首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The goal of this study was to determine the effects of short-term feed withdrawal on reproductive and metabolic hormones during the luteal phase of the estrous cycle in mature ewes. Mature ewes observed in estrus were assigned randomly to control and fasted groups (n = 10 per group Trials 1 and 2). For Trials 1 and 2, control ewes had ad libitum access to feed, whereas fasted ewes were not fed from d 7 through 11 of their estrous cycle; on d 12, all ewes were treated with 10 mg of PGF2alpha, and fasted ewes were gvien ad libitum access to feed. For Trial 1, blood samples were collected daily through fasting and at 2-h intervals following PGF2alpha for 72 h. Serum concentrations of insulin (P < or = 0.002) and IGF-I (P < or = 0.01), but not GH (P > or = 0.60), were decreased during fasting compared with fed ewes. Serum concentrations of 29 (P = 0.02) and 34 kDa (P = 0.04) IGFBP were greater in fasted ewes at 96 h after initiation of fasting than in control ewes. Two control and four fasted ewes in Trial 1 did not exhibit a preovulatory surge release of LH by 72 h. Therefore, Trial 2 was conducted so that the timing of the LH surge could be predicted following the collection of blood samples at 2-h intervals for 112 h and then at 6-h intervals until 178 h following PGF2alpha administration and realimentation. The magnitude of the preovulatory LH surge in Trial 2 was decreased (P = 0.009) and delayed (P = 0.04), and serum concentrations of estradiol were diminished (P < or = 0.03) 12 h before the LH surge in fasted ewes. Ovulation rates were not influenced (P > or = 0.32) by fasting in Trials 1 and 2. Serum concentrations of progesterone in both Trials 1 and 2 were, however, greater (P < 0.001) in fasted than in control ewes. A third trial with ovariectomized ewes was conducted to determine whether the increased serum concentrations of progesterone observed in fasted ewes during Trials 1 and 2 were ovarian-derived. Ovariectomized ewes were implanted with progesterone-containing intravaginal implants and allotted to control (n = 5) or fasted (n = 5) treatment groups and fed as described for Trials 1 and 2. Similar to intact ewes, serum concentrations of progesterone were approximately twofold greater (P < 0.001) in fasted than in control implanted ovariectomized ewes. In summary, feed withdrawal for 5 d during the luteal phase of the estrous cycle increased serum concentrations of progesterone and evoked endocrine changes that could perturb the subsequent estrous cycle.  相似文献   

2.
The objective of the experiment was to compare follicular dynamics, ovulatory response to GnRH, and synchrony of estrus and ovulation among estrous-cycling and prepubertal beef heifers synchronized with a controlled internal drug-release (CIDR)- based or GnRH-PGF(2alpha) (PG) protocol. Estrous-cycling beef heifers were randomly assigned to 1 of 4 treatments (C1, C2, C3, C4), and prepubertal beef heifers were randomly assigned to 1 of 2 treatments (P1, P2) by age and BW. Blood samples were taken 10 and 1 d before treatment to confirm estrous cyclicity status (progesterone > or =0.5 ng/mL estrous cycling). The CIDR Select (C1, n = 12; P1, n = 14)-treated heifers received a CIDR insert (1.38 g of progesterone) from d 0 to 14, GnRH (100 microg, i.m.) on d 23, and PG (25 mg, i.m.) on d 30. Select Synch + CIDR (C2, n = 12; P2, n = 11)-treated heifers received a CIDR insert and GnRH on d 23 and PG at CIDR removal on d 30. The CIDR-PG (C3, n = 12)-treated heifers received a CIDR insert on d 23 and PG at CIDR removal on d 30. Select Synch (C4, n = 12)-treated heifers received GnRH on d 23 and PG on d 30. HeatWatch transmitters were fitted at CIDR removal (C1, C2, C3, P1, and P2) or at GnRH administration (C4) for estrus detection. Ultrasound was used to determine the response to GnRH and the timing of ovulation after estrus. Among the estrous-cycling heifers, ovulatory response to GnRH and estrous response did not differ (P > 0.05). Among the prepubertal heifers, more (P = 0.02) P1 heifers responded to GnRH than P2 heifers, but estrous response did not differ (P > 0.05). Among the estrous-cycling heifers, variance for interval to estrus after PG was reduced (P < 0.05) for C1 compared with each of the other treatments, and C3 [corrected] was reduced (P < 0.05) compared with C2 [corrected] Variance for interval to ovulation after PG was reduced (P < 0.05) for C1 compared with each of the other treatments. Among the prepubertal heifers, there was no difference (P > 0.05) in variance for interval to estrus or ovulation. Results from C1 and P1 (T1) and C2 and P2 (T2) were combined to compare T1 and T2 among mixed groups of estrous-cycling and prepubertal heifers. Response to GnRH was greater (P < 0.01; 81% T1 and 39% T2), and variances for interval to estrus and ovulation for T1 were reduced (P < 0.01) compared with T2. In summary, CIDR Select improved (P < 0.01) the synchrony of estrus and ovulation compared with Select Synch + CIDR.  相似文献   

3.
Excessive accumulation of body fat in broiler chickens has become a serious problem in the poultry industry. However, the molecular mechanism of triglyceride accumulation in chicken white adipose tissue (WAT) has not been elucidated. In the present study, we investigated the physiological importance of the catabolic hormone corticosterone, the major glucocorticoid in chickens, in the regulation of chicken WAT lipid metabolism. We first examined the effects of fasting on the mRNA levels of lipid metabolism-related genes associated with WAT, plasma corticosterone, and non-esterified fatty acid (NEFA). We then examined the effects of corticosterone on the expression of these genes in vivo and in vitro. In 10-day-old chicks, 3 h of fasting significantly decreased mRNA levels of lipoprotein lipase (LPL) in WAT and significantly elevated plasma concentrations of NEFA. Six hours of fasting significantly increased mRNA levels of adipose triglyceride lipase (ATGL) in WAT and significantly elevated plasma concentrations of corticosterone. On the other hand, fasting significantly reduced mRNA levels of LPL in WAT and elevated plasma concentrations of NEFA in 29-day-old chicks without affecting mRNA levels of ATGL in WAT or plasma corticosterone concentrations. Oral administration of corticosterone significantly reduced mRNA levels of LPL and significantly increased the mRNA levels of ATGL in WAT in 29-day-old chicks without affecting plasma NEFA concentrations. The addition of corticosterone to primary chicken adipocytes significantly increased mRNA levels of ATGL, whereas mRNA levels of LPL tended to decrease. NEFA concentrations in the culture medium were not influenced by corticosterone levels. These results suggest that plasma corticosterone partly regulates the gene expression of lipid metabolism-related genes in chicken WAT and this regulation is different from the acute elevation of plasma NEFA due to short-term fasting.  相似文献   

4.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

5.
Seasonal differences in the resumption of postpartum ovarian activity, milk production and periparturient metabolic status were investigated in lactating non-suckling dairy Awassi sheep in two consecutive experiments. In Experiment 1, autumn-lambing (AL, n = 27) and spring-lambing (SL, n = 37) ewes were investigated. Ovarian activity was monitored by means of individual progesterone (P4) profiles from day 5 to day 100 post partum. Most of the AL dams (89%) ovulated till day 35 after parturition and became cyclic thereafter. Incidence of persistent corpus luteum (CLP) and short luteal phases (sCL) was frequent (18% and 29%, respectively) among non-conceiving dams. In contrast, only 24% of the SL ewes ovulated before day 35. P4 levels during the luteal phase were lower in cyclic animals, and the cycle was longer in SL than in AL animals. No CLP or sCL was detected in the spring-lambing group, and 61% of SL ewes remained acyclic till the end of the trial. Lactation length was significantly longer in SL dams than in AL ewes (P = 0.008). According to the plasma metabolites (BHB, NEFA) and metabolic hormones (insulin, IGF-I, thyroxine) examined, negative energy balance did not appear in any of the animals. However, seasonal differences were seen in IGF-I and thyroxine levels, which were higher in the SL dams. In Experiment 2, influence of additional lighting was studied in autumn-lambing ewes. The long-day photoperiod (LD, n = 23) group was exposed to artificial light from sunset till midnight (approx. 16 h light/8 h dark) from some weeks before the expected date of delivery in mid-September until the end of December. The control group (n = 25) experienced only natural daylength. The first postpartum ovulation tended to occur later in the LD animals than in the controls (P = 0.047). The lactation of the LD group tended to be longer (P = 0.061). NEFA, BHB, insulin, IGF-I and thyroxine levels did not differ between the groups. Conclusions: (i) The ovarian function of the Awassi population is seasonal under temperate continental climate conditions. (ii) The first postpartum ovulation of non-suckling, autumn-lambing dams may occur very early, even before the completion of uterine involution. (iii) Additional artificial lighting may delay the time of first postpartum ovulation in AL ewes. (iv) Postpartum negative energy balance is unlikely to occur in dairy Awassi ewes even in high-producing intensive systems.  相似文献   

6.
The objective of Experiment 1 was to determine a dose and frequency of gonadotropin-releasing hormone (GnRH) antagonist administration to effectively suppress serum luteinizing hormone (LH) concentration and to delay ovulation when administered to mares. The objectives of Experiment 2 were 1) to determine the effects of subcutaneous or intravenous administration of a GnRH antagonist or oral altrenogest on serum LH concentration in the estrual mare; and 2) to determine the effectiveness of human chorionic gonadotropin (hCG) in inducing ovulation in mares with suppressed LH concentrations. In Experiment 1, mares (N = 20) were randomly assigned and treated with either 5% mannitol (control, single subcutaneous injection, 1 mL, at time 0; n = 5); low-dose GnRH antagonist (single subcutaneous injection, 0.01 mg/kg, at time 0; n = 5); frequent low-dose GnRH antagonist (subcutaneous injections, 0.01 mg/kg, at 0, 6, 18, and 24 hours; n = 5); or high-dose GnRH antagonist (single subcutaneous injection, 0.04 mg/kg, at time 0; n = 5). Both the frequent low-dose and high-dose GnRH antagonist treatments resulted in significantly lower LH concentrations compared with controls at 90, 102, and 114 hours after treatment (P < .05). In Experiment 2, mares (N = 38) were randomly assigned and treated with subcutaneous sterile saline (control), altrenogest (oral), subcutaneous GnRH antagonist, or intravenous GnRH antagonist. LH concentration for the altrenogest group was lower than the control group at 3, 4, 18, and 30 hours after treatment (P < .05). LH concentration for both the subcutaneous and intravenous GnRH antagonist groups were lower compared with the control group at several time points (P < .05). Based on these data, dose but not frequency of administration of a GnRH antagonist lowered LH concentration in the estrous mare but did not delay ovulation. In addition, serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG. This indicates that serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG.  相似文献   

7.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

8.
We determined the effects of short-term fasting and refeeding on temporal changes in plasma concentrations of leptin, insulin, insulin-like growth factor- 1 (IGF-1), growth hormone (GH), glucose, and nonesterified fatty acids (NEFA), in early lactating cows, non-lactating pregnant cows, and postpubertal heifers. In experiment 1, Holstein cows in early lactation were either fed ad libitum (Control, n=5) or feed deprived for 48 h (Fasted, n=6). Plasma leptin, insulin, and glucose concentrations rapidly declined (P<0.05) within 6h, and IGF-1 by 12h, but all these variables sharply returned to control levels (P>0.10) within 2h of refeeding. Plasma NEFA and GH concentrations were elevated (P<0.05) by 4 and 36 h of fasting and returned to control levels (P>0.10) by 8 and 24h after refeeding, respectively. In experiment 2, four ruminally cannulated pregnant non-lactating Holstein cows were used in a cross-over design and were fasted for 48 h (Fasted) or fasted with partial evacuation of rumen contents (Fasted-Evac). The plasma variables measured did not differ (P>0.10) between Fasted and Fasted-Evac cows. Plasma leptin, insulin, and IGF-1 concentrations were reduced by 10, 6, and 24h of fasting, respectively, in Fasted-Evac cows; and these variables were reduced by 24h in Fasted cows (P<0.05). Plasma glucose levels were reduced (P<0.05) by 48 h of fasting in both groups of fasted animals. Plasma NEFA and GH levels were increased (P<0.05) by 12 and 48 h of fasting, respectively. In experiment 3, postpubertal Holstein heifers were either fed ad libitum (Control, n=4) or feed deprived for 72 h (Fasted, n=5). Concentrations of leptin, insulin, IGF-1, and glucose in plasma were reduced (P<0.05) by 24, 10, 24, and 48 h of fasting, respectively. Plasma NEFA concentrations increased (P<0.05) by 4h, of fasting while GH levels were not significantly (P>0.10) affected by fasting. Collectively, our data provide evidence that plasma leptin concentrations are reduced with short-term fasting and rebound on refeeding in dairy cattle with the response dependent on the physiological state of the animals. Compared to the rapid induction of hypoleptinemia with fasting of early lactation cows, the fasting-induced hypoleptinemia was delayed in non-lactating cows and postpubertal heifers.  相似文献   

9.
The aims of this study were to study the effects of fasting on progesterone (P4) production in the pig and to verify whether fasting influences luteal expression of PGF(2alpha) receptor (FPr) and prostaglandin secretion. Superovulated prepubertal gilts were used; half of them were fasted for 72h starting on day 2 (F2) or 9 (F9) of the induced estrous cycle, respectively, while two groups (C2 and C9) served as respective controls. Plasma P4 and PGFM concentrations were determined by RIA while FPr mRNA expression in CLs collected at the end of fasting period was measured by real-time PCR. In experiment 1, plasma P4 concentrations in fasted gilts were significantly (P<0.01) higher than in controls starting from day 3 (F2; n=6) and 10 (F9; n=6). FPr mRNA expression was similar in F2 and C2 (n=6) CLs while it was significantly (P<0.05) higher in F9 than in C9 (n=6) CLs. In experiment 2, cloprostenol administered on day 12 significantly (P<0.05) increased FPr mRNA expression in CLs from both F9 (n=6) and C9 (n=6) gilts. At the time of cloprostenol injection PGFM levels were significantly higher (P<0.05) in the fasted group and cloprostenol-induced luteolysis in fasted but not in normally fed gilts. Results from this study indicate that fasting in prepubertal gilts induced to ovulate stimulates luteal P4 and PGFM production as well as FPr mRNA expression, thus increasing luteolytic susceptibility.  相似文献   

10.
For 6 months, 10 adult Saanen crossbred goats were fed undernutrition diet (70% maintenance), and finally five goats were refed for 6 weeks with 150% maintenance. In all animals oestrus was synchronized using 45 mg FGA vaginal sponge for 11 days, 300 IU eCG and 50 microg cloprostenol 48 h prior to sponge removal. From oestrus onset, during a 24-h period, blood samples were collected for oestradiol and NEFA assay. Ovulation was verified by laparoscopy 3 days after sponge removal. Body mass loss was 18.62 +/- 3.03% of initial weight and in refed goats body weight recovery was 90.63 +/- 3.56%. NEFA level was higher in restricted goats (p < 0.05). Fifty per cent of underfed goats (2/4) and all refed goats (4/4) exhibited oestrus and ovulation. Significant relationship (p < 0.05) was found between weight loss and the interval sponge removal-oestrus onset (r = 0.91) or ovulation rate (r = 0.70). Only in the refed group was the ovulation rate related to the oestradiol amount (r = 0.99) (p < 0.05). Collectively results showed that a short period of improved feeding re-established the responsiveness of oestrus synchronization in chronically fasted goats.  相似文献   

11.
Lactating, nonpregnant (with a corpus luteum) Holsteins were given 100 ug GnRH (n = 12) or saline (n = 12) and 500 ug cloprostenol 6 d later. Following luteolysis, ovulation occurred 10.1 +/- 0.2 d (range, 9-12 d) after GnRH and 8.6 +/- 1.0 d (range, 3-12 d) after saline (differences between groups: means, P > 0.05; variability, P < 0.001). Treatment with GnRH and cloprostenol resulted in a relatively synchronous ovulation.  相似文献   

12.
Three experiments were conducted to induce estrus and(or) ovulation in 1,590 suckled beef cows at the beginning of a spring breeding season. In Exp. 1, 890 cows at three locations were allotted to three treatments: 1) GnRH on d -7 + prostaglandin F2alpha (PGF2alpha) on d 0 (Select Synch); 2) GnRH on d -7 + PGF2alpha on d 0 (first day of the breeding season) plus a norgestomet implant (NORG) between d -7 and 0 (Select Synch + NORG); or 3) two injections of PGF2alpha given 14 d apart (2xPGF2alpha). More (P < 0.05) cycling cows were detected to have been in estrus after both treatments that included GnRH, whereas, among noncycling cows, the addition of norgestomet further increased (P < 0.05) the proportion in estrus. Pregnancy rates were greater (P < 0.01) among noncycling cows after treatments that included GnRH. For cows that calved >60 d before the onset of the breeding season, conception rates were greater (P < 0.01) than those that calved < or =60 d regardless of treatment, whereas days postpartum had no effect on rates of detected estrus. When body condition scores were < or =4 compared with >4, rates of detected estrus (P < 0.05) and conception (P = 0.07) were increased. In Exp. 2, 164 cows were treated with the Select Synch + NORG treatment and were inseminated either after estrus or at 16 h after a second GnRH injection (given 48 h after PGF2alpha). Conception and pregnancy rates tended (P = 0.08) to be or were less (P < 0.05), respectively, for noncycling cows inseminated by appointment, but pregnancy rates exceeded 53% in both protocols. In Exp. 3, 536 cows at three locations were treated with the Select Synch protocol as in Exp. 1 and inseminated either: 1) after detected estrus (Select Synch); 2) at 54 h after PGF2alpha when a second GnRH injection also was administered (Cosynch); or 3) after detected estrus until 54 h, or in the absence of estrus, at 54 h plus a second GnRH injection (Select Synch + Cosynch). Conception rates were reduced (P < 0.01) in cows that were inseminated by appointment. An interaction of AI protocol and cycling status occurred (P = 0.05) for pregnancy rates with differing results for cycling and noncycling cows. Across experiments, variable proportions of cows at various locations (21 to 78%) were cycling before the breeding season. With the GnRH or GnRH + NORG treatments, ovulation was induced in some noncycling cows. Conception rates were normal and pregnancy rates were greater than those after a PGF2alpha program, particularly when inseminations occurred after detected estrus.  相似文献   

13.
The effect of gonadotropin releasing hormone (GnRH) treatment on the time of ovulation and the occurrence of follicular dominance during the non-breeding and breeding seasons (experiment 1), and on fertility after artificial insemination (AI) in the non-breeding season (experiment 2), was examined in Merino ewes. Oestrus was synchronized in 40 nulliparous ewes (experiment 1; n = 20, in the non-breeding and breeding seasons) and in 79 multiparous ewes (experiment 2) using intravaginal sponges and pregnant mare serum gonadotropin. Thirty six hours after sponge removal (SR), half the ewes were injected (i.m.) with 40 microg of synthetic GnRH and the remainder used as controls. GnRH improved the synchrony of ovulation compared with the controls in the breeding (SD = 2.8 vs 5.7 days, p = 0.04) but not the non-breeding season (SD = 3.8 vs 4.4 days, p = 0.69), with ewes ovulating from 42 to 54 h (mean 50.4 +/- 4.08 h) and 42-60 h (mean 54.4 +/- 5.47 h) after SR for GnRH and control, respectively. For both treated and control ewes, ovulation occurred earlier in the non-breeding than the breeding season (50.1 vs 54.6 h; p = 0.002). GnRH had no effect on follicular dominance, as assessed by divergence (D: the time the ovulatory follicle exceeded the average size of the other non-ovulating follicles) or on the interval from D to ovulation (IDO). However, follicular dynamics differed between seasons. The mean follicle diameter increased at a faster rate up to 36 h after SR in the non-breeding compared with the breeding season and then rapidly declined, compared with a later peak (42 h after SR) in mean follicular size during the breeding season. IDO was shorter in the non-breeding than in the breeding season (26.7 +/- 4.30 h vs 39.6 +/- 4.53 h; p = 0.05). In experiment 2, ewes (n = 38 GnRH-treated, n = 40 controls) were inseminated in the uterus by laparoscopy 42 h or 48 h after SR with frozen-thawed sperm. The fertility of ewes treated with GnRH (nine of 39, 23%) was not different to the controls (eight of 38, 21%; p = 0.01). In conclusion the application of GnRH improved synchronization of ovulation but did not improve fertility rates after AI.  相似文献   

14.
A restriction/realimentation feeding strategy was applied to pigs to increase the age at market weight and final ADG, modify protein and lipid deposition rates at carcass and muscle levels, and thereby improve eating quality of the pork. A total of 126 Duroc x (Large White x Landrace) pigs (females and castrated males) were used. At the average BW of 30 kg, within litter and sex, pairs of littermates (blocked by BW) were randomly assigned to ad libitum (AL) feeding during growing (30 to 70 kg of BW) and finishing (70 to 110 kg of BW) periods (AL, n = 56), or restricted feeding at 65% of the ADFI of the AL pigs, on a BW basis, during the growing period and AL feeding during finishing (compensatory growth, CG; n = 56). In each feeding regimen, 15 pigs were slaughtered at 70 kg of BW, and 41 pigs were slaughtered at 110 kg of BW. Additionally, 14 pigs were slaughtered at 30 kg of BW to calculate tissue deposition rates. The CG pigs showed decreased ADG (-35%, P = 0.001) during growing but increased ADG (+13%, P = 0.001) during finishing (i.e., compensatory growth) due to greater (P = 0.001) ADFI and G:F. Hence, CG pigs were 19 d older at 110 kg of BW than AL pigs. The CG pigs were leaner at 70 kg of BW than AL (e.g., 11.7 vs. 13.5 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.023), whereas the differences were reduced at 110 kg of BW (20.6 vs. 21.0 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.536). At 70 kg of BW, intramuscular fat (IMF) content of LM did not differ between CG and AL pigs (1.25 vs. 1.49%, respectively, P = 0.118), whereas CG pigs had less IMF in LM at 110 kg of BW (2.19 vs. 2.53% for CG and AL pigs, respectively, P = 0.034). Feeding regimen influenced the composition of weight gain. From 30 to 70 kg of BW, feed restriction reduced (P = 0.001) lean and adipose tissue deposition at the carcass level and protein and lipid deposition at the muscle level. From 70 to 110 kg of BW, the CG feeding strategy increased (P = 0.016) deposition of adipose but not of lean tissue at the carcass level. However, lipid and protein deposition at the muscle level were not affected. Thus, realimentation promoted deposition of subcutaneous fat over IMF. Feeding regimen hardly affected technological meat quality at 110 kg of BW. The CG feeding strategy decreased (P = 0.014) the meat juiciness score in relation to the decreased IMF but did not influence other sensory traits. Elevated IMF content and improved pork quality might be achieved by modifying the onset or duration of the restriction and realimentation periods.  相似文献   

15.
The objectives of this study were to evaluate the effects of immunization against recombinant GnRH fusion proteins and growth promotants on onset of puberty, feedlot performance, and carcass characteristics of beef heifers. Heifers were immunized against an ovalbumin fusion protein containing 7 GnRH peptides (oGnRH, n = 12), a thioredoxin fusion protein containing 7 GnRH peptides (tGnRH, n = 12), a combination of oGnRH plus tGnRH (otGnRH, n = 12), or a combination of ovalbumin and thioredoxin (control, n = 11). Each heifer received a primary immunization containing 1 mg of protein in 1 mL of adjuvant injected into the mammary gland at wk 0 (mean age = 38 wk) and booster immunizations at wk 6 and 12. Six heifers within each treatment received Synovex H implants at wk -2. Weekly blood samples were collected from wk -2 to 26 for determination of serum progesterone concentrations and GnRH antibody titers. In GnRH-immunized heifers, GnRH antibody titers increased after the first booster injection, peaked after the second booster injection, and remained elevated through the end of the study (P < 0.01). Heifers immunized against oGnRH achieved greater (P < 0.05) GnRH antibody titers than tGnRH heifers but did not differ (P = 0.20) from otGnRH heifers. During the 26-wk study, ovulation was prevented (P < 0.05) in 10 out of 12, 12 out of 12, 11 out of 12, and 0 out of 11 tGnRH, oGnRH, otGnRH, and control heifers, respectively. At slaughter, uterine weights were lighter (P < 0.01) for GnRH-immunized heifers than control heifers. Synovex H-implanted heifers had greater (P < 0.05) ADG from wk -2 to 26, greater LM area, and lesser percentages of KPH, yield grade, and quality grade than nonimplanted heifers, regardless of the immunization treatment. Immunization against GnRH fusion proteins resulted in production of antibodies against GnRH that prevented ovulation in 92% of the heifers without affecting feedlot or carcass performance. Implanting heifers with Synovex H improved ADG, LM area, and yield grade. Improvements in delivery of the oGnRH vaccine may provide a feasible alternative to surgical spaying of heifers.  相似文献   

16.
We studied the effects of administering estradiol benzoate (EB) plus progesterone (P4) as part of a CIDR-based protocol during the growth or static phases of dominant follicle development on follicular wave emergence, follicular growth, synchrony of ovulation and pregnancy rate following CIDR withdrawal, treatment with PGF(2alpha) and GnRH, and fixed-time artificial insemination (TAI). Forty-one previously synchronized lactating Holstein dairy cows were randomly allocated to three treatment groups. The control group (n=14) received a CIDR on the third day after ovulation only (Day 0). The two treatment groups were administered CIDRs comprising 2 mg EB and 50 mg P4 either on the third (T1, n=14) or eighth day (T2, n=13) after ovulation (Day 0). All cows received PGF(2alpha) after CIDR removal on Day 7, GnRH on Day 9, and TAI 16 h after GnRH treatment. The proportion of cows with follicular wave emergence within 8 days of treatment differed (P<0.01) among the control (14.3%), T1 (85.7%), and T2 groups (92.9%). However, the mean intervals between treatment and wave emergence were not significantly different. There were significant differences in the diameters of the dominant follicles on Day 7 (P<0.01) and in preovulatory follicles on Day 9 (P<0.01), with the largest follicles observed in the control group and the smallest follicles observed in the T2 group. In contrast, the numbers of cows showing synchronous ovulation after GnRH treatment (92.9 to 100.0%) and pregnancy following TAI (46.2 to 50.0%) were similar between the treatment groups. The results showed that, irrespective of the phase (growth or static) of the dominant follicle, administration of 2 mg EB plus 50 mg P4 to CIDR-treated lactating dairy cows induced consistent follicular wave emergence and development, synchronous ovulation after GnRH administration, and similar pregnancy rates following TAI.  相似文献   

17.
The objectives of this study were to use transgenic sows that overexpress IGF-I in milk to investigate the effect of a short-term fast on piglet intestinal morphology and disaccharidase activity and to determine how milk-borne IGF-I influences the response to fasting. After farrowing, litters were normalized to 10 piglets. On d 6, piglets (n = 30) suckling IGF-I transgenic (TG) sows and piglets (n = 30) suckling nontransgenic sows (control) were assigned randomly to three treatments: fed piglets (0 h), which remained with the sow until euthanized on d 7, or fasted piglets, which were removed from the sow at either 6 or 12 h before euthanasia on d 7. Serum IGF-I and IGFBP, intestinal weight and length, jejunal protein and DNA content, disaccharidase activity, and villus morphology were measured. Fasting for 12 h resulted in a negative weight change between d 6 and 7 (quadratic response to fasting; P < 0.001). Piglets suckling TG sows tended to have greater intestinal length (P = 0.068), but no effect of IGF-I overexpression was noted for intestinal weight. Fasting, however, resulted in linear (P < 0.001) and quadratic (P = 0.002) decreases in intestinal weight. Serum IGF-I did not differ between control and TG sows, but decreased linearly (P = 0.003) with fasting. Serum IGFBP-4 decreased (linear and quadratic; P < or = 0.02) with fasting, whereas IGFBP-1 increased quadratically (P < 0.001) with fasting. Jejunal villus height, width, and crypt depth were all increased with fasting (linear and quadratic; P < 0.04). Disaccharidase activity was not affected by fed state; however, piglets suckling TG sows had greater jejunal lactase-phlorhizin hydrolase (P < 0.01) and sucrase-isomaltase (P = 0.02) activities than control piglets. In summary, intestinal weight, villus morphology, serum IGF-I, serum IGFBP-1 and -4, and piglet BW change were altered (P < or = 0.02) in response to fasting. Thus, the duration of food deprivation before euthanization should be considered when designing experiments to assess intestinal development or the IGF axis, as the magnitude of differences between the fed and fasted state may exceed those expected as a result of experimental treatment.  相似文献   

18.
Two progestin-based protocols for the synchronization of estrus in beef cows were compared. Cyclic, nonlactating, crossbred, beef cows were assigned by age and body condition score to one of two treatments. Cows assigned to the MGA Select protocol were fed melengestrol acetate (MGA; 0.5 mg x cow(-1) x (-1)) for 14 d, GnRH was administered (100 microg i.m. of Cystorelin) 12 d after MGA withdrawal, and PGF2alpha (25 mg of i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol were fed MGA for 7 d and were injected with PG on d 7 of MGA, GnRH on d 11, and PG on d 18. Transrectal ultrasonography was performed daily to monitor follicular dynamics from the beginning of MGA feeding through ovulation after the synchronized estrus. All cows exhibited estrus in response to PG. Mean interval to estrus was shorter (P < 0.01) for 7-11 Synch-treated cows (56 +/- 1.5 h) than for cows assigned to the MGA Select protocol (73 +/- 4.7 h). Mean interval from estrus to ovulation did not differ between treatments (P > 0.10). Variances for interval to estrus differed (P < 0.01) between treatments. Mean follicular diameter at GnRH injection, PG injection, and estrus did not differ (P > 0.10) between treatments. Relative to MGA Select, serum estradiol-17beta concentrations were higher (P < 0.01) for 7-11 Synch 2 d and 1 d before, on the day of GnRH injection, in addition to 4 d after GnRH, and 24 h after PG. Mean progesterone concentrations were greater (P < 0.01) for MGA Select cows from 4 d before to 7 d after GnRH. Forty-four percent of the variation in interval to estrus between treatments was explained by differences in estradiol-17beta concentrations 24 h after PG. This study suggests that follicular competence is likely related to steroidogenic capacity of the follicle and the endocrine environment under which growth and subsequent ovulation of the dominant follicle occurs.  相似文献   

19.
Induced ovulation of small dominant follicles (SF, < 12 mm; CO-Synch protocol) in postpartum beef cows resulted in formation of corpora lutea (CL) that exhibited a delayed rise in progesterone (P4) compared with CL from large dominant follicles (LF, > 12 mm). Experiment 1 characterized P4 concentrations from ovulation to subsequent estrus among GnRH-induced or spontaneously ovulated SF (or= 12 mm) to determine if P4 secretion by CL formed from GnRH-induced SF remains lower postovulation in nonlactating beef cows. Nonlactating beef cows were induced to ovulate 48 h after PGF(2alpha) (CO-Synch; GnRH on d - 9, PGF(2alpha) on d - 2, and GnRH on d 0) or exhibited estrus and spontaneously ovulated after PGF(2alpha). Follicle size was measured at the second GnRH in cows induced to ovulate or approximately 3 h after the onset of estrus for cows that ovulated spontaneously. Cows were classified into 1 of 4 groups: 1) GnRH-induced ovulation-SF (or= 12 mm; Ind-LF; n = 16); 3) spontaneous ovulation-SF (or= 12 mm; Spon-LF; n = 22). Serum concentrations of P4 from d 3 to 15 were reduced in the Ind-SF compared with the Ind-LF (P = 0.05), Spon-SF (P = 0.07), and Spon-LF (P = 0.03). Experiment 2 characterized P4 concentrations (0 to 60 d postAI) among GnRH-induced or spontaneously ovulated SF (or= 13 mm) to determine if P4 secretion by CL formed from GnRH-induced SF remained lower during early gestation. Ovulation was induced with GnRH 48 h after PGF(2) (CO-Synch) or occurred spontaneously, and ovulatory follicle size was measured at AI. Lactating cows were classified into 1 of 3 groups: 1) GnRH-induced ovulation-SF (or= 13 mm; Ind-LF; n = 43); or 3) spontaneous ovulation-LF (>or= 13 mm; Spon-LF; n = 27). The increase in P4 concentrations was greater (P = 0.06) in pregnant (d 2 to 12) compared with nonpregnant cows. Also, the increase in P4 from d 2 to 12 was greater (P = 0.01) in the Ind-LF compared with the Ind-SF groups, but there was no difference (P = 0.94) among groups in P4 from d 14 to 60 in pregnant cows. Follicle size at AI influenced the increase in P4 in cows that failed to conceive (P = 0.007), but not among cows that became pregnant (P = 0.32) to AI. In summary, P4 secretion after GnRH-induced ovulation of SF was decreased from d 2 to 12 compared with that of LF, but was similar among pregnant cows from d 14 to 60 postAI (d 0).  相似文献   

20.
The effects of fasting on insulin-like growth factor (IGF)-I, IGF-II, and IGF-binding protein (IGFBPs) mRNA in channel catfish were examined. Fed control fish (Fed) were compared to fish that had been fasted for 30 d followed by 15 d of additional feeding (Restricted). Sequence alignment and similarity to orthologous proteins in other vertebrates provided structural evidence that the 3 catfish sequences identified in the present research were IGFBP-1, -2, and -3. Prolonged fasting (30 d) reduced body weight approximately 60% (P < 0.001) and decreased IGF-I mRNA in the liver and muscle (P < 0.01). Fifteen days of re-feeding restored concentrations of hepatic and muscle IGF-I mRNA. Liver IGF-II mRNA was not affected by fasting but was increased 2.2-fold after 15 d of re-feeding (P < 0.05). Abundance of muscle IGF-II mRNA was similar between the fed control group and the restricted group throughout the experimental period. Fasting also increased liver IGFBP-1 mRNA (P < 0.05) and decreased IGFBP-3 mRNA (P < 0.01), whereas abundance of IGFBP-2 mRNA was not significantly affected. Interestingly, re-feeding for 15 d did not restore concentrations of IGFBP-1 and IGFBP-3 mRNA relative to fed control concentrations. The IGF results suggest that IGF-I and IGF-II are differently regulated by nutritional status and probably have a differential effect in promoting muscle growth during recovery from fasting. Similar to mammals, IGFBP-1 mRNA in catfish is increased during catabolism, whereas IGFBP-3 mRNA is decreased during inhibited somatic growth. The IGFBP results provide additional evidence of the conserved nature of the IGF-IGFBP-growth axis in catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号