首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
光谱重采样是光谱预处理的基础环节之一,对高光谱预测模型精度有着重要影响。本文采集丰乐河流域162个土样,实验室内对土样进行质地分析和光谱测量,基于不同重采样间隔下光谱反射率R和连续统去除CR数据,利用偏最小二乘PLS回归方法构建土壤粉粒和砂粒含量的高光谱预测模型(R-PLS和CR-PLS),探讨不同采样间隔对土壤质地光谱预测模型精度的影响,分析高光谱数据预测土壤质地的最佳重采样间隔。结果表明:随着采样间隔的增大,R曲线的形状特征发生一定变化,进而导致光谱特征吸收带的变化间接影响着土壤质地的预测精度。比较与分析不同采样间隔下R-PLS、CR-PLS模型预测集评价指标的变化情况,随着采样间隔的增大,粉粒和砂粒R-PLS和CR-PLS模型的预测精度整体上逐渐减小。在相同采样间隔下,R-PLS模型的预测性能总体上高于CR-PLS模型。在R-PLS高光谱预测模型中,粉粒的最佳采样间隔为1~16 nm,砂粒为1~64 nm。该研究可为后续土壤质地的预测提供研究基础和理论参考。  相似文献   

2.
基于遗传算法的土壤质地高光谱预测模型研究   总被引:2,自引:2,他引:2  
为快速、准确地获取土壤质地信息,利用遗传算法结合偏最小二乘法(GA-PLS)回归建立土壤质地预测模型。采集了丰乐河流域162个表层土样,在实验室内对土样进行质地分析和光谱测量,采用遗传算法(Genetic Algorithm)筛选土壤质地光谱特征波段,在此基础上运用偏最小二乘法(PLS)构建了土壤质地预测模型,并与全谱段PLS模型进行对比分析。结果表明:基于遗传算法结合偏最小二乘的模型验证精度高于全谱段PLS模型,粉粒光谱验证集R~2达到0.841,RPD为2.391,较全谱段PLS模型RPD提高了18.13%,提升效果显著;砂粒光谱验证集的R~2为0.721,RPD为2.142,较全谱段PLS模型RPD提高了10.41%。遗传算法结合偏最小二乘法(GA-PLS)在土壤质地高光谱估测中,压缩了光谱变量,减少了数据冗余,提高了模型预测精度。  相似文献   

3.
基于高光谱的土壤不同颗粒含量预测分析   总被引:1,自引:0,他引:1  
以典型黄河下游冲积平原区的土壤为研究对象,分析土壤高光谱特征,探讨土壤质地不同粒级颗粒含量的统一估测途径,为土壤质地快速监测评价提供技术支持.选择原始光谱,及其倒数、对数、标准正交变换、多元散射变化、一阶微分、二阶微分共7种光谱变换形式,首先主成分降维,然后分别建立土壤黏粒、粉粒和砂粒含量的支持向量机预测模型,采用决定...  相似文献   

4.
平原区土壤质地的反射光谱预测与地统计制图   总被引:3,自引:3,他引:3  
基于地统计方法的土壤属性制图通常需要大量的采样与实验室测定。本研究提出利用可见光近红外(visible-nearinfrared spectroscopy,VNIR)光谱技术测定替代实验室测定,并与地统计方法相结合预测土壤质地的空间变异。通过建立砂粒(0.02 mm),粉粒(0.002~0.02 mm),黏粒(0.002 mm)含量的VNIR光谱预测模型,将模型预测得到的质地数据和建模点实测质地数据一同用于地统计分析和Kriging插值制图。以江苏北部黄淮平原地区为案例的研究结果表明,砂粒、粉粒、黏粒含量的预测值和实测值的均方根误差(RMSE)分别为8.67%、6.90%3、.51%,平均绝对误差(MAE)分别为6.46%、5.60%、3.05%,显示了较高的预测精度。研究为快速获取平原区土壤质地空间分布提供了新的可能的途径。  相似文献   

5.
探索适合地形平缓的山前冲积扇地区土壤机械组成的空间预测方法。以河北省灵寿、行唐、曲阳县400 m高程以下区域为研究区,结合地形因子、土壤类型、归一化植被指数、地表温度等环境变量,选择基于对称对数比(SLR)转换的普通克里格法(SLR-OK)、回归克里格法(SLR-RK)、随机森林法(SLR-RF)3种方法,对训练集114个样点表层土壤机械组成的空间分布进行预测,并通过验证集50个样点比较了3种方法的预测精度。(1)从空间预测图来看,砂粒呈现出西北低、东南高的空间分布趋势;粉粒和黏粒与砂粒相反。与SLR-OK法相比,SLRRK法和SLR-RF法能够更好地反映局部变异并减小平滑效应。(2)对于砂粒和粉粒,SLR-RF法对验证集含量预测的平均绝对误差(MAE)和均方根误差(RMSE)均低于其他两种方法,且决定系数最高,表明SLR-RF的预测精度最高;对于黏粒,SLR-OK法对验证集含量预测的MAE和RMSE均低于其他两种方法,且决定系数最高,表明SLR-OK法的预测精度最高。(3)线性回归预测模型的辅助变量包括高程、土壤类型和风力作用指数;随机森林法模型的辅助变量包括高程、土壤类型、归一化植...  相似文献   

6.
典型黑土区耕作土壤质地遥感时间窗口及影响因素分析   总被引:1,自引:1,他引:0  
了解黑土区耕作土壤质地的空间分布对于黑土区农业精准管理以及耕地保护至关重要。遥感技术是快速获取土壤质地空间分布的有效方法。该研究以黑龙江省友谊农场耕地为研究对象,评估研究区土壤质地遥感反演的最佳时间窗口并分析其影响因素。筛选覆盖研究区的2019-2021年25幅Sentinel-2影像,将每幅影像的波段和构建的光谱指数输入随机森林模型,建立土壤质地遥感反演模型,比较不同时期影像反演土壤质地的模型精度,确定土壤质地遥感反演的最适宜影像,并分析造成反演土壤质地精度变化的原因,获取友谊农场土壤质地空间分布。结果表明:1)友谊农场反演土壤质地的最佳时间窗口为4月下旬至5月中旬;2)在25幅Sentinel-2影像中,2020年5月7日反演粉粒和砂粒的模型精度最高(粉粒的R2为0.785,均方根误差为6.697%;砂粒的R2为0.776,均方根误差为8.296%);2019年5月3日反演黏粒的模型精度最高(R2为0.776,均方根误差为1.6%);3)不同时期的Sentinel-2影像对土壤质地反演的准确性有很大的影响,而土壤含水量和秸秆覆盖是造成不同时期土壤质地预测精度差异的重要原因。研究为确定土壤质地遥感反演的最佳时间窗口、实现区域尺度土壤质地制图提供关键技术。  相似文献   

7.
基于光谱分类的土壤盐分含量预测   总被引:7,自引:0,他引:7  
基于相似土壤组分和光谱特征,利用土壤光谱反射率数据和曲线特征来进行土壤光谱分类,同时充分挖掘有效信息是光谱分析的重要应用方向之一。借助模糊k-均值聚类方法将土壤光谱数据分成四个类别(分类前先将原始光谱进行范围归一化处理),比较分析了不同类型土壤在光谱分类前后的高光谱特征,然后利用Kennard-Stone法将各类别样本划分为建模集和预测集,将预处理后的建模集光谱数据作为输入量,采用偏最小二乘回归法(PLSR)方法建立全局和各自类别的盐分预测模型。结果表明:光谱分类建模较按土壤系统分类建模和全局建模的精度有明显提高,其预测模型总体的预测决定系数RP2、预测均方根误差RMSEP、相对分析误差RPD和RPIQ(样本观测值三四分位数Q3与一四分位数Q1之差与RMSEP的比值)四个指标分别从0.664、1.219、1.733和1.461提高至0.818、1.132、2.356和2.422,其中RPD提高幅度达23.13%,四个类别所建模型RPD均大于2.0,可以对土壤含盐量进行较为精确的定量研究。研究结果为利用大样本光谱数据建立大尺度区域的盐分等土壤属性预测模型提供一种新的思路和方法。  相似文献   

8.
黑土养分含量的航空高光谱遥感预测   总被引:3,自引:3,他引:0  
为监测黑龙江省黑土典型区土壤的养分元素含量,综合利用统计理论与光谱分析方法,研究建三江农场黑土土壤的3类养分含量与土壤光谱之间的关系,建立土壤全氮、有效磷、速效钾含量高光谱反演模型,实现土壤养分元素含量定量预测。对黑土土壤航空高光谱数据进行处理,应用偏最小二乘回归(PLSR)和BP神经网络方法分别建立土壤养分元素含量的高光谱定量反演模型,结果表明:全氮PLSR和BP神经网络预测模型的RPIQ值(样本观测值第三和第一四分位数之差与均方根误差的比值)分别为2.42和2.80;有效磷PLSR和BP神经网络模预测型的RPIQ值分别为0.83和1.67;速效钾PLSR和BP神经网络模型的RPIQ值分别为2.00和2.33。试验证明土壤全氮和速效钾的光谱定量预测模型具备较好的精度和预测能力。但有效磷的预测效果不是特别理想,仅可达到近似定量预测的要求;全氮、有效磷和速效钾的预测精度,BP神经网络建模相比偏最小二乘建模有更好的精度和预测能力,预测精度分别提高6.5%、10.1%和6.6%。  相似文献   

9.
  目的  建立辽宁省黄土状母质发育土壤有机质含量的高光谱预测模型,以便快速获取土壤样品的有机质含量。  方法  对省域内黄土状母质发育土壤进行了样品采集,获取样品有机质含量和高光谱数据;选择原始光谱及其一阶微分、二阶微分、倒数对数、倒数对数一阶微分、倒数对数二阶微分6种光谱变换数据作为自变量,与土壤有机质含量进行相关分析,选取特征波段,分别建立多元逐步线性回归(SMLR)、偏最小二乘回归(PLSR)和主成分回归(PCR)3种土壤有机质高光谱线性预测模型,并进行了支持向量机(SVM)方法的非线性模型拟合。  结果  土壤有机质含量与其光谱反射率呈负相关关系,对光谱进行不同的数学变换,可以提高土壤有机质含量与光谱反射率的相关性,其中一阶微分和二阶微分的提升效果最佳;相同光谱数据在不同模型中建模精度存在显著差异,以原始光谱反射率一阶微分为自变量的PLSR模型精度最高,建模集和验证集的决定系数(R2)分别为0.958和0.976;3种线性方法建立的最佳预测模型的检验精度为:PLSR > SMLR > PCR。  结论  PLSR模型是辽宁省黄土状母质发育土壤有机质含量的最佳高光谱预测模型,且基于特征波段的建模效果优于全波段;SVM非线性模型的预测精度较低。  相似文献   

10.
灌溉水中悬浮固体对土壤水分入渗性能的影响   总被引:1,自引:1,他引:0  
为监测黑龙江省黑土典型区土壤的养分元素含量,综合利用统计理论与光谱分析方法,研究建三江农场黑土土壤的3类养分含量与土壤光谱之间的关系,建立土壤全氮、有效磷、速效钾含量高光谱反演模型,实现土壤养分元素含量定量预测。对黑土土壤航空高光谱数据进行处理,应用偏最小二乘回归(PLSR)和BP神经网络方法分别建立土壤养分元素含量的高光谱定量反演模型,结果表明:全氮PLSR和BP神经网络预测模型的RPIQ值(样本观测值第三和第一四分位数之差与均方根误差的比值)分别为2.42和2.80;有效磷PLSR和BP神经网络模预测型的RPIQ值分别为0.83和1.67;速效钾PLSR和BP神经网络模型的RPIQ值分别为2.00和2.33。试验证明土壤全氮和速效钾的光谱定量预测模型具备较好的精度和预测能力。但有效磷的预测效果不是特别理想,仅可达到近似定量预测的要求;BP神经网络建模相比偏最小二乘建模有更好的精度和预测能力,预测精度分别提高6.5%、10.1%和6.6%。  相似文献   

11.
基于CARS算法的不同类型土壤有机质高光谱预测   总被引:10,自引:8,他引:2  
不同土壤类型的理化性质和光谱性质存在差异,以往研究多以高光谱反射率或光谱吸收特征建立模型,输入变量类型结构单一,往往导致土壤有机质(Soil Organic Matter,SOM)预测模型的精度不高.为提高SOM高光谱预测模型精度,该研究以黑龙江省海伦市为研究区,将不同类型土壤分别以竞争自适应重加权采样(Competi...  相似文献   

12.
绿原酸(chlorogenicacid,CGA)是评价金银花品质的重要指标。为了实现金银花贮藏期间CGA含量变化的快速有效检测,该文采集了500个不同贮藏时间(0~20d)的金银花高光谱图像,构建CGA含量的高光谱检测模型。为了提高模型性能,采用savizky-golay卷积平滑(SG),移动窗口平滑(moving average),标准正态变量(standard normal variable,SNV),基线校正(baseline correction,BC),多元散射校正(multiplicative scatter correction,MSC),正交信号校正(orthogonal signal correction,OSC)6种预处理方法并建立偏最小二乘回归(partial least squares regression,PLSR)模型,确定SNV方法为最佳预处理方法,其预测集的R2为0.976 6,RMSE为0.271 1%。为了简化校准模型,利用无信息变量消除(uninformative variable elimination,UVE),连续投影算法(successive projections algorithm,SPA),竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)以及UVE-CARS、UVE-SPA等方法对SNV预处理后的光谱提取特征波长。然后,分别基于全光谱数据和所选特征变量数据,建立线性偏最小二乘回归(PLSR)和非线性BP神经网络模型。结果表明:UVE-CARS算法可以有效地减少提取变量个数(共提取26个,仅占全光谱范围的3.2%),PLSR和BP模型的预测集R2分别为0.974 6和0.978 4,RMSE分别为0.286 3%和0.250 3%。非线性BP模型预测结果整体优于线性PLSR模型,在BP模型中,UVE-CARS-BP预测精度最高,预测集的R2和RMSE的值分别为0.978 4, 0.250 3%。综上,基于高光谱成像技术建立的SNV-UVE-CARS-BP模型,可以实现金银花贮藏过程中CGA含量变化的快速无损预测。  相似文献   

13.
为探讨野外实测光谱数据对土壤肥力的估算能力,采集青海省湟水流域表层0 ~ 20 cm土壤样品220份,同步测量其采样位置的野外实测光谱数据,实验室对土壤养分、机械组成含量以及pH值进行分析。基于上述数据,对野外实测光谱反射率进行多元散射校正(Multiplicative scatter correction,MSC)、SG-一阶导数变换(SG - First Derivative,SG-1st)预处理,采用稳定性竞争自适应重加权采样法(stability competitive adaptive reweighted sampling,SCARS)提取不同土壤养分、机械组成含量以及pH值的特征波段,以偏最小二乘回归(partial least squares regression,PLSR)模型对土壤全碳(TC)、有机质(OM)、全氮(TN)、碱解氮(AN)、pH、黏粒(clay)、粉粒(silt)、砂粒(sand)含量进行估算并对比分析,构建土壤养分含量、pH值以及机械组成含量的最优野外实测光谱估算模型。结果表明:通过MSC校正和SG-1st变换能够有效增强野外光谱特征;经SCARS选取的特征波段主要集中于近红外波段。基于野外实测光谱数据建立的PLSR模型能够对研究区土壤TC、OM、TN、AN含量以及pH值进行粗略估算;其中,对于TC、OM、TN含量及pH值而言,最佳估算模型为经SG-1st处理后的SCARS-PLSR模型,RPD值均达到1.70以上(RPDTC = 1.76; RPDOM = 1.82;RPDTN = 2.04;RPDpH = 1.89),RPIQ值均达到1.90以上(RPIQTC = 1.91;RPIQOM = 2.53;RPIQTN = 2.98;RPIQpH = 2.03);对于土壤AN含量而言,经MSC处理后的SCARS-PLSR模型最佳,其RPDAN值高达1.91,RPIQ值高达2.39。对土壤clay、silt以及sand含量野外光谱均无法估算,RPD值均在1.00左右,RPIQ值在1.20左右。  相似文献   

14.
利用高光谱遥感技术监测小麦土壤重金属污染   总被引:2,自引:1,他引:1  
为了探讨基于小麦叶片高光谱间接估测土壤重金属含量的潜力,该研究以江苏省宜兴市徐舍镇为研究区域,于2019-2020年采集农田土壤样品和小麦叶片光谱,经7种不同的光谱变换预处理后,以遗传算法(genetic algorithm,GA)优化的偏最小二乘回归算法(partial least squares regression,PLSR)对预处理后的光谱建立土壤重金属镉(Cd)和砷(As)含量的估测模型,并对模型结果进行精度评价。研究结果表明:1)光谱预处理技术能够突出光谱中的一些隐藏信息,对小麦叶片光谱进行微分变换、多元散射校正、标准正态变换等数学变换后更加有利于提取光谱敏感信息。2)GA-PLSR相较于一般的PLSR方法提高了模型精度,将GA用于光谱波段选择可以优化模型精度和提高稳定性。3)土壤Cd含量的最佳估测模型为标准正态变换预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.87、均方根误差为0.04 mg/kg、相对分析误差为2.72;土壤As含量的最佳估测模型为多元散射校正预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.91、均方根误差为0.32 mg/kg,相对分析误差为3.25。因此,能够利用小麦叶片高光谱间接估测土壤重金属Cd和As含量,该研究为将来实现定量、动态、无损遥感监测大面积农田土壤重金属污染状况提供参考依据。  相似文献   

15.
We need to determine the best use of soil vis–NIR spectral libraries that are being developed at regional, national and global scales to predict soil properties from new spectral readings. To reduce the complexity of a calibration dataset derived from the Chinese vis–NIR soil spectral library (CSSL), we tested a local regression method that combined geographical sub‐setting with a local partial least squares regression (local‐PLSR) that uses a limited number of similar vis–NIR spectra (k‐nearest neighbours). The central idea of the local regression, and of other local statistical approaches, is to derive a local prediction model by identifying samples in the calibration dataset that are similar, in spectral variable space, to the samples used for prediction. Here, to derive our local regressions we used Euclidean distance in spectral space between the calibration dataset and prediction samples, and we also used soil geographical zoning to account for similarities in soil‐forming conditions. We tested this approach with the CSSL, which comprised 2732 soil samples collected from 20 provinces in the People's Republic of China to predict soil organic matter (SOM). Results showed that the prediction accuracy of our spatially constrained local‐PLSR method (R2 = 0.74, RPIQ = 2.6) was better than that from local‐PLSR (R2 = 0.69, RPIQ = 2.3) and PLSR alone (R2 = 0.50, RPIQ = 1.5). The coupling of a local‐PLSR regression with soil geographical zoning can improve the accuracy of local SOM predictions using large, complex soil spectral libraries. The approach might be embedded into vis–NIR sensors for laboratory analysis or field estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号