisten durch 2,4-D-Salz, am wenigsten durch MCPB-butyl. Die Salz-Verbindungen verminderten die [14C]HE-Translokation mehr als die entsprechenden Butylester. Eine vorausgehende Behandlung mit den Salz-Verbindungen senkte die Aufnahme von [14C]HE, aber mit zunehmender Zeit zwischen den Anwendungen nahm dieser Antagonis mus ab. Hierbei war der Einfluß von 2,4-D und von den Salz-Verbindungen am stärksten. Wurden diese Stoffe bis zu 2 Tagen nach HE ausgebracht, beeinträchtigten sie die Aufnahme, jedoch im allgemeinen nicht die Translokation von 14C.  相似文献   

11.
The experimental, aquatic herbicide fluridone (1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone) was degraded in two submersed soils and in the water above those soils to one acidic metabolite (identified as 1,4-dihydro-1-methyl-4-oxo-5-[3-(trifluoromethyl)phenyl]-3-pyridinecarboxylic acid by mass spectrometry). A sandy and a silt loam soil were treated with [14C]fluridone, immersed in water, and analyzed after 1, 3, 5, 7, 9, and 12 months. Seven to fifteen percent of the 14C applied to the soils was recovered in the water on each of the various collection dates. The acidic metabolite accounted for 86 to 93% of the radioactivity in the water fraction 7 months after treatment. The metabolite was absorbed strongly by both soils and comprised about 60% of the total 14C in each soil after 12 months. The remainder of the 14C in the soils after 12 months was either the parent compound (~30%) or an undefined insoluble residue (~10%).  相似文献   

12.
[14C]-Labelled methazole was incubated in six soils at 25°C and with soil moisture at field capacity. Under these conditions, methazole was unstable, the concentration declined following first-order kinetics with half-life values in the soils ranging from 2.3 to 5.0 days. The main degradation product was 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU) which was more stable than the parent compound. After about 160 days, DCPMU accounted for 30 to 45% of the initial methazole concentration. Degradation of methazole and DCPMU was affected by soil temperature and moisture content. With methazole, half-lives in one soil at field capacity moisture content and temperatures of 25, 15 and 5°C were 3.5, 8.7 and 31.1 days respectively. The half-life at 25°C was increased to 5.0 days at 50% of field capacity and 9.6 days at 25% of field capacity. A proportion of the initial radioactivity added to the soil could not be extracted and this proportion increased with time. After 160 days this unextractable radioactivity accounted for up to 70% of the amount applied.  相似文献   

13.
BACKGROUND: The 2,4‐D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4‐D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4‐D were able rapidly to mineralise this herbicide. The half‐life of 2,4‐D ranged from 8 to 30 days, and maximum mineralisation of 14C‐2,4‐D ranged from 57 to 71%. Extractable 14C‐2,4‐D and 14C‐bound residues accounted for less than 1 and 15% respectively of the 14C‐2,4‐D initially added. The highest amounts of 14C‐2,4‐D bound residues were recorded in the soil with the lowest 2,4‐D‐mineralising ability. Although all three soils were able to mineralise 2,4‐D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4‐D‐mineralising ability. 2,4‐D‐mineralising ability was positively correlated with soil moisture content. Negligible 2,4‐D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4‐D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Soils which have been pretreated with carbofuran can degrade the insecticide more rapidly than untreated soils, with a consequent loss of efficacy. In laboratory studies, soils pretreated with carbofuran were found to degrade the chemical more rapidly than soils which were not so pretreated. When pretreated soils were sterilised, the rate of carbofuran degradation was much reduced, indicating that most of it was due to microbial action. Incubation of pretreated soil with [phenyl-U-14C]carbofuran led to the rapid disappearance of the parent compound (3 % left after seven days). Most of the 14C was accounted for as bound residue after seven days, whilst smaller amounts were recovered as carbon dioxide, 3-hydroxycarbofuran, 3-ketocarbofuran, and an unknown metabolite. Incubation of pretreated soil with [carbonyl-14C]carbofuran led to rapid loss of the parent compound and the recovery of 73% of 14C as carbon dioxide by five days. Most of the bound 14C (>90%) arising from [phenyl-U-14C]carbofuran treatment of pretreated soil was extracted by 1 M sodium hydroxide and about half of the extracted 14C was precipitated with ‘humic acids’ after acidification. These and other results suggest that the major metabolic route for carbofuran in pretreated soils involves hydrolysis of the ester bond leading to (1) release of carbofuran phenol which rapidly binds to soil organic matter and, (2) release of the carbonyl moiety which quickly degrades to generate carbon dioxide.  相似文献   

15.
The potential to mineralize 2,4‐dichlorophenoxyacetic acid (2,4‐D), mecoprop, isoproturon and terbuthylazine was studied in soil and aquifer chalk sampled at an agricultural field near Aalborg, Denmark. Laboratory microcosms were incubated for 258 days under aerobic conditions at 10 °C with soil and chalk from 0.15–4.45 m below the surface. The [ring‐U14C]‐labeled herbicides were added to obtain a concentration of 6 µg kg?1 and mineralization was measured as evolved [14C]carbon dioxide. The herbicides were readily mineralized in soil from the plough layer, except for terbuthylazine, which was mineralized only to a limited extent. In the chalk, lag periods of at least 40 days were observed, and a maximum of 51%, 33% and 6% of the added 2,4‐D, mecoprop and isoproturon, respectively, were recovered as [14C]carbon dioxide. Large variations in both rate and extent of mineralization were observed within replicates in chalk. No mineralization of terbuthylazine in chalk was observed. As a measure of the general metabolic activity towards aromatic compounds, [ring‐U14C]‐benzoic acid was included. It was readily mineralized at all depths. © 2000 Society of Chemical Industry  相似文献   

16.
The degradation of bis(tri[1-14C]butyltin) oxide in two soils (1 mg tin kg?1) has been studied under laboratory conditions. Half of the applied compound disappeared from unsterilised silt loam and sandy loam in approximately 15 and 20 weeks, respectively; it disappeared also from the sterilised soils but to a lesser extent. The formation of small amounts of dibutyltin derivatives was established by thin-layer chromatography both in the unsterilised and sterile soils. The amount of unextractable radioactivity increased with time in the unsterilised and sterile soils. In the unsterilised soils 14C was released as [14C]carbon dioxide in amounts equivalent to 20% of the applied radioactivity for silt loam and 10.7% for sandy loam over a period of 42 weeks. Almost no [14C]carbon dioxide was released from the sterile soils, confirming microbial participation in the degradation of the compound in the unsterilised soils.  相似文献   

17.
The persistence of [14C]MCPA at a rate equivalent to 1 kg ha?1 was studied under laboratory conditions in a clay loam, heavy clay and sandy loam at 85% of field capacity moisture and 20±1°C both alone and in the presence of tri-allate, trifluralin, tri-allate and trifluralin, malathion, Vitaflow DB, malathion and Vitaflow DB, bromoxynil, bromoxynil and asulam, bromoxynil and difenzoquat, dicamba, dicamba and mecoprop, linuron, MCPB, metribuzin, propanil, TCA, benzoylprop-ethyl, diclofop-methyl, and flamprop-methyl. Except in the soils treated with asulam, the half-lives of [14C]MCPA in all three soil types were similar, being approximately 13±1 days, thus indicating that none of the other chemicals studied adversely affected the soil degradation of MCPA. In the asulam treated soils, the half-lives of the MCPA were about 3 days longer than in non-asulam treated soils; the effect was most marked in the clay loam.  相似文献   

18.
The dependence of the behaviour of metsulfuron-methyl on soil pH was confirmed during incubations under controlled laboratory conditions with two French soils used for wheat cropping. The fate of [14C] residues from [triazine-14C]metsulfuron-methyl was studied by combining different experimen-tal conditions: soil pH (8·1 and 5·2), temperature (28 and 10°C), soil moisture (90 and 50% of soil water holding capacity) and microbial activity (sterile and non-sterile conditions). Metsulfuron-methyl degradation was mainly influenced by soil pH and temperature. The metsulfuron-methyl half-life varied from five days in the acidic soil to 69 days in the alkaline soil. Under sterile conditions, the half-life increased in alkaline soil to 139 days but was not changed in the acidic soil. Metsulfuron-methyl degradation mainly resulted in the formation of the amino-triazine. In the acidic soil, degradation was characterised by rapid hydrolysis giving two specific unidentified metabolites, not detected during incubations in the alkaline soil. Bound residues formation and metsulfuron-methyl mineralisation were highly correlated. The extent of bound residue formation increased when soil water content decreased and was maximal [48 (±4)% of the applied metsulfuron-methyl after 98 incubation days] in the acidic soil at 50% of the water holding capacity and 28°C. Otherwise, bound residues represented between 13 and 32% of the initial radioactivity. © 1998 SCI  相似文献   

19.
The persistence of [14C]sethoxydim (2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexene-1-one) at the 2 μg g?1 level was studied under laboratory conditions in three soils at 20°C and 85% of their field capacity moistures. Following extraction of the soils with methanol, the herbicide remaining was determined using radiochemical techniques. Loss of radioactivity was more rapid on moist clay loam and sandy loam, where the half-lives were 12 days, than on heavy clay in which the half-life was 26 days. Loss of radioactivity from air-dried soils (15% of field capacity) was negligible with over 94% of the applied activity being recovered after 28 days. The persistence of sethoxydim at a rate of 1 kg ha?1 was investigated under field conditions using small plots at three prairie locations for 3 successive years. Using an oat-root bioassay procedure, no residues were detected in the 0–10 cm depths of any soils, any year, in September following May treatments.  相似文献   

20.
Increasing adsorption of [14C]-labelled carbendazim in soil took place within a few weeks of incubation and was greatest in soil with a high organic matter content. Carbendazim was slowly decomposed in soil, mainly by soil microorganisms. After 250 days of incubation in two unsterilised soils, 13 and 5% respectively of added [14C]-carbendazim was recovered compared with 70 and 50% respectively from sterile soils; 4–8% of added carbendazim was recovered as 2-aminobenzimidazole (2-AB) from both unsterilised and sterile soil. After 270 days' incubation, 33 and 9% of 14C was recovered as 14CO2 from soil supplied with [14C]-carbendazim (20 and 100 mg/kg) respectively. Degradation started more rapidly when carbendazim was added to soil preincubated with the fungicide but the degradation rate was very low in all cases, indicating that the compound is a poor microbial energy source and that the degradation is a co-metabolic process. 2-AB was found as a degradation product although it appeared to be unstable in soil, decomposing rapidly after a lag period of about 3 weeks; small amounts remained in the soil for several months, however, presumably adsorbed on soil particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号