首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi‐arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land‐use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0–10 and 10–20 cm depth) were collected during the wet and dry periods. Split–split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land‐use and soil depth on soil microbial properties, TOC and TN stocks. Land‐use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land‐use form with high ecosystem multifunctionality in Caatinga. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In the Amazon basin, tropical rainforest is being slashed and burned at accelerated rates for annual crops over a couple of years, followed by forage grasses. Because of poor management, the productivity of established pastures declines in a few years so that grazing plots are abandoned and new areas are deforested. Previous studies in the region report higher bulk density in soils under pasture than in similar soils under forest. The objective of this study was to detect changes in the physical quality of the topsoil of nutrient-poor Typic Paleudults in the colonisation area of Guaviare, Colombian Amazonia, and analyse the effect of soil deterioration on pasture performance. Temporal variation of soil compaction under pasture was analysed by comparing natural forest taken as control and pasture plots of Brachiaria decumbens (Stapf) grouped into three age ranges (<3, 3–9, >9 years). Evidence of soil compaction through cattle trampling, after clearing the primary forest, included the formation of an Ap horizon with platy structure and dominant greyish or olive colours, reflecting impaired surface drainage, the increase of bulk density and penetration resistance, and the decrease of porosity and infiltration rate. From primary forest to pastures older than 9 years, bulk density of the 5–10 cm layer increase was 42% in fine-textured soils and 30% in coarse-textured soils. Penetration resistance ranged from 0.45 MPa under forest to 4.25 MPa in old pastures, with maximum values occurring at 3–12 cm depth in pastures older than 9 years. Average total soil porosity was 58–62% under forest and 46–49% under pasture. Basic infiltration dropped from 15 cm h−1 in the original forest conditions to less than 1 cm h−1 in old pastures. Crude protein content and dry matter yield of the forage grass steadily decreased over time. No clear relationship between declining protein content as a function of pasture age and changes in chemical soil properties was found, but there was a high negative correlation (r=−0.81) between protein content and bulk density, reflecting the effect of soil compaction on pasture performance. After about 9–10 years of use, established grass did no longer compete successfully with invading weeds and grazing plots were abandoned. As land is not yet a scarcity in this colonisation area, degraded pastures are seldom rehabilitated.  相似文献   

3.
ABSTRACT

The Brazilian dry forest occupies an area of about 1 million km2 approximately 46% of which has been deforested. Many studies have been done on the effects of this on productivity and soil chemical attributes. However, little is known about soil enzymatic activity, which is sensitive to environmental changes. The objective of this study was to evaluate the effects of deforestation using different levels of human disturbance on soil enzyme activities, organic carbon content, microbial biomass, and microbial community. We studied areas covered with forest (TDF), old grass (OG), or new grass (NG). Soils from NG had increased microorganisms, which restored important processes related to carbon, sulfur, and nitrogen cycling, so that they resembled those in the forested area. The results of this study showed that the conversion of forest to pasture with a high level of human disturbance could decrease the activities of β-glucosidase, urease, alkaline phosphatase, and fluorescein diacetate in the soil by up to 87%, 66%, 62%, and 58%, respectively. These findings suggest that human disturbance can cause substantial changes in the enzymatic activity and microbial community in the soil. We suggest that maintaining grass pasture with low human disturbance should have fewer impacts on soil quality.  相似文献   

4.
Soil subsidence has become a critical problem since the onset of drainage of the organic soils in the Everglades Agricultural Area (EAA), which may impair current land uses in the future. The objectives of this study were to characterize soil microbial community‐level physiology profiles, extracellular enzymatic activities, microbial biomass, and nutrient pools for four land uses: sugarcane, turfgrass, pasture, and forest. Long‐term cultivation and management significantly altered the distribution and cycling of nutrients and microbial community composition and activity in the EAA, especially for sugarcane and turf fields. The least‐managed fields under pasture had the lowest microbial biomass and phosphorus (P) levels. Turf and forest had more microbial metabolic diversity than pasture or the most intensively managed sugarcane fields. Land‐use changes from sugarcane cropping to turf increased microbial activity and organic‐matter decomposition rates, indicating that changes from agricultural to urban land uses may further contribute to soil subsidence.  相似文献   

5.
The use of annually sown pastures to provide winter forage is common in dairy farming in many regions of the world. Loss of organic matter and soil structural stability due to annual tillage under this management may be contributing to soil degradation. The comparative effects of annual ryegrass pastures (conventionally tilled and resown each year), permanent kikuyu pastures and undisturbed native vegetation on soil organic matter content, microbial size and activity, and aggregate stability were investigated on commercial dairy farms in the Tsitsikamma region of the Eastern Cape, South Africa. In comparison with soils under sparse, native grassy vegetation, those under both annual ryegrass and permanent kikuyu pasture had higher soil organic matter content on the very sandy soils of the eastern end of the region. By contrast, in the higher rainfall, western side, where the native vegetation was coastal forest, there was a loss of organic matter under both types of pasture. Nonetheless, soil organic C, K2SO4-extractable C, microbial biomass C, basal respiration, arginine ammonification and fluorescein diacetate hydrolysis rates and aggregate stability were less under annual than permanent pastures at all the sites. These results reflect the degrading effect of annual tillage on soil organic matter and the positive effect of grazed permanent pasture on soil microbial activity and aggregation. Soil organic C, microbial biomass C, K2SO4-extractable C, basal respiration and aggregate stability were significantly correlated with each other. The metabolic quotient and percentage of organic C present as microbial biomass C were generally poorly correlated with other measured properties but negatively correlated with one another. It was concluded that annual pasture involving conventional tillage results in a substantial loss of soil organic matter, soil microbial activity and soil physical condition under dairy pastures and that a system that avoids tillage needs to be developed.  相似文献   

6.
Abstract

Tree clearing is a topical issue the world over. In Queensland, the high rates of clearing in the past were mainly to increase pasture production. The present research evaluates the impact of clearing on some soil biological properties, i.e. total soil respiration, root respiration, microbial respiration, and microbial biomass (C and N), and the response of soil respiration to change in temperature.

In-field and laboratory (polyhouse) experiments were undertaken. For in-field studies, paired cleared and uncleared pasture plots were selected to represent three major tree communities of the region, i.e. Eucalyptus populnea, E. melanophloia, and Acacia harpophylla. The cleared sites were chosen to represent three different time-since-clearing durations (5, 11–13, and 33 years; n=18 for cleared and uncleared plots) to determine the temporal impact of clearing on soil biological properties. Experiments were conducted in the polyhouse to study in detail the response of soil respiration to changes in soil temperature and soil moisture, and to complement in-field studies for estimating root respiration.

The average rate of CO2 emission was 964 g CO2/m2/yr, with no significant difference (P<0.05) among cleared and uncleared sites. Microbial respiration and microbial biomass were greater at uncleared compared with those at cleared sites. The Q 10-value of 1.42 (measured for different seasons in a year) for in-field measurements suggested a small response of soil respiration to soil temperature, possibly due to the limited availability of soil moisture and/or organic matter. However, results from the polyhouse experiment suggested greater sensitivity of root respiration to temperature change than for total soil respiration. Since root biomass (herbaceous roots) was greater at the cleared than at uncleared sites, and root respiration increased with an increase in temperature, we speculate that with rising ambient temperature and consequently soil temperature, total soil respiration in cleared pastures will increase at a faster rate than that in uncleared pastures.  相似文献   

7.
Soil management systems can have great effect on soil chemical, physical and biological properties. Conversion of forest to grassland and cropland can alter C and N dynamics. The objective of this study was to evaluate the changes in aggregate‐associated and labile soil organic C and N fractions after conversion of a natural forest to grassland and cropland in northern Turkey. This experiment was conducted on plots subject to three different adjacent land uses (forest, grassland and cropland). Soil samples were taken from 0–5, 5–15 and 15–30 cm depths from each land use. Some soil physical (soil texture, bulk density), chemical (soil pH, soil organic matter, lime content, total organic C and N, inorganic N, free and protected organic C) and biological (microbial biomass C and N, mineralizable C and N) properties were measured. The highest and lowest bulk densities were observed in grassland (1.41 g cm−3) and cropland (1.14 g cm−3), respectively. Microbial biomass C and total organic C in forest were almost twice greater than grassland and four‐times greater than cropland. Cultivation of forest reduced total organic N, mineralizable N and microbial biomass N by half. The great portion of organic C was stored in macroaggregates (>250 µm) in all the three land uses. Free organic C comprised smaller portion of soil organic C in all the three land uses. Thus, this study indicated that long‐term conversion of forest to grassland and cropland significantly decreased microbial biomass C, mineralizable C and physically protected organic C and the decreases were the greatest in cropland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
为探讨植被区与土地利用方式对土壤微生物量的影响,在陕西省延河流域森林区、森林草原区和草原区采集5种土地利用方式下的土壤剖面样品(0-10cm,10-30cm),并对其微生物量碳(SMBC)、微生物量氮(SMBN)和微生物量磷(SMBP)及土壤理化性质进行了分析。结果表明,微生物量磷的含量在3个植被区中均是在农地、撂荒地中相对较高,微生物量碳、氮在森林区表现为:乔木林地>农地在森林草原区表现为:灌木林地>天然草地>乔木林地>农地>撂荒地在草原区表现为:天然草地>乔木林地>灌木林地>农地>撂荒地。相同土地利用方式下,土壤养分和微生物量在森林区最高,森林草原区次之,草原区最低。相关分析表明,微生物量碳、氮、磷、代谢熵、微生物量碳氮比与土壤养分相关性极为密切。因此,土壤微生物量能够作为评价土壤质量的生物学指标。不同植被区不同土地利用方式对土壤质量的改善作用不同,林地和天然草地作用效果好,对土壤微生物量的提高有明显的促进作用。  相似文献   

9.
Long‐term monoculture of watermelon results in inhibited growth and decreased crop yields, possibly because of imbalance in microbial ecology caused by accumulation of the pathogen in soil. This results in serious problems in the economics of watermelon production. We investigated the build‐up of Fusarium in soil under watermelon cultivation and changes over 3 yr of fallow in a microcosm. We focused on changes in the microbial community of Fusarium‐infected soil, including the diversity of the microfloral species composition, and species abundance. Long‐term monoculture of watermelon leads to changes in microbial diversity and community structure. The microbes most readily cultured from infested soil were suppressed by watermelon wilt pathogen Fusarium oxysporum f. sp. niveum (FON). Of 52 isolated and identified culturable microbes, 83.3% of bacteria, 85.7% of actinomycetes, 31.6% of fungi and 20.0% of Fusarium sp. were inhibited by FON on bioassay plates. Prior to fallowing, infested soil was a transformed ‘fungus‐type’ soil. After 3 yr of fallow, the infested soil had remediated naturally, and soil microbial diversity recovered considerably. Abundance of dominant bacterial populations was increased by 118–177%, actinomycetes, fungi and FON were decreased by 23–32, 33–37 and 50%, respectively. The ratio of bacteria: actnomycetes: fungus: Fusarium sp. in infested soil changed from 24 000:100:4:1 prior to fallow to 57 000:100:3.5:1 after fallowing, nearer to the 560 000:400:8:1 ratio of healthy soil not used for watermelon cultivation. This suggests the ‘fungus‐type’ soil was converting to ‘bacteria‐type’ soil and that disrupted microbial communities in infested soil were restored during fallow.  相似文献   

10.
The size, number, and biomass of bacteria and microscopic fungi were studied in chernozems of different land uses (forest, fallow, pasture, and cropland), in paleosols under mounds of different ages in the territories adjacent to the background recent chernozems; and in the cultural layer of an ancient settlement of the Bronze Age, Early Iron Age, and Early Middle Age (4100–1050 years ago). The method of cascade filtration revealed that bacterial cells had a diameter from 0.1 to 1.85 μm; their average volume varied from 0.2 to 1.1 μm3. Large bacterial cells predominated in the soils of natural biocenoses; fine cells were dominants in the arable soils and their ancient analogues. The bacterial biomass counted by the method of cascade filtration was first found to be 10–380 times greater than that determined by luminescence microscopy. The maximal bacterial biomass (350–700 μg/g) was found in the soils of the birch forest edge (~80-year-old) and under the 80-year-old fallow. In the soils of the 15–20 year-old fallows and pastures, the bacterial biomass was 110–180 μg/g; in the arable soils and soils under the mounds, it was 80–130 and 30–130 μg/g, respectively. The same sequence was recorded in soils for the content of fungal mycelium and spores, which predominated over the bacterial mass. With the increasing age of the buried paleosols from 1100 to 3900 years, the share of the biomass of fungal spores increased in the total fungal and total microbial biomasses. In the cultural layer of the Berezovaya Luka (Altai region) settlement that had been functioning about 4000 years ago, the maximal biomass and number of fungal spores and the average biomass of bacteria and fungal mycelium comparable to that in the studied soils were revealed. In this cultural layer, the organic matter content was low (Corg, 0.4%), and the content of available phosphorus was high (P2O5, 17 mg/g). These facts attest to the significant saturation of this layer with microbial cenoses 4000 years ago and to their partial preservation up to now owing to the high concentration of ancient human wastes there.  相似文献   

11.
This study describes the impact of the conversion of native Colombian savannahs into crops and pastures on: (1) the quantity and diversity of the bio-structures produced by soil ecosystem engineers and (2) soil structure. Bio-structure diversity decreased in all agroecosystems (12 types in the savannah, four to six in pastures and three in crops). Bio-structures were mostly earthworm casts in native savannah and pastures, and ant mounds in crops. Compared with the savannah (750 cm3 m–2), their volume increased in the old pasture (+48%) and decreased in recent pasture and crops (–65% to –97%). Soil structure was similar to savannah soil in the older pasture, but was sharply affected in annual crops. In contrast to crops, pastures appear to sustain soil structure and are also suitable for engineering activity.  相似文献   

12.
土地利用类型对土壤微生物量和有机质的影响   总被引:2,自引:1,他引:1  
对陕北黄土丘陵区农地、园地、人工草地、荒地、灌木林地、经济林地和乔木林地等7种不同土地利用类型土壤剖面4个土壤层次的土壤微生物量碳(MBC)、微生物量氮(MBN)、土壤呼吸(RS)和土壤有机质含量(SOM)进行了测定.分析了MBC,MBN,RS,SOM和全氮(TN)之间的相关性;并对土壤微生物对土壤健康的生物指示功能和土地利用类型对土壤有机质的影响进行了研究.结果表明,各土地利用类型表层土壤MBC和MBN分别在84.14~512.78和4.29~41.83 mg/kg之间,RS在108.69~235.71 mg/kg之间.荒地和乔木林地的土壤微生物量含量和RS值较高,农地较低;SOM在0.510%~1.547%之间,在乔木林地和经济林地较高,在农地,园地和人工草地较低,且在不同土地利用类型之间的差异显著.土壤微生物量和RS与SOC,TN显著相关,说明土壤微生物学特征可以用来表示土壤健康水平.农地转变为其它土地利用类型后会明显提高土壤微生物量和有机质含量,尤以表层土壤增幅最为明显.  相似文献   

13.
Three contrasting rotation breaks (sown pasture, alternate crops and bare fallow) were established at five sites in Queensland, Australia, on land that had been under sugarcane monoculture for at least 20 years. The breaks were in place for 30-42 months at four sites and for 12 months at the fifth site. The effects of the breaks on selected soil biological properties were assessed following the removal of the breaks and before the area was re-planted with sugarcane. At the four sites with the long-term breaks, microbial biomass increased under the pasture break, declined under the bare fallow break and did not change significantly under the crop break, compared to microbial biomass under continual sugarcane. At these sites, populations of the root lesion nematode (Pratylenchus zeae) declined under all three breaks whereas populations of free-living nematodes increased under the pasture and crop breaks but declined under the bare fallow break. At the site with the 12 month breaks, a forage legume pasture increased microbial biomass, reduced lesion nematodes and together with the crop break increased populations of free-living nematodes. At the four sites with the long-term breaks there was an increase in the ratio of fungal:bacterial fatty acids and an increase in fatty acid 16:1ω5c (used as a biomarker for mycorrhizal fungi) under the pasture and crop breaks. Also at these sites, the soil microbial community under the pasture, crop and bare fallow breaks, respectively, showed increased, no change or diminished capacity to utilize carbon substrates compared to the soil microbial community under continual sugarcane. The yield of the sugarcane crop following all three breaks was significantly higher than the yield of the crop following continual sugarcane at each of the sites with the long-term breaks. Examination of the longevity of the effect of the rotation breaks on soil biological properties at the sites with the long-term breaks, suggested that effects on some soil organisms (e.g. lesion nematodes) maybe short-lived.  相似文献   

14.
The conversion of secondary forests to larch plantations in Northeast China has resulted in a significant decline in soil available nitrogen (N) and phosphorus (P), and thus affects plant productivity and ecosystem functioning. Microbes play a key role in the recycling of soil nutrients; in turn, the availability of soil N and P can constrain microbial activity. However, there is little information on the relationships between available soil N and P and the microbial biomass and activity in larch plantation soil. We studied the responses of soil microbial respiration, microbial biomass and activity to N and P additions in a 120-day laboratory incubation experiment and assessed soil microbial properties in larch plantation soil by comparing them with the soil of an adjacent secondary forest. We found that the N-containing treatments (N and N + P) increased the concentrations of soil microbial biomass N and soluble organic N, whereas the same treatments did not affect microbial respiration and the activities of β-glucosidase, N-acetyl-β-glucosaminidase and acid phosphatase in the larch plantation. In addition, the concentration of microbial biomass P decreased with N addition in larch plantation soil. In contrast, N and N + P additions decreased microbial respiration, and N addition also decreased the activity of N-acetyl-β-glucosaminidase in the secondary forest soil. The P treatment did not affect microbial respiration in either larch plantation or secondary forest soils, while this treatment increased the activities of β-glucosidase and acid phosphatase in the secondary forest soil. These results suggested that microbial respiration was not limited by available P in either secondary forest or larch plantation soils, but microbial activity may have a greater P demand in secondary forest soil than in larch plantation soil. Overall, there was no evidence, at least in the present experiment, supporting the possibility that microbes suffered from N or P deficiency in larch plantation soil.  相似文献   

15.
Soil microbes in urban ecosystems are affected by a variety of abiotic and biotic factors resulting from changes in land use. However, the influence of different types of land use on soil microbial properties and soil quality in urban areas remains largely unknown. Here, by comparing five types of land use: natural forest, park, agriculture, street green and roadside trees, we examined the effects of different land uses on soil microbial biomass and microbial functional diversity in Beijing, China. We found that soil properties varied with land uses in urban environments. Compared to natural forest, soil nutrients under the other four types of urban land use were markedly depleted, and accumulation of Cu, Zn, Pb and Cd was apparent. Importantly, under these four types of land use, there was less microbial biomass, but it had greater functional diversity, particularly in the roadside‐tree soils. Furthermore, there were significant correlations between the microbial characteristics and physicochemical properties, such as organic matter, total nitrogen and total phosphorus (P < 0.05), suggesting that lack of nutrients was the major reason for the decrease in microbial biomass. In addition, the larger C/N ratio, Ni concentration and pool of organic matter together with a higher pH contributed to the increase in microbial functional diversity in urban soils. We concluded that different land uses have indirect effects on soil microbial biomass and microbial community functional diversity through their influence on soil physicochemical properties, especially nutrient availability and heavy metal content.  相似文献   

16.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

17.
There is little information on the effects of land use change on soil Carbon stocks in Colombian Amazonia. Such information would be needed to assess the impact of this area on the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to evaluate soil carbon stocks and changes after the clearing of the native forest, the establishment of pastures and the reclamation of the degraded pasture, in Caquetá, Colombia.We compared the contents of Total C, Oxidizable C and Non-Oxidizable (stable) C in four different land use systems, namely Monoculture (Brachiaria grassland), Association (Brachiaria + Arachis pintoi), Forage Bank (a mixture of forage tree species), and Natural Regeneration of the pasture in both a flat area and a sloping one. The Degraded Pasture was the reference.Results showed that in the sloping area all treatments have higher Total Carbon stocks than the Degraded Pasture, while three of the treatments significantly increased the stocks of Non-Oxidizable C.In the flat landscape, only the Association significantly increased Total C stocks. Plowing and fertilization cause significant increases in Oxidizable carbon and decreases in Non-Oxidizable carbon. This effect needs further research, as C stability will influence equilibrium stocks.In the sloping area, improved pastures and fodder bank rapidly increased Total Carbon contents and stocks, with increases as large as10 ton.ha?1 yr?1. In the Traditional Fodder Bank, which showed the largest increase, this is partially due to the application of organic manure. Surprisingly, also C stocks under Natural Regeneration were significantly higher than under the original Degraded Grassland. This increase was fully due to Non-Oxidizable Carbon, which is difficult to explain.Stable isotope analysis indicated that under improved grassland, especially Brachiaria monoculture, up to 40% of the original C in the upper 10 cm was replaced in 3.3 years.  相似文献   

18.
Microbial properties may help to provide an integrated view of changes in soil functioning associated with soil management or soil status. The fatty acid profiles of membrane phospholipids (PLFA) can give the composition of ecophysiological groups of soil microbial communities, while catabolic response profiles (CRP) estimate the heterotrophic functional diversity in soils, both relevant to the understanding of the role of micro‐organisms in the functioning of the soil. The objectives of this study were (i) to evaluate the CRP and PLFA as microbial tools to characterize changes in soil functioning and (ii) clarify the relation among these microbial measurements, with other physical, chemical and biochemical soil properties. We compare the same soil subjected to different managements and degrees of erosion. An undisturbed soil (UN), an old pasture soil (OP) and soils under continuous cultivation (NT) with four different depth of A horizon: 25 cm (NT 25), 23 cm (NT 23), 19 cm (NT 19) and 14 cm (NT 14) were tested. Substrate‐induced respiration of most substrates diminished when cropping pressure increased (UN > OP > NT), and soil catabolic evenness, as a diversity index, decreased by increasing production pressure and soil erosion. The correlation found among most of the measured physical, chemical and biochemical soil properties with the catabolic evenness showed the potential of this measurement to provide an integrated view of soil functioning. The PLFA analysis showed that the composition of microbial community denoting a partial recovery after 10 yr under grazed grassland. The stress indicators showed that farming practices increased microbial stress with the highest values found in the most eroded soils.  相似文献   

19.
新疆艾比湖地区在我国内陆荒漠自然生态系统中具有典型性和较高研究价值,通过对不同土地利用方式土壤进行采样和分析,系统地研究和比较了不同土地利用方式土壤酶活性及微生物特性(土壤微生物量和微生物数量)。结果表明:新疆艾比湖不同土地利用方式土壤机械组成不尽一致,黏粒含量占主导地位,粗砂粒含量相对较低,土壤总孔隙度与土壤容重变化趋势相反。不同土地利用方式对土壤养分具有较大影响,不同土地利用方式下土壤养分(有机碳、全氮、全磷)和有效养分(有效磷、有效氮、有效钾、有效锌、有效铁含量)均呈现出一致性规律,大致表现为林地草地耕地未利用地,土壤全磷在不同土地利用方式下差异均不显著(p0.05);与耕地相比,土壤微生物量碳和氮、土壤微生物数量(细菌、真菌和放线菌),土壤酶活性(土壤蔗糖酶、脱氢酶、脲酶、酸性磷酸酶活性)均有明显的增加,大致表现为:林地草地耕地未利用地;相关性分析表明,土壤微生物量碳和氮、细菌、放线菌和真菌数量、蔗糖酶、脱氢酶、脲酶和磷酸酶活性均呈显著或者极显著的负相关(p0.05,p0.01);土壤有机质和全氮与蔗糖酶、脱氢酶、磷酸酶和细菌数量呈极显著正相关(p0.01),土壤有效养分与土壤微生物量碳、细菌数量和蔗糖酶活性呈显著或极显著正相关(p0.05,p0.01),说明土壤微生物量碳仍是有效养分的主要来源,其中土壤容重对土壤微生物量、微生物数量和酶活性贡献为负,土壤养分对土壤微生物量、微生物数量和酶活性贡献为正,这是造成不同土地利用方式土壤微生物量、微生物数量和酶活性差异的重要原因,其中有机质和全氮是土壤微生物量、微生物数量和酶活性的主要养分来源。  相似文献   

20.
I. Celik   《Soil & Tillage Research》2005,83(2):270-277
Forest and grassland soils in highlands of southern Mediterranean Turkey are being seriously degraded and destructed due to extensive agricultural activities. This study investigated the effects of changes in land-use type on some soil properties in a Mediterranean plateau. Three adjacent land-use types included the cultivated lands, which have been converted from pastures for 12 years, fragmented forests, and unaltered pastures lands. Disturbed and undisturbed soil samples were collected from four sites at each of the three different land-use types from depths of 0–10 cm and 10–20 cm in Typic Haploxeroll soils with an elevation of about 1400 m. When the pasture was converted into cultivation, soil organic matter (SOM) pool of cultivated lands for a depth of 0–20 cm were significantly reduced by, on average 49% relative to SOM content of the pasture lands. There was no significant difference in SOM between the depths in each land-use type, and SOM values of the forest and pasture lands were almost similar. There was also a significant change in soil bulk density (BD) among cultivation (1.33 Mg m−3), pasture (1.19 Mg m−3), and forest (1.25 Mg m−3) soils at depth of 0–20 cm. Only for the pasture, BD of the depth of 0–10 cm was significantly different from that of 10–20 cm. Depending upon the increases in BD and disruption of pores by cultivation, total porosity decreased accordingly. Cultivation of the unaltered pasture obviously increased the soil erodibility measured by USLE-K factor for each soil depth, and USLE-K factor was approximately two times greater in the cultivated land than in the pasture indicating the vulnerability of the cultivated land to water erosion. The mean weight diameter (MWD) and water-stable aggregation (WSA) were greater in the pasture and forest soils compared to the cultivated soils, and didn’t change with the depth for each land-use type. Aggregates of >4.0 mm size were dominant in the pasture and forest soils, whereas the cultivated soils comprised aggregates of the size ≤0.5 mm. I found that samples collected from cultivated land gave the lowest saturated hydraulic conductivity values regardless of soil depths, whereas the highest values were measured on samples from forest soils. In conclusion, the results showed that the cultivation of the pastures degraded the soil physical properties, leaving soils more susceptible to the erosion. This suggests that land disturbances should be strictly avoided in the pastures with the limited soil depth in the southern Mediterranean highlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号