共查询到17条相似文献,搜索用时 46 毫秒
1.
作物具有结构多样、生长环境复杂等特征。RGB图像数据能真实地反映植株的纹理特征与颜色特征,三维点云数据包含了作物的体量信息。将RGB图像和三维点云数据结合,实现作物的二维和三维表型参数提取,对表型组学的方法研究具有重要意义。本研究以马铃薯为研究对象,使用RGB相机和激光扫描仪分别采集了50个马铃薯的RGB图像与三维激光点云数据。对比了OCRNet,UpNet,PaNet和DeepLab v3+四种深度学习语义分割方法的分割精度,并选择精度较高的OCRNet网络实现马铃薯顶视图像的语义分割。优化了Mean shift聚类算法流程,完成了马铃薯植株激光点云的单株分割,并结合欧式聚类和K-Means聚类算法对单株马铃薯植株点云的茎和叶进行准确地分割。同时,提出一种利用编号建立马铃薯单株RGB图像和激光点云间一一对应关系的策略,并以此为基础分别从RGB图像与激光点云中提取同一马铃薯植株包括最大宽度、周长、面积、株高、体积、叶长与叶宽在内的8个二维表型参数与10个三维表型参数。最后,选择了比较具有代表性、易测量的叶片数、株高、最大宽度三个表型参数进行精度评估,平均绝对百分比误差(Mean Abs... 相似文献
2.
基于结构光三维点云的棉花幼苗叶片性状解析方法 总被引:1,自引:0,他引:1
针对传统的棉花叶片表型测量方法主观、低效,对复杂性状如卷叶程度、黄叶占比等很难量化的问题,提出一种基于结构光三维成像的棉花幼苗叶片性状解析方法。首先,采用结构光扫描仪获取棉花幼苗的三维点云数据;然后,利用直通滤波、超体聚类、条件欧氏距离算法,实现叶片点云的识别与分割;最后,基于分割的叶片点云,采用三角面片化、随机采样一致性、Lab颜色分割等处理,实现叶片面积、周长、生长角度、卷曲度、黄叶占比等参数的快速、准确、无损提取。对40株棉花幼苗进行三维结构光成像试验,结果表明,3D叶片面积、周长测量的平均绝对误差分别为2. 59%、2. 85%,具有较高的测量精度,还证明叶片卷曲度和黄叶占比能显著区分病叶和正常叶。 相似文献
3.
基于几何模型的绿萝叶片外部表型参数三维估测 总被引:2,自引:0,他引:2
为快速高效获取叶类植物叶片的外部表型参数、掌握植株生长状况,以绿萝叶片为研究对象,提出一种基于几何模型的叶长、叶宽与叶面积的三维估测方法。利用微软Kinect V2相机,自80cm高度垂直位姿获取绿萝叶片局部点云,并进行直通滤波去噪与包围盒精简等预处理,测量得到点云外形参数,输入预先建立的SAE网络分类预测得到几何模型参数,并基于曲面参数方程建立叶片几何模型。采用粒子群优化算法计算几何模型离散点云和局部点云间的空间距离,进行空间匹配,利用遗传算法求解最优匹配模型的内部模型参数,输出最优匹配模型的叶长、叶宽与叶面积作为估测结果。实验共采集150片绿萝叶片的局部点云数据,将估测结果和真实值进行数学统计与线性回归分析,得出叶长、叶宽与叶面积估测的平均误差分别为0.46cm、0.41cm和3.42cm2,叶长估测R2和RMSE分别为0.88和0.52cm,叶宽R2和RMSE分别为0.88和0.52cm,叶面积R2和RMSE分别为0.95和3.60cm2。实验表明,该方法对于绿萝叶片外形参数的估测效果较好,具有较高实用价值。 相似文献
4.
针对小麦植株分蘖多、器官间交叉遮挡严重,难以用图像或点云准确提取植株和器官表型的问题,本研究提出了基于三维数字化的小麦植株表型参数提取方法。首先提出了小麦植株各器官数字化表达方法,制定了适用于小麦全生育期的三维数字化数据获取规范,并依据该规范进行数据获取。根据三维数字化数据的空间位置语义信息和表型参数的定义,提出了小麦植株表型参数计算方法,实现了小麦植株和器官长度、粗度和角度等3类共11个常规可测表型参数的计算。进一步提出了定量描述小麦株型和叶形的表型指标。其中,植株围度通过基于最小二乘法拟合三维离散坐标计算,用于定量化描述小麦植株松散/紧凑程度;小麦叶片卷曲和扭曲程度为定量化叶形的指标,根据叶面向量方向变化计算得到。利用丰抗13号、西农979号和济麦44号三个品种小麦起身期、拔节期、抽穗期三个时期的人工测量值和提取值进行验证。结果表明,在保持植株原始三维形态结构的前提下,提取的茎长、叶长、茎粗、茎叶夹角与实测数据精度相对较高,R2 分别为0.93、0.98、0.93、0.85;叶宽和叶倾角与实测数据的R2 分别为0.75、0.73。本方法能便捷、精确地提取小麦植株和器官形态结构表型参数,为小麦表型相关研究提供了有效技术支撑。 相似文献
5.
在测量数据点云重构车身曲面过程中,由于车身曲面复杂多变,难以直接拟合,需要对点云数据进行区域分割,分片处理。文中结合车身曲面造型特点,将一种点云分割的算法-基于平面度的直接分割方法应用于车身曲面重建中,可实现不同性质的曲面片分块。最后给出了不同的分割实例,证明了该方法的有效性。 相似文献
6.
准确分割单个杨树叶是无接触提取杨树苗叶表型参数的前提,针对大田杨树苗的复杂种植环境,本文提出一种基于SegNet与三维点云聚类的大田杨树苗叶片分割方法。首先对Kinect V2相机进行标定,对齐RGB与深度数据,滤除背景,获得RGB与深度数据融合数据;然后针对RGB与深度融合数据采用语义分割算法SegNet对杨树苗叶与杨树干进行分割;为了更好地分割出单个杨树叶,对分割的杨树叶区域重构出三维点云,采用基于几何距离的kd-tree对单个树叶进行分类。对采集的单株树苗与多株树苗数据进行了实验分析,采用SegNet与FCN分别对杨树苗叶区域与茎区域进行分割,结果表明,SegNet对叶、茎检测准确率分别为94.4%、97.5%,交并比分别为75.9%、67.9%,优于FCN;对叶区域采用不同距离阈值的kd-tree算法进行单叶分割分析,确定了适合杨树叶的分割阈值。实验结果表明,本文提出的分割算法不仅能分割出单株杨树苗的叶片,也能分割出多株杨树苗的单个叶片。 相似文献
7.
准确分割单个杨树叶是无接触提取杨树苗叶表型参数的前提,针对大田杨树苗的复杂种植环境,本文提出一种基于SegNet与三维点云聚类的大田杨树苗叶片分割方法。首先对Kinect V2相机进行标定,对齐RGB与深度数据,滤除背景,获得RGB与深度数据融合数据;然后针对RGB与深度融合数据采用语义分割算法SegNet对杨树苗叶与杨树干进行分割;为了更好地分割出单个杨树叶,对分割的杨树叶区域重构出三维点云,采用基于几何距离的kd-tree对单个树叶进行分类。对采集的单株树苗与多株树苗数据进行了实验分析,采用SegNet与FCN分别对杨树苗叶区域与茎区域进行分割,结果表明,SegNet对叶、茎检测准确率分别为94.4%、97.5%,交并比分别为75.9%、67.9%,优于FCN;对叶区域采用不同距离阈值的kd-tree算法进行单叶分割分析,确定了适合杨树叶的分割阈值。实验结果表明,本文提出的分割算法不仅能分割出单株杨树苗的叶片,也能分割出多株杨树苗的单个叶片。 相似文献
8.
基于点云数据的树木三维重建方法改进 总被引:1,自引:0,他引:1
激光点云数据以其详尽、高精度的三维信息,在森林参数估算、精确重建植物形态结构三维模型方面具有特殊优势。为进一步提高三维模型精度,综合集成多种算法,在改进现有PC2Tree软件基础上,基于点云数据进行树木三维重建。首先根据树木局部点云的主方向相似度和局部点云轴向分布密度分离枝干与树叶;其次采取水平集和最小二乘法提取枝干部分的骨架点,通过下采样方法提取冠层部分的特征点;最后根据骨架点和特征点拓扑结构重构树木三维模型。以樟树为例,分析枝叶分割精度,自动分割与手动分割结果相近;以无叶的鸡蛋花树为例,分析重建模型精度,模型主枝长度相对误差范围集中在0~8.0%,半径相对误差范围集中在0~10%;枝条重建过程避免了噪声点的干扰,对噪声点具有一定的不敏感性;重建三维模型与原始点云吻合度高,基本解决了冠层内部枝干遮挡严重带来的三维建模困难的问题;依据模型提取树高、冠幅、胸径、体积等参数,增加了重建模型的应用范围。 相似文献
9.
基于三维激光点云的靶标叶面积密度计算方法 总被引:2,自引:0,他引:2
为向变量喷雾系统施药量的计算提供数据基础,提出了靶标喷施区域叶面积密度参数的计算方法。靶标三维点云数据由二维激光雷达传感器沿果树行直线运动间接获取。在假设各喷施子区域内叶片面积变化相对较小的条件下,基于Matlab曲线拟合工具箱cftool分析并验证了点云数与叶片数之间存在函数关系。曲线拟合结果表明,利用高斯函数、多项式函数与指数函数拟合点云数与叶片数,决定系数分别为0.925 7、0.931 0与0.936 4,指数函数拟合效果最好。相对误差分析结果表明,基于3种拟合函数,枝叶茂密区域相对误差最小为11.46%,枝叶中等茂密区域相对误差最小为11.05%,枝叶稀疏区域相对误差最小为35.50%。基于确定的点云数与叶片数间的函数方程,经系数变换后可计算出叶面积密度参数。 相似文献
10.
基于三维激光点云数据的树冠体积估算研究 总被引:2,自引:0,他引:2
树冠体积是预估树木生物量的重要参数之一。为了实现对树木冠体体积无损高精度量测,随机抽取了6个树种、共计30棵树木的三维激光点云数据作为数据源,对树冠体积的求算方法进行研究。首先,对三维激光点云数据进行匹配、拼接、去噪及压缩等处理,提取冠体点云数据;其次,提取每一棵样木树冠的边缘特征点;最后,应用不规则三角网TIN的原理算法计算冠体体积。本文所提取的边缘特征点能够最大限度地维持树冠冠体的整体不变形,还能够继续去除部分冗余数据,缩短了不规则三角网TIN的构建时间,提高了计算效率;此外,树种包含有针叶树和阔叶树,在冠形上既有针叶树所特有的冠体体态特征,又有阔叶树的冠体体态特征,其研究结果具有一定的代表性。本文采用的方法与已有文献计算结果对比表明:均方根误差为0.832,平均绝对误差为0.49,平均相对误差为1.75%,可看出二者之间差异较小;同时在30个样木中随机抽取5个样木的人工测量结果与本研究相比较,取得的精度相对较好。采用本研究所得结果精度较高,能够满足生产需求。 相似文献
11.
基于点云的谷粒高通量表型信息自动提取技术 总被引:1,自引:0,他引:1
在进行水稻的数字化考种、表型与基因关联分析和数字农业仿真模拟时,需要大量的谷粒表型信息作数据支撑。本文提出了一种基于三维点云的谷粒高通量表型信息自动提取方法,能同时自动获取谷粒的三维模型和40个表型参数,实现谷粒形状的定量和定性描述。首先,通过对谷粒点云数据进行聚类分析,完成谷粒点云的分类;其次,实现谷粒的三维重建,对谷粒离散点云进行柱面构网,获取谷粒点云的三维模型数据;最后,根据不同表型参数的特点,实现了谷粒的三维表面积和体积、长、宽、高、3个主成分剖面的周长和面积等11个基本参数与长宽比、长高比和体积比等11个衍生参数以及18个形状因子的自动提取。利用Handyscan 700型手持式激光扫描仪获取的谷粒高精度点云数据进行实验,成功实现了谷粒表型参数的自动提取,测量结果可达毫米级。基于主成分方法分析了各表型参数的权重。以游标卡尺测量值和Geomagic Studio测量值作为真值,长、宽、高的平均相对误差为1.14%、1.15%和1.62%,体积和表面积的相对误差为零,3个主成分剖面面积的平均相对误差为1.82%、2.12%和2.43%。本文方法与人工测量方法及软件测量方法相比,精度相当,且具有批量、自动、人工干预少(仅数据采集阶段需要人工操作)以及效率高的特点。 相似文献
12.
针对果园管理数字化程度低、构建方法较为单一等问题,本研究提出了一种基于激光点云的三维虚拟果园构建方法。首先采用手持式三维点云采集设备(3D-BOX)结合即时定位与地图构建-激光测距与测绘(Simultaneous Localization and Mapping-Lidar Odometry and Mapping,SLAM-LOAM)算法获取果园点云数据集;然后通过统计滤波算法完成点云数据离群点与噪声点的去除,并结合布料模拟算法(Cloth Simulation Filtering,CSF)与DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,实现地面去除与果树聚类分割,进而使用VoxelGrid滤波器降采样;最后利用Unity3D引擎,构建虚拟果园漫游场景,将作业机械的实时GPS(Global Positioning System)数据从WGS-84坐标系转换为高斯投影平面坐标系,并通过LineRenderer显示实时轨迹,实现作业机械运动轨迹控制与作业轨迹的可视化展示。为验证虚拟果园构建方法的有效性,在海棠果园与芒果园开展果园构建方法测试。结果表明,所提出的点云数据处理方法对海棠果树与芒果树聚类分割的准确率分别达到了95.3%与98.2%;通过与实际芒果园的果树行距、株距对比,虚拟芒果园的平均行间误差约为3.5%,平均株间误差约为6.6%。并且将Unity3D构建出的虚拟果园与实际果园相比,该方法能够有效复现果园三维实际情况,得到了较好的可视化效果,为果园的数字化建模与管理提供了一种技术方案。 相似文献
13.
基于改进SIFT-ICP算法的Kinect植株点云配准方法 总被引:5,自引:0,他引:5
针对传统配准方法准确度低、速度慢的问题,提出了基于改进SIFT-ICP算法的彩色植株点云配准方法。首先采用Kinect获取不同视角下植株彩色图像和深度图像合成原始植株彩色点云,通过预处理提取原始点云植株信息,对植株点云进行尺度不变特征变换(SIFT)的特征点检测,得到点云配准关键点,再对关键点进行自适应法线估计,然后求取关键点的快速点特征直方图(FPFH),通过采样一致性(SAC-IA)初始配准方法改进点云间初始位置关系,最后利用Nanoflann加速最近点迭代(ICP)算法完成精确配准。试验结果表明,改进SIFT-ICP算法可以大幅度提高点云配准的准确性和快速性,其中对应点间平均欧氏距离小于7 mm,配准时间小于30 s。 相似文献
14.
基于点云采集技术的非接触式测量能够缓解肉牛在采集体尺体重等参数时的应激问题,但采集肉牛的三维数据耗时长且易受环境干扰而产生大量无关噪点,难以适应实际养殖环境需求。为解决该问题,本研究开发了一种非接触式肉牛三维点云重建与目标提取系统与方法,采集的肉牛三维点云可为肉牛育种育肥提供大量标准化和三维量化表型数据。三维点云采集系统由Kinect DK深度相机、红外对射光栅触发器和射频识别(Radio Frequency Identification,RFID)触发器组成,可在肉牛自由通过步行道的瞬间实现肉牛点云的多角度瞬时采集。肉牛点云目标提取方法基于C++语言与点云处理库(Point Cloud Library,PCL)开发,通过空间直通滤波、统计学离群点滤波、随机抽样一致(Random Sample Consensus,RANSAC)形态拟合与点云抽稀、基于降维密度聚类的感知盒滤波等算法有效滤除与肉牛紧贴的栏杆等干扰,不破坏点云的完整性,实现肉牛点云的三维重建与分析。在养殖场中对20头肉牛进行了124次点云采集与目标提取试验。结果表明,重建的肉牛三维模型与肉牛真实形态1:1对应,系统的采集成功率为91.89%,采集的点云与真实值相比,体尺重建误差为0.6%。该系统与方法可以在无人干预的情况下,实现多角度肉牛点云数据的自动采集与三维重建,并从复杂环境中自动提取目标肉牛的点云,为非接触式肉牛体高、体宽、体斜长、胸围、腹围和体重等核心表型参数的测量提供重要的方法支撑,促进肉牛育种和育肥的标准化管理。 相似文献
15.
针对当前三维点云处理方法在玉米植株点云中识别雄穗相对困难的问题,提出一种基于超体素聚类和局部特征的玉米植株点云雄穗分割方法.首先通过边连接操作建立玉米植株点云无向图,利用法向量差异计算边权值,并采用谱聚类方法将植株点云分解为多个超体素子区域;随后结合主成分分析方法和点云直线特征提取植株顶部的子区域;最后利用玉米植株点云... 相似文献
16.
针对传统点云信息融合需要限制传感器之间位置以及繁杂标定和Kinect传感器室外工作受光照条件影响会出现目标边缘缺失的问题,提出了基于SICK和Kinect相机组合探测的植株点云超限补偿信息融合方法。首先采用SICK二维激光传感器融合实时行进速度传感器,实现对植株三维点云重构,同时通过Kinect传感器获取植株彩色和深度图像合成彩色点云,然后分别对SICK和Kinect异源点云进行阈值滤波预处理和体素栅格下采样,求取各点法线及快速点特征直方图,利用采样一致性初始配准方法使异源点云之间拥有较好的初始位置关系,再进一步使用ICP算法精确配准,通过近似最近邻搜索和超限补偿的方法完成点云信息融合。在超限补偿方法中,通过对比转换后点云间误差,判断数据有效性,实现对数据的最终融合。试验结果表明,本文方法可以有效、准确地实现不同点云之间的信息融合,并能有效抑制阳光的干扰。 相似文献
17.
针对传统采棉机器人因单一视角和二维图像信息带来的视觉感知局限问题,本文提出了一种多视角三维点云配准方法,以增强采棉机器人实时三维视觉感知能力。采用4台固定位姿的Realsense D435型深度相机,从不同视角获取棉花点云数据。通过AprilTags算法标定出深度相机RGB成像模块与Tag标签的相对位姿,并基于深度相机中RGB成像模块与立体成像模块坐标系间的转换关系,解算出各个相机间点云坐标的对应变换,进而实现点云间的融合配准。结果表明,本文配准方法的全局配准平均距离误差为0.93cm,平均配准时间为0.025s,表现出较高的配准精度和效率。同时,为满足采棉机器人感知的实时性要求,本文对算法中点云获取、背景滤波和融合配准等步骤进行了效率分析及优化,最终整体算法运行速度达到29.85f/s,满足采棉机器人感知系统实时性需求。 相似文献