首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 548 毫秒
1.
模拟降水氮沉降对藏北高寒草甸土壤呼吸的影响   总被引:1,自引:0,他引:1  
全球范围内大气氮沉降量的升高,增加了陆地生态系统的氮输入,从而影响土壤CO2的排放。2014年采用生长季(6-8月)喷洒添加定量NH4NO3液体的方式模拟降水氮沉降,参照中国氮沉降分布格局决定氮素添加剂量为40kgN·hm-2·a-1(N40),以喷洒等量清水为对照(CK)。生长季内定期测定植物群落生物量,并利用LI-8100土壤碳通量测量系统,选两个典型晴天进行土壤呼吸速率日动态变化过程测定,同时在6月下旬-9月初定期测定土壤呼吸速率,以探究氮沉降增加对藏北高寒草甸土壤呼吸的影响。结果表明:(1)氮沉降使高寒草甸地上生物量显著增加(P<0.05)。(2)高寒草甸生长季土壤呼吸具有明显的典型日动态变化和生长季变化。典型日动态呈双峰曲线,土壤呼吸速率最大值出现在13:00-14:00和16:00;生长季变化呈单峰曲线,最大值出现在8月,生长季初期和末期土壤呼吸速率较低。(3)氮沉降极显著促进了高寒草甸的土壤呼吸,与对照相比,生长季平均土壤呼吸速率增加66.1%(P<0.001)。(4)土壤呼吸速率与土壤温度、土壤湿度和地上生物量呈极显著正相关关系(P<0.001)。(5)氮沉降对土壤呼吸的温度敏感性无显著影响。研究结果说明在高寒草甸,由于氮沉降导致地上地下生物量增加,从而导致土壤呼吸速率的增加。  相似文献   

2.
从2008年1月至12月,对华西雨屏区光皮桦(Betula luminifera)林进行了模拟氮沉降试验,应用LI-8100土壤碳通量分析系统和气压过程分离(Barometric Process Separation,BaPS)技术分别研究了4个氮沉降水平0(CK)、5(L)、15(M)、30(H)g N.m^-2.a^-1下土壤呼吸的日变化和月动态。结果表明,土壤呼吸具有明显的季节动态,各处理土壤呼吸最高值均出现在7月份;氮沉降初期,各处理土壤呼吸差异不明显,5月份以后各氮沉降处理土壤呼吸开始表现出抑制效应,随着施氮浓度的增加,抑制效应愈加明显(CK〉L〉M〉H);土壤呼吸日变化基本呈现单峰曲线,呼吸速率最高值一般出现在14:00—16:00。随着氮沉降的增加,对土壤呼吸产生的抑制效应增强,这可能与光皮桦林土壤本身的氮素状态有关。各处理土壤呼吸速率与土壤温度呈极显著指数正相关关系,对土壤呼吸与土壤温度和湿度的偏相关分析得出,温度能解释土壤呼吸的大部分变异(50.1%-79.8%),是影响光皮桦林土壤呼吸的主导因子。随着氮沉降浓度的增加,土壤呼吸的Q10值减小,表明氮沉降可能降低了土壤呼吸的温度敏感性。  相似文献   

3.
土壤异养呼吸是影响土壤有机碳积累的关键因素。以南方红壤水土流失区不同恢复年限的马尾松林(未治理地(Y0)、恢复14 a(Y14)、恢复31 a(Y31))为对象,对不同呼吸组分进行测定并结合温度、水分以及微生物等因子,研究马尾松林恢复对土壤异养呼吸的影响。结果表明:不同恢复年限马尾松林土壤异养呼吸差异显著,恢复31 a显著大于恢复14 a以及未治理地,未治理地异养呼吸速率仅为0.99 μmol?m-2?s-1,而治理14 a、31 a分别为2.20、2.80 μmol?m-2?s-1;温度是异养呼吸季节变化的主要影响因子,分别解释季节变化的40.6%(Y0)、62.2%(Y14)、66.6%(Y31);马尾松林恢复后土壤异养呼吸温度敏感性(Q10)显著增加,Y0、Y14、Y31的 Q10分别为1.58、1.93和1.82;不同恢复年限土壤异养呼吸占土壤总呼吸比例为77.94%(Y0)、70.84%(Y14)、77.35%(Y31)。结构方程表明,在马尾松林恢复过程中,土壤有机碳(SOC)、温度以及土壤微生物多样性变化是影响土壤异养呼吸变化的主要因子,其中SOC、土壤微生物与异养呼吸显著正相关,而植被恢复过程中土壤温度变化与异养呼吸显著负相关。本研究结果表明,马尾松林植被恢复过程中SOC的积累以及缺乏有效的物理保护增加了微生物对SOC的分解,另一方面土壤环境温度的降低和细菌、真菌丰度的增加以及群落中变形菌、子囊菌、酸杆菌的增加,更进一步加剧微生物对原有土壤有机质的分解强度,导致异养呼吸碳排放的持续增加,最终限制了马尾松林土壤碳吸存效率。因此,较高的土壤异养呼吸可能是影响红壤侵蚀退化区土壤有机质进一步提升的关键。  相似文献   

4.
为研究氮肥施用对玉米根际呼吸和土壤基础呼吸温度敏感性的影响,采用动态密闭气室红外CO2分析法,于2010年进行田间试验,该试验设4个处理:裸地不施氮肥(CK)、裸地施氮肥(CK-N)、种植玉米不施加氮肥(M)、种植玉米施加氮肥(M-N),观测玉米田土壤呼吸各组分的日变化规律,同时观测土壤温度、气温等环境因子。结果表明,不种植玉米处理(CK和CK-N)土壤呼吸速率(土壤基础呼吸)为0.57~1.23μmol·m-2·s-1,施加氮肥对土壤基础呼吸没有显著影响;种植玉米条件下,施氮处理(M-N)的季节平均土壤呼吸速率为3.14μmol·m-2·s-1,显著高于不施氮处理(M),增幅达31.9%。CK和CK-N处理的土壤基础呼吸温度敏感系数Q10分别为1.20、1.25,而不施氮和施氮条件下玉米根际呼吸的Q10值则分别为1.27、1.49。施加氮肥导致玉米根际呼吸温度敏感性明显增强(Q10值增大),而土壤基础呼吸的温度敏感性则无明显变化,两种效应的叠加使得种植玉米土壤的总呼吸速率温度敏感性明显增加。  相似文献   

5.
长期定位施肥下黑土呼吸的变化特征及其影响因素   总被引:9,自引:5,他引:4  
阐明长期不同施肥下的土壤呼吸特征及其影响机制对黑土区固碳减排研究至关重要。该研究基于1990年开始的国家土壤肥力与肥料效益监测网站-吉林省公主岭市黑土监测基地,选取不施肥(CK)、单施氮磷钾肥(NPK)、无机肥配施低量有机肥(NPKM1)、1.5倍的无机肥配施低量有机肥(1.5(NPKM1))、无机肥配施高量有机肥(NPKM2)和无机肥配施秸秆(NPKS)6个处理,明确了长期不同施肥下土壤总呼吸和异养呼吸的季节变化特征,并分析了土壤温度、水分、微生物量碳氮、铵态氮、硝态氮与土壤呼吸和异养呼吸的关系。结果表明:长期有机无机肥配施可以显著提高土壤有机碳、全氮、土壤速效磷、有效钾的含量和土壤活性有机碳库组分含量(P0.05);与不施肥相比,长期有机无机肥配施和无机配施秸秆处理分别显著增加土壤呼吸及异养呼吸碳累积排放量56.32%~86.54%和70.01%~100.93%;根系呼吸对土壤呼吸的整体贡献为23.68%~34.30%;相关分析表明,土壤呼吸速率和异养呼吸速率与土壤温度极显著正相关(P0.01),与土壤含水率呈显著负相关(P0.01),土壤温度可以分别解释土壤呼吸和异养呼吸变化的42.79%和39.61%;土壤微生物量碳氮、土壤硝态氮均与土壤呼吸速率和异养呼吸速率极显著相关(P0.01),土壤微生物量碳氮、土壤硝态氮可以分别解释土壤呼吸和异养呼吸变化的78.42%和77.18%,58.33%和56.79%,59.29%和59.14%;土壤铵态氮虽然显著影响土壤呼吸速率(P0.05),可以解释土壤呼吸变化的5.56%,但其对异养呼吸速率的影响不显著。综合来看,微生物量碳对土壤呼吸及异养呼吸的影响最大,而土壤含水率(15%)越高则土壤呼吸越弱;无机配施秸秆处理可以提高土壤碳库组分含量,且作物生育期内土壤呼吸及异养呼吸碳累积释放量均低于等氮量下施用有机肥(NPKM1)的处理,为最佳的农田管理措施。  相似文献   

6.
[目的] 揭示中国极端干旱区甘肃省石羊河流域储水灌溉与季节性冻融叠加作用下对土壤呼吸的影响,为进一步提高极端干旱区灌溉水资源利用效率和节约灌溉水源提供理论基础和技术支撑。[方法] 按照1 199.4 m3/hm2低灌溉定额分为灌水和非灌水处理,将冻融循环分为冻结期、冻融期和解冻期3个时间段,采用LI-8100土壤碳通量全自动测量系统对各处理地块的土壤呼吸速率进行观测与分析。[结果] 极端干旱区储水灌溉在季节性冻融作用下农田生态系统土壤呼吸速率增强,土壤碳排放量增加,农田生态系统碳循环被改变,有利于作物的生长和提高粮食产量。不同土地利用方式下土壤呼吸速率对水分和温度的响应程度不同。整个冻融过程中土壤呼吸速率呈现出:解冻期>冻结期>冻融期的规律。冻结期、冻融期和解冻期3个时期的土壤CO2都表现为源,但在夜间极低温度时土壤CO2由源转化为汇。[结论] 储水灌溉调控了整个冻融期土壤呼吸的过程,改变了极端干旱区农田生态系统的碳循环。在水分与季节性冻融叠加作用下,储水灌溉地块土壤呼吸速率相对未储水地块随温度的波动更为剧烈,但与温度的变化趋势一致,水分加剧了其随温度的波动。  相似文献   

7.
黄淮海平原地区夏玉米农田土壤呼吸的动态研究   总被引:19,自引:0,他引:19  
本文通过对黄淮海平原地区玉米生长季土壤呼吸的测定表明:该地区土壤呼吸日变化呈现单峰曲线;土壤呼吸季节变化大体呈现随温度变化的趋势,最大值出现在8月10日左右;土壤呼吸受5cm地温的影响最大,达到极显著水平。施有机肥对土壤呼吸影响较大,氮磷配施也增加了土壤呼吸量,免耕比耕翻有较少的土壤呼吸量。运用DNDC模型模拟土壤呼吸变化趋势和土壤呼吸变化通量均与田间实测的比较接近,可以用来模拟分析黄淮海平原地区农业土壤碳氮的循环。  相似文献   

8.
黄淮海平原地区夏玉米农田土壤呼吸的动态研究   总被引:30,自引:1,他引:30  
本文通过对黄淮海平原地区玉米生长季土壤呼吸的测定表明:该地区土壤呼吸日变化呈现单峰曲线;土壤呼吸季节变化大体呈现随温度变化的趋势,最大值出现在8月10日左右;土壤呼吸受5cm地温的影响最大,达到极显著水平。施有机肥对土壤呼吸影响较大,氮磷配施也增加了土壤呼吸量,免耕比耕翻有较少的土壤呼吸量。运用DNDC模型模拟土壤呼吸变化趋势和土壤呼吸变化通量均与田间实测的比较接近,可以用来模拟分析黄淮海平原地区农业土壤碳氮的循环。  相似文献   

9.
农田土壤呼吸特征及根呼吸贡献的模拟分析   总被引:17,自引:8,他引:17  
采用静态箱法研究了黄淮海平原典型农田土壤CO2排放通量的日变化、季节变化特征,分析了土壤温度、水分对土壤呼吸的影响;并利用反硝化一分解(DNDC)模型定量化研究了根呼吸对土壤总呼吸的贡献.结果表明,在作物生长季节内棉花地、休闲地和冬小麦/夏玉米地土壤CO2排放均表现出明显的季节变化规律.土壤CO2排放季节变化的总体趋势是夏季高、其他季节低,与对应气温的动态变化基本一致.冬小麦/夏玉米地土壤CO2排放通量高峰值为2324 mg·m-2·h-1,棉花地为1111.9 mg·m-2·h-,休闲地为436.07 mg·m-2·h-1.土壤CO2季节性排放受温度的影响最大,其中与5 cm地温的相关性最好,与土壤湿度的相关性不太明显.同一种种植模式施氮量高的处理CO2平均排放通量大于低的处理.同时根据DNDC模型估算,玉米根际呼吸对土壤呼吸的贡献最大,为91%~95%,棉花和冬小麦根际呼吸比例分别约为70%和80%.施氮不仅影响土壤微生物的呼吸而且还影响到根系呼吸.  相似文献   

10.
土壤呼吸是全球碳循环的主要流通途径,但半干旱草地土壤呼吸对全球变化和人类干扰的响应机制尚不清楚。该研究以科尔沁沙质草地为研究对象,研究氮沉降增加、人类干扰(火烧、刈割)及其交互作用对沙质草地整个植物生长季(2017年5-9月)土壤呼吸的影响。结果表明,土壤呼吸呈明显的季节动态变化,在7月最高。氮沉降增加使根呼吸显著提高42%,土壤呼吸显著增加17%(P0.001),但对微生物呼吸无显著影响。火烧使根呼吸显著提高25%(P0.01),但使微生物呼吸降低13%(P0.001),从而导致土壤呼吸未显著增加(P0.05)。刈割显著降低了土壤温度,诱导微生物呼吸和根呼吸分别降低13%(P0.001)和20%(P0.05),从而显著抑制土壤呼吸(P0.001)。氮沉降增强了火烧对土壤呼吸的促进作用,但未显著影响刈割对土壤呼吸的抑制作用。氮沉降、火烧和刈割对土壤呼吸的不同影响可对全球变化背景下沙质草地土壤碳循环的预测和天然草地的科学管理提供参考。  相似文献   

11.
基于红外气体分析技术,对陇东黄土高原田家沟水土保持科技示范园不同林龄(12,14,15,18a)刺槐林土壤碳通量进行定位监测,同时以荒草地为对照,分析土壤碳通量日、季变化及组分特征。结果表明:不同林龄刺槐林土壤碳通量日变化差异显著(P0.01),日变化趋势表现为昼高夜低的单峰曲线,13:00—15:00达到最大值,最小值出现在2:00—5:00;不同季节间土壤碳通量差异显著(P0.01),具体表现为夏季春季秋季冬季,夏季土壤碳通量为冬季的8.78~20.32倍;刺槐林春季土壤碳通量以自养呼吸为主,夏、秋两季以异养呼吸为主,冬季自、异养呼吸贡献率基本一样,荒草地春、夏、秋3季以异养呼吸为主,冬季与林地表现一致;刺槐林年土壤CO_2排放量随林龄增加而增加,年排放量2 069.63~4 590.35g/m~2,荒草地土壤CO_2年排放量2 806.27g/m~2,低于18a刺槐林,高于其余各林龄。研究结果为陇东黄土高原刺槐人工林土壤的固碳效应及经营措施提供依据。  相似文献   

12.
重庆缙云山3种林型土壤呼吸及其影响因子   总被引:4,自引:1,他引:4  
2011年1~12月,采用LI-Cor 8100开路式土壤碳通量测量系统对重庆缙云山保护区3种主要林分类型(针阔混交林、常绿阔叶林和毛竹林)的土壤呼吸速率和林内气温、土壤温度和湿度进行了野外观测。结果表明:针阔混交林、常绿阔叶林和毛竹林的土壤呼吸碳通量分别为654.70、1008.37和910.64 g C m-2a-1;3种林型土壤呼吸速率均呈现显著的季节性变化,且夏季>秋季>春季>冬季,最大值出现在7月,最小值出现在1月;3种林型土壤呼吸速率全年平均值分别为1.73、2.66和2.40μmol m-2s-1;3种林型土壤呼吸速率均与林内气温存在显著正相关关系(P<0.05),且与5 cm土壤温度均存在极显著的指数正相关(P<0.05);与5 cm土壤含水量的相关性不显著(P>0.05),但土壤含水量较低而温度较高时,较低的土壤含水量对呼吸速率具有一定抑制作用;3种林型的土壤呼吸对温度的敏感系数(Q10值)存在差异,全年表现为毛竹林(2.44)>针阔混交林(1.76)>常绿阔叶林(1.72),同时均表现显著的季节差异。  相似文献   

13.
[目的]探讨不同植被类型土壤呼吸特征及其温度敏感性,为陆地生态系统碳循环研究提供理论支持.[方法]以太行山南麓裸地、草地、灌丛、林地为研究对象,采用长期定位观测和室内化验分析相结合的方法,研究不同季节土壤水热因素、呼吸特征及其温度敏感性.[结果]不同植被类型的土壤温度变化较大,均表现为1月初最低,8月下旬最高,8月以后...  相似文献   

14.
[目的]分析西北干旱区葡萄园土壤呼吸及其组分变化特征,同时探究其与土壤温湿度的关系,为西北干旱区的土壤碳排放估算及其特色农业发展提供一定的参考.[方法]于2019年6-12月采用LI-8100 A土壤呼吸测量系统和自动气象站观测甘肃省敦煌市南湖绿洲葡萄园的土壤呼吸及环境因子,通过根排除法区分土壤呼吸组分.[结果]①观测...  相似文献   

15.
盛浩  代思汝  周萍  张伟畅  常钰浩 《土壤》2014,46(2):308-312
采用静态箱-碱液吸收法,对亚热带(长沙市)城郊2种暖季型草坪(狗牙根和台湾草)2012年初春典型天气过程下的土壤呼吸进行了连续28天的逐日观测,研究草坪土壤呼吸对春季天气变化的响应规律。结果表明,在春季的连续阴雨期、寒潮降温期和快速升温期,土壤呼吸波动较大,分别介于C 0.22~0.53、0.51~0.89和0.51~1.22 g/(m2·d),基本与土温变化一致。在观测期内,草坪土壤呼吸的表观Q10值较高(2.52),但在寒潮降温期和快速升温期Q10值降低(1.70和1.96),反映出草坪土壤微生物和根系活动对初春快速温度变化响应的敏感度降低,这可能是土壤呼吸长期适应的结果。春季降雨充沛,草坪土壤呼吸随着土壤质量含水量的升高而降低,较高的日降雨量明显抑制了土壤呼吸。两种草坪间土壤呼吸速率没有显著性差异,草种对初春土壤呼吸的影响可能很小。试验结果表明春季水热变化快,土壤呼吸日值波动大,在估算土壤呼吸年通量时,应充分考虑短期天气变化尺度上土壤呼吸的剧烈波动。  相似文献   

16.
采用静态箱法和田间小区试验,研究了常规稻田和覆膜旱种稻田水稻全生育期CH4的排放规律,探讨了温度和水分与稻田CH4排放的关系。结果表明:覆膜旱种稻田的甲烷排放量明显低于常规水田的排放量,常规水田的甲烷累计排放通量为20.38g/m2,覆膜旱种稻田为2.46g/m2,水稻覆膜旱种后甲烷排放量降低了88%。常规水田CH4排放峰期持续了35d,覆膜旱种稻田CH4排放峰期为25d,两者在CH4排放高峰期的排放量分别占整个生育期累计排放量的72%和97%。覆膜旱作稻田CH4排放量降低,主要表现在最大排放峰值降低和排放峰持续时间缩短。土壤温度(5cm处)和水分与水稻生育期稻田甲烷的排放有显著正相关。CH4排放通量大于1.0mg·m-2·h-1主要集中在土壤质量含水率高于36.25%的区域,在土壤质量含水率小于36.25%时,常规稻田和覆膜旱种稻田都只有少量CH4排放。  相似文献   

17.
采用树木环割法,于2009-11—2010-03,利用Li-8100土壤呼吸自动观测系统,观测研究了位于河南省济源市的华北山区南部低丘山地40a生刺槐林土壤微生物呼吸速率(Rh)的时间变化特征及其与土壤温度和湿度的关系。结果表明:(1)在非主要生长季,Rh日变化不明显,但呈现出明显的日际变化特征;Rh平均值为0.426μmol.m-2.s-1。(2)林地5cm深处土壤温度与Rh之间存在显著的指数相关关系(P〈0.01),且Rh随5cm深处土壤温度的升高而增大,表示二者关系的参数Q10值是1.86,说明非主要生长季Rh对温度的变化十分敏感;Rh与土壤含水量呈显著的线性相关关系(P〈0.01),且Rh与5cm深处的土壤温度和土壤体积含水量均有很好的复相关关系(P〈0.01)。比较偏相关系数表明,影响Rh的主要土壤物理因子是土壤水分。  相似文献   

18.
采用静态箱自动采样监测系统,对生长季内华北平原春玉米田在不同施肥处理下(化肥、有机肥、有机无机配施和不施肥)的土壤N2O排放通量进行监测,分析各处理的土壤N2O排放量和变化规律,探讨土壤温度、水分和有效氮含量对土壤N2O排放通量的影响,并在相同施氮量条件下寻求既能增产又能减少N2O排放的施肥措施。结果表明:不同施肥处理下N2O排放通量存在显著差异(P〈0.05),其中施肥处理的农田N2O-N排放总量为0.99~1.17kg.hm-2,占总施氮量的0.45%~0.55%;N2O通量与土壤铵态氮含量呈极显著正相关(P〈0.01);土壤含水量是影响农田N2O排放的一个主要因子,N2O通量与土壤含水量呈显著正相关;在产量无显著下降的情况下,有机无机配施的减排效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号