首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
风沙区参考作物需水量的计算   总被引:9,自引:0,他引:9  
孙景生  刘祖贵等 《灌溉排水》2002,21(2):17-20,24
根据国内外相关的研究成果,分析选择并确定了适宜于风沙区参考作物需水量(ET0)的计算模式。利用典型风沙区的气象资料,对多年逐旬参考作物需水量及2001年春小麦与春玉米生育时段内逐日参考作物需水量进行了分析计算。结果表明,FAO最新修正的Penman-Moteith公式可较好地用于风沙区参考作物需水量的估算,一般ET0值在年内与年龄间变化较大,最高值发生在6月上旬左右,多年平均为5.82mm/d,最低值发生在1月上旬,多年平均0.43mm/d左右,年内各日ET0值受气象因素的影响变幅很大,因此,精确灌溉应设法提高短期天气预报和灌溉预报的精度。  相似文献   

2.
北屯灌区降雨量少风沙大气候干燥,为典型的戈壁平原干旱风沙区。利用当地典型风沙区20年的逐日气象资料,对灌区参考作物需水量进行了分析计算,ET0值在年内与年际间变化较大,全年的7月上旬至8月上旬ETrad稍大于或基本等于ETaero外,其余月份基本上是ETaero大于ETrad,说明全年风速对ET0的影响相对来说比较大。对灌区内6种主要作物进行了作物需水量计算,其中地膜甜瓜和地膜打瓜需水量最小,全生育期需水量在300~350 mm之间,建议高效经济作物采用地膜种植可作为一项有效的节水措施。  相似文献   

3.
【目的】研究民勤地区作物需水量的主要影响因子。【方法】基于民勤地区1968―2018年气象数据,利用Penman-Monteith公式计算了不同时间尺度的平均参考作物需水量ET0,分析ET0变化趋势,并与气象因子变化趋势进行相关性拟合。【结果】1968―2018年民勤地区年平均参考作物需水量呈波动上升趋势,最低值为1968年的3.15mm/d,最高值为2013年的3.72 mm/d,且参考作物需水量的上升趋势是从2003年开始最为明显;参考作物需水量与年平均最高气温、年平均最低气温、年平均气温、年平均相对湿度、年平均日照时间以及年平均风速的相关性比较显著,与降雨量和净辐射相关关系不显著。【结论】民勤地区的干旱状况目前处于平稳期,年平均最高气温和年平均相对湿度是导致民勤地区参考作物需水量年际变化的最主要的气象因子。  相似文献   

4.
基于气温预报和HS公式的不同生育期参考作物腾发量预报   总被引:2,自引:0,他引:2  
根据南京站2001-2011年实测气象数据,以Penman-Monteith(PM)公式计算得到的参考作物腾发量ET0值作为基准值,对仅需要气温数据计算参考作物腾发量的Hargreaves-Samani(HS)公式进行参数率定,采用率定后的HS公式依据2012年6月-2015年6月气温预报数据对南京水稻、冬小麦不同生育期未来1~7d的ET0进行预报,并与基于实测气象数据的PM法计算的ET0值进行比较,评价HS法的ET0预报精度。结果表明:最低、最高气温实测值与预报值相关系数分别为0.97和0.93,最低气温预报精度略高于最高气温;预见期1~7d内,水稻、冬小麦不同生育期ET0预报值与PM法计算值变化趋势基本一致,整个生育期内冬小麦ET0预报值与PM法计算值吻合程度更好,水稻、冬小麦相关系数分别达0.60、0.80左右;水稻各生育期平均准确率为66.0%~97.5%,平均绝对误差为0.65~1.22mm/d,均方根误差为0.76~1.42mm/d,冬小麦各生育期平均准确率为75.4%~99.5%,平均绝对误差为0.33~1.06mm/d,均方根误差为0.43~1.23mm/d;作物生育期各阶段对气温预报误差越敏感,ET0预报精度越低,随着生育期的推进,水稻对气温预报误差的敏感程度逐渐减小,相应的ET0预报精度逐渐增加,而冬小麦反之;但整体上预见期1~7d的气温预报及ET0预报精度达到可利用程度,可为快速灌溉预报及灌溉决策提供数据支撑。  相似文献   

5.
参考作物需水量是作物需水量的计算基础,是灌排工程规划、设计、管理和水资源合理开发利用的基本依据。为提高Hargreaves法计算参考作物需水量(ET0)的计算精度,在传统回归法的基础上,利用主成分分析法,以滇中地区7个气象站56年(1958-2013年)的逐日气象资料作为数据基础,引入相对湿度气象因子改进H-S法,以P-M法计算的ET0为标准评价改进H-S法的计算精度与适应性。结果表明:与P-M法计算结果相比,改进H-S法和P-M法的ET0计算结果相关性得到提高,逐日ET0值绝对偏差和偏差率得到降低,引入相对湿度气象因子后的改进H-S法改善了传统H-S法4-5月后计算值偏大的缺点,具有较高的计算精度,可作为滇中地区参考作物需水量(ET0)的计算方法。  相似文献   

6.
甘肃天祝草原位于我国西北干旱荒漠草原,应用天祝县二道墩试验站2005年的实测气象资料,利用Penman-Monteith公式和Penman修正式计算参考作物腾发量(ET0)并进行了比较。Penman修正式计算的参考作物腾发量ET0值略小于Penman-Monteith公式计算的值,最大绝对偏差0.5 mm/d。分析发现生育期辐射项ETrad是导致参考作物腾发量ET0产生偏差的主要原因。2种方法计算的空气动力项ETaero差别较小,最大绝对偏差不超过0.2 mm/d。导致计算偏差的原因在于2种公式采用了不同的辐射项和空气动力学项计算公式和参数。2个公式计算的参考作物腾发量具有显著的线性相关性。  相似文献   

7.
基于Web的江苏省逐日参考作物腾发量预报系统   总被引:1,自引:0,他引:1  
为促进短期参考作物腾发量(ET0)预报在实时灌溉决策的应用,开发了一个基于Web的江苏省逐日ET0预报系统。系统采用服务器脚本语言PHP和快速的关系数据库管理系统My SQL来简单和有效地获取国家气象台发布的天气预报数据,然后导入系统数据库并通过率定的Hargreaves-Samani公式来预报未来15 d江苏省23个气象站点的参考作物腾发量ET0值。用户可直接登录网址免费查询江苏省各个气象站点未来15 d的ET0预报值。系统采用B/S网络结构,使用率定的HS公式来计算预报ET0值,具有页面简洁、预报精确度高的特点。ET0预报可用于各种作物需水量预报,为灌溉决策提供科学依据。  相似文献   

8.
根据湖北省20个测站1977—2007年的气象资料,应用Penman-Monteith公式计算了31年的逐日ET0。应用GIS技术和统计检验方法分析了参考作物蒸腾量的时空变异特征和气象因子对ET0的影响。结果表明,湖北省参考作物蒸腾量的空间分布呈西低东高的特征;随多年时间变化空间分布趋于均匀;年内ET0值分布以7、8月最高,12、1月最低;影响ET0的主要气象因子为风速,平均温度次之。  相似文献   

9.
基于黑龙江省26个气象站1960—2015年逐日气象数据和29个水稻灌溉试验站的作物系数,利用Penman-Monteith方法和Arcmap空间分析功能计算并绘制了1960—1979年、1980—1999年和2000—2015年3个阶段水稻生长季参考作物蒸散量(ET0)、水稻生育期天数、需水量、有效降雨量和需水量与有效降雨量耦合度及相应的气候倾向率分布图。结果表明:水稻生长季ET0平均值为620mm,自西向东总体表现为先减小后增大趋势,风速、湿度、日照时数的减小和温度的升高共同作用导致水稻生长季ET0以-3.90mm/(10a)的平均速度下降;生育期平均天数为115d,自北向南总体表现为增加趋势,温度升高引起了水稻生育期天数以2.68d/(10a)的平均速度增加;水稻生育期有效降雨量平均值为297.03mm,自西向东总体表现为先增大后减小的趋势,生育期天数的增加也弥补了降雨量减小的影响,使有效降雨量以0.62mm/(10a)的平均速度增加;需水量平均值为490.52mm,自西向东总体表现为先减小后增加的趋势,生育期天数的增加弥补了ET0减小对需水量的影响,使研究区内水稻需水量以6.66mm/(10a)的平均速度增加;需水量与有效降雨量耦合度平均值为0.64,自西向东表现为先增加后减小的趋势,需水量增幅大于有效降雨量增幅,使需水量与有效降雨量耦合度总体以-0.009/(10a)速度下降。本研究可为黑龙江省合理分配灌溉水资源和优化水稻品种布局提供依据。  相似文献   

10.
探讨北疆地区棉花生育期需水量和灌溉需水量的变化趋势进而分析了变化趋势与气象因子的关系.选用北疆26个气象站1961-2016年的逐日气象数据,参考作物蒸散量计算方法和相关作物系数,计算北疆棉花56 a来的作物需水量和灌溉需水量,并分析了对气候变化的响应.结果表明:近56 a北疆地区棉花需水量和灌溉需水量都呈下降趋势,尤...  相似文献   

11.
风沙区春小麦棵间蒸发规律的试验研究   总被引:9,自引:0,他引:9  
2001~2002年在内蒙风沙区对春小麦全生育期正常供水条件下的棵间蒸发规律进行了试验研究,确定了不同生育阶段棵间蒸发量占同期耗水量的比例关系,分析了棵间蒸发量的日变化规律及其与表层土壤含水量的关系,建立了棵间蒸发量占耗水量的比值(E/ET)与叶面积指数LAI的函数关系式。  相似文献   

12.
京郊平原参考作物腾发量及其与气象因子相关性研究   总被引:3,自引:0,他引:3  
利用FAO56 Penman-Montieth公式和京郊平原区代表性气象站点的长系列、短时序气象资料计算了该地区的逐日ET0,对ET0及其各分项的时间变异特征进行了分析,采用相关分析法研究了ET0与主要气象影响因子间的关系。结果表明,研究区域近50年来ET0呈不显著的增加趋势,就其各分项来说,辐射项的年际变化幅度较小,而空气动力学项的年际波动较大,且与ET0的年际波动较为符合;ET0的年内变化呈"单峰形"分布,一年内的最大值出现在6月份,为162.6 mm,最小值则出现在12月份,为32.3 mm。从ET0的分项来看,5~9月份ETrad>ETaero,而其余月份ETrad相似文献   

13.
关中地区灌溉农业发展对区域蒸发的影响研究   总被引:5,自引:1,他引:4  
主要从分析参考作物蒸发蒸腾量(ET0)的变化趋势来反映气候变化对蒸发的影响,从灌区实测水面蒸发量的变化趋势来分析灌溉农业发展对区域蒸发的影响。用改进后的Penman公式计算关中地区1961~2001年系列5个气象站的ET0,结果显示:80年代前后气候对关中地区年ET0值的影响有明显区别,80年代以后关中地区年ET0值增长趋势加大,受气候影响明显大于80年代以前。多年平均年内分布表明连续最大3月即6~8月占全年的比例为46%~48%,但80年代以后年内分布6~8月ET0所占比例有降低趋势;从泾惠渠灌区灌溉试验站实测水面蒸发资料分析,显示明显的逐年减少的趋势,年内分布表明6~8月水面蒸发量所占比例有降低趋势。说明灌溉农业发展引起农田小气候的变化,减少了夏季潜在的蒸发和实际蒸发量。  相似文献   

14.
参考作物蒸发蒸腾量(ET0)的计算公式很多,各公式所需参数各异,为寻找一种所需资料少而又精度较高的替代方法,选用1998年FAO-56分册推荐的Penman-Monteith(PM)、Hargreaves、Irmark-Allen等6种方法分别计算海河流域10个典型气象站30 a的参考作物蒸发蒸腾量,并以PM公式为标准,对其他方法进行评价。结果表明,10个站点中除了五台山地区,Hargreaves与FAO-24 Radiation 这2种方法更接近于PM方法的计算结果,其误差较小,在海河流域缺少辐射和风速  相似文献   

15.
参考作物腾发量计算方法的适用性研究   总被引:1,自引:1,他引:0  
选用5种方法,利用陕西6站的气象资料,计算了各站逐日ET0。并以FAO56 Penman-Monteith(P-M)法为标准,对其它方法进行评价。结果表明,在陕西6地区,5种方法计算的ET0变化趋势基本相同,但数值上有一定差异,所有的差异随ET0的增大而增大。Hargreaves法计算结果差异性较小,适用性较好;1948Penman和Priestley-Taylor二方法估值较FAO24 Penman法更接近P-M法的计算结果;缺气象资料时,Priestley-Taylor法可获得较好估值,且更适用于湿润地区;FAO24 Penman法也能获得较好结果,但其估值精度低于Priestley-Taylor法,一般不宜采用。同时分析了P-M法计算的ET0值和水面蒸发量之间的关系,为利用水面蒸发资料估算陕西6地区ET0值提供参考。  相似文献   

16.
参考作物腾发量计算方法在玛纳斯河流域的应用比较   总被引:1,自引:0,他引:1  
基于玛纳斯河流城4个气象站莫索湾、炮台、石河子、乌兰乌苏1961-2005年的日观测气象数据,采用SWAT2000模型里引入的Penman- Monteith, Hargreaves, Priestley-Taylor方法计算每日参考作物腾发量(ETo),比较计算结果之间的差异性.结果表明,莫索湾站与炮台站Hargre...  相似文献   

17.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

18.
运用茆智提出的ET0预测方法,并结合其他学者对方法的改进,利用日常的天气预报信息,分别对豫北地区的冬小麦和夏玉米生育期内的ET0进行了预测。结果表明,在冬小麦生育期的ET0预测值,返青前绝对误差不超过0.8mm/d,返青以后93%的预测结果相对误差小于20%,53%的预测结果小于10%;在夏玉米生育时期内的预测值,95...  相似文献   

19.
Crop evapotranspiration (ET) is an important component of simulation models with many practical applications related to the efficient management of crop water supply. The algorithms used by models to calculate ET are of various complexity and robustness, and often have to be modified for particular environments. We chose three crop models with different ET calculation strategies: CROPWAT with simple data inputs and no calibrations, MODWht for intensive inputs and limited calibrations, and CERES-Wheat with intensive inputs and more calibrations for parameters. The three crop models were used to calculate ET of winter wheat (Triticum aestivum L.) grown at two experimental sites of China and US during multiple growing seasons in which ET was measured using lysimeter or soil water balance techniques. None of the models calculated daily ET well at either Bushland or Zhengzhou as indicated by high mean absolute differences (MAD > 1.1 mm) and root mean squared errors (RMSE > 2.0 mm). The three models tended to overestimate daily ET when measured ET was small, and to underestimate daily ET when measured ET was large. The fitted values of daily crop coefficients (Kc), calculated from daily ET and reference ET (ETo), were very similar to those of Allen et al. (1998) [Allen, R.G., Pereira, S.L., Raes, D., Smith, M., 1998. Crop evapotranspiration guidelines for computing crop water requirements. Irrigation and drainage paper 56, Rome] although some Kc were overestimated (≥1.0). Leaf area index (LAI) was poorly calculated by MODWht and CERES-Wheat, especially when using the Priestley-Taylor method to estimate potential ET (PET). Poor overall ET calculation of three models was associated with poorly estimated values of PET or ETo, Kc and LAI as well as their interactions. Therefore, this suggested that considerable revisions and calibrations of ET algorithms of the three models are needed for the improvement of ET calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号